£

&

[

)

ON WRITING A 'COMPREHENSIVE', INTERACTIVE',
'PORTABLE', 'DATA BASE ORIENTED' AND 'RELIABLE'
PROGRAM SYSTEM FOR ECONOMETRIC
MODELING AND CORPORATE PLANNING
(INTERIM REPORT)

Klaus PLASSER, Harald SONNBERGER,
Kurt RODLER and Wilfried PHILIPP

Forschungsbericht/
Research Memorandum No. 169

January 1982

This research was supported by the Austrian Science Foundation (Fonds zur
Forderung der wissenschaftlichen Forschung) by grant No 4012. Project title:

Software Development in Econometrics (Software-Entwicklung in der Okonometrie)



Die in diesem Forschungsbericht getroffenen Aussagen liegen
im Verantwortungsbereich der Autoren und sollen daher nicht

als Aussagen des Instituts flir H8here Studien wiedergegeben
werden.



[

o

™

Abstract:

The IAS-SYSTEM was designed and developed in order to provide a comprehensive

software system for econometric modeling and corporate planning.

This paper discusses the main objectives, problems and problem solutions in
connection with the production of this software. The main topics are interactive
systems (man-machine dialog, analysis of dialog, error handling), portability
(standardization of programming languages, standard-conforming programs, semi-

portable and non-portable modules), data organization (unique interface between

application programs and data base, storage, retrieval and update of items, self-
reorganizing data base) and reliability (design, structured programming,

documentation, test).

Kurz fassung:

Das IAS-SYSTEM wurde entworfen und implementiert, um ein umfassendes
Programm-System fiir die Gkonometrische Analyse und fiir die strategische

Unternehmensplanung zur Verfiigung zu stellen.

Dieses Paper diskutiert die wichtigsten Ziele, Probleme und ProblemlSsungen in
Zusammenhang mit der Entwicklung dieser Software. Die wichtigsten Themenbe-

reiche sind interaktive Systeme (Mensch-Maschine Dialog, Analyse des Dialogs,

Fehlerbehandlung), Portabilitit (Standardisierung von Programmiersprachen, stan-
dardgerechte Programme, halb-portable und nicht-portable Module), Datenorgani-
sation (eindeutige Schnittstelle zwischen den Anwendungsprogrammen und der
Datenbank, abspeichern, wiéderfinden und verdndern der Datenbankinhalte, selbst-

reorganisierende Datenbank) und Zuverlidssigkeit (Entwurf, strukturiertes Program-

mieren, Dokumentation, Test).






CONTENTS

Abstract/Kurzfassung
Contents
Preface

1.

4‘

INTRODUCTION

1.1. The Institute for Advanced Studies and the IAS-SYSTEM
1.2. Summary of the Features of the IAS-SYSTEM
1.3. Current Status of the Project

COMPREHENSIVE PROGRAM SYSTEMS

INTERACTIVE PROGRAM SYSTEMS

3.1. Menu Technique (Menu Selection)

3.2. Question and Answer

3.3. Simple Command Language

3.4. Dialog in the IAS-SYSTEM

3.5. Syntax Analysis in the IAS-SYSTEM

3.6. Additional Features Supporting the Dialog

PORTABLE PROGRAM SYSTEMS

4.1. Selection of the Programming Language
4.2. Internal Standards to Achieve Portablhty
4.3. Additional Portability Problems

4.4. The Future of FORTRAN

DATA BASE ORIENTED PROGRAM SYSTEMS
5.1. External View of the Data Base

5.2. Internal View of the Data Base

RELIABLE PROGRAM SYSTEMS

6.1. Project Organization

6.2. Design, Programming Style and Programming Conventions.

APPENDIX

References

IAS-SYSTEM Summary of Current Documentation

The IAS-SYSTEM at a Glance

Worldwide implementations of the IAS-SYSTEM

TR TN

o~ O 0

10
10
11
12
14
15
17
17
18
20
22
23
23
24
26

26
26
29
30
33
35

38



Preface

This paper has four objectives:

1)

4)

This paper is an interim report to the Austrian Science Foundation (Fonds zur
Férderung der wissenschaftlichen Forschung) who has supported these investi-
gations by grant No. 4012. It was one of the main objectives of the Austrian
Science Foundation to complement the actual design and implementation of the
new release of our econometric software system by scientific publications. This

is an interim report showing the directions of our investigations.

This paper will be presented at the Second International IAS-SYSTEM Working
Conference in January 1982. It should be the basis of cooperation between
various institutions who are either going to implement the IAS-SYSTEM on a

special computer or to add additional features to the System.

This paper should be a basis of discussion for groups who work in similar fields,

e.g. produce similar software.

This paper should give users of the IAS-SYSTEM a better feeling what really
happens if they employ the IAS-SYSTEM for their estimations, simulations etc.

The authors wish to express their thanks to the numerous experts from inside and

outside the Institute for their assistance and recommendations. We would very

much appreciate critics and comments.

Wien (Vienna), January 1982 IAS-SYSTEM Project-Team

Institute for Advanced Studies



N
.

~

1. INTRODUCTION

1.1. The Institute for Advanced Studies and the IAS-SYSTEM

The IAS-SYSTEM (Inter-active Simulation System) has been written with extensive
use of the infra-structure of the Institute for Advanced Studies in Wien (Vienna),
Austria (for more information see FURST 1981) and its computer center, the

Computer Center for Social and Economic Research.

The objectives of the Institute for Advanced Studies are research and postgraduate
education in the social sciences with special emphasis on empirical and mathemati-
cal methods. The fields covered by the departments of the Institute are (1)
Management Science and Operations Research, (2) Economics, (3) Mathematical

Methods and Computer Science, (4) Political Science and (5) Sociology.

Problem solving in the area of social science requires increasingly the cooperation
of specialists in several fields. The Institute therefore emphasizes interdisciplinary

teaching and research activities.

One of the results of this interdisciplinary research is the IAS-SYSTEM, the Inter-
active Simulation System, a software package (dialog and data base system) for
quantitative research in economics, especially econometric modeling, and

corporate planning.

Although the IAS-SYSTEM was initially only a project of the two departments (1)
Economics and (2) Mathematical Methods and Comput’er Science, it is currently

used and inspired by all five departments.

Besides the use within the Institute the JAS-SYSTEM has been implemented
worldwide. In July 1981 the IAS-SYSTEM was installed 22 times in 10 countries in 4

continents (see appendixz D).



-6 -
1.2. Summary of the Features of the IAS-SYSTEM

The IAS-SYSTEM was designed and developed in order to provide a comprehensive

software system for econometric modeling and corporate planning.

Data, equations (= algebraic expressions), models (= systems of equations) and text

are stored in a data base (permanent working area).

Various data entry, update and transformation features are available. The IAS-
SYSTEM offers a wide range of estimation procedures, including single equation,
instrumental variable, simultaneous and system estimators. Seasonal adjustment is
implemented. The results of the estimation procedures can be stored in equations
or submodels (system estimators). These equations and submodels can be combined
to models. The models are used for forecasting, ex post simulation, model
validation and policy simulation. Two optimization procedures (linear and quadratic
programming) are implemented. Various table handling programs provide report
generation facilities which are accompanied by graphic output routines (for more
information about the features of the IAS-SYSTEM see the summary of current

documentation in appendix B).

Unlike similar systems, the IAS-SYSTEM is interactive. It employs an easy dialog
language. The IAS-SYSTEM is designed for use by economists and business analysts

and not for use by computer specialists.

1.3. Current Status of the Project
1.3.1. Level 2 of the IAS-SYSTEM (TAS-2.xx")

Level 2 is the currently implemented, tested, documented and distributed version
of the IAS-SYSTEM. However, this Level has one extreme drawback: it is written
in a 'dialect' (= superset) of the programming language FORTRAN. This dialect
provided numerous additions to the ANSI-standard of FORTRAN valid at that time
(ANSI 1966). When Level 2 was designed in 1974 it was not intended to distribute
the System and so Level 2 of the IAS-SYSTEM was written in this dialect, fully

utilizing the efficient code generated by this compiler for our hardware.



&

o

-7-

It was very easy to implement the System on similar hardware, but it was very
difficult to implement it on different hardware/different operating systems.

This led to Level 3 of the IAS-SYSTEM (see below).

1.3.2. Level 3 of the IAS-SYSTEM (TAS-3.xx"

Level 3 of the JAS-SYSTEM was designed in 1980. One of the main objectives of

Level 3 is portability (see chapter 4: portable program systems).

Programming of this Level was started in December 1980. Currently January 1982),
some eight *comrna.nds, the data base and syntax analysié have been implemented,
as well as most of the supporting functions and subroutines like conversion
programs, file handling utilities, input and output modules for the different files,
exception handling routines, programs for retrieving, encoding and decoding date
and time, routines for setting and testing internal switches, debugging facilities

etc.

These practical implementations are supplemented by theoretic research in the
corresponding fields, which is funded in part by the Austrian Research Foundation

(Fonds zur Férderung der wissenschaftlichen Forschung).

Main fields of research are therefore portability, programming language standardi-
zation, interactive systems, man-computer dialog, data base organization, program

design, implementation techniques and management of software projects.

Most of these topics are discussed in the next chapters. These chapters begin with
an overview of available techniques and literature and end with the design and

implementation as used for the IAS-SYSTEM.



-8 -

2. COMPREHENSIVE PROGRAM SYSTEMS

Soon after the pioneering days of the first software developers programs were
collected into well documented subroutine libraries in order to be reused for
further programs. The drawback of a subroutine library is that the user has to write
his own main program for every single problem and that he has to combine (bind,
link, collect) the main program with one or more subroutines of the program
library. Typically these subroutine libraries are not used by economists, sociologists
etc. but by computer experts. The economist describes his problem to a computer
specialist who translates this problem into a language understandable by the
computer. This prevents the direct interaction of the person who originally had the

problem, e.g. an economist, and the computer.

The next step towards ease of use are comprehensive application programs, e.g. the
widespread statistical packages SPSS (NIE et al. 1975) and BMDP (DIXON et al.
1979) and the econometric packages TROLL (TROLL SERIES DOO094, 1981) and
TSP (HALL and HALL 1980).

The IAS-SYSTEM was designed to be a comprehensive system for the various steps
of the econometric modeling process, .e.g. data handling, estimation, model
building, model validation, forecasting, policy simulation, report generation,

plotting etc. (for details see appendix C: the IAS-SYSTEM at a glance).

A comprehensive system must have a

-  unique user interface

-  unique command language
-  unique data base

-  unique programming style

-  unique documentation.



N

o

)

O

™

~
{

N

3. INTERACTIVE PROGRAM SYSTEMS

One of the inconveniences of most of the programs mentioned in chapter 2 - and of
many other programs currently available -~ is that these programs are batch
oriented rather than dialog oriented. That means that the input requested from the
user has a fixed format, having punched cards in mind. These programs usually
terminate in case of any wrong specification of the user's input. A reasonable man
machine dialog is not possible. Typically these programs are again not used by the
expert who has to solve a problem (e.g. an economist), but by a computer expert

who does not know much about the original problem.

The solution to this inconvenience are interactive systems or dialog systems. There
are various techniques how .to organize the man-machine interaction

(LOCKEMANN and MAYR 1978, MARTIN 1973, SPRUTH 1977).

Martin (MARTIN 1973, p. 87 f.) enumerates 23 techniques of conversation with the
computer. However, these techniques can be combined to three classes which will

be discussed in the following paragraphs:

- menu technique
- question and answer

- simple command language.

A main aspect in the judgment of these different techniques is how they can satisfy

the different types of persons who are potential users of a program system.
The different types of users include

- casual users

- expert users _

- parametric users (users who only enter parameters requested by the
computer program)

- researchers in various fields.



-10 -

3.1. Menu Technique (Menu Selection)

The description of this technique includes similar ways of dialog with the computer

like form-filling, over-writing etc.

Menu technique is appropriate if there is only a very limited set of valid operator
actions to a computer initiated question. In this case, these may be listed and the

operator asked to select one from the "menu" of possible choices.

Menu technique can be materialized by simple WRITE/READ operations or with the

help of some full screen mode.

Advantages of menu techniques:
- good for casual users, parametric users

- easy to handle

Disadvantages of menu techniques:
- boring for expert users
- high data transmission cost and time consuming if data transmission rate is
slow
- full screen is not portable, but it is highly dependent on the operating system
and the special hardware. It is likely to be inoperable after change of the

terminals or the operating system.

3.2. Question and Answer

The question-and-answer technique is similar to menu selection but the user must
know or guess the set of valid answers. Otherwise the answer will be rejected and
the same question will be asked again. An intelligent computer program could
change from question and answer to menu selection if the operator had transmitted
an invalid response to the question asked by the computer. Another way would be
to implement a HELP command which could be transmitted by the user if he does

not know how to answer the question of the computer.

Note, that similar to the menu technique every action of the dialog is initiated by

the computer, namely by the question of the dialog module.



0

g

o

[

-11 -

Advantages of question and answer:
- relatively good for casual users

- fully portable if materialized by WRITE/READ.

Disadvantages of question and answer:
- boring for expert users
- too difficult for parametric users if the set of possible answers is large

- data transmission is lower compared to menu selection but still high.

3.3. Simple Command Language

If the command language approach is employed, the user has to learn the syntax
and the semantic of the special language. Now the human user of the computer has

to initiate the dialog by typing a certain command.

If this command is within the set of the allowed commands and if all other
parameters are within their ranges, the computer will execute the command;
otherwise it will print an error message and possibly proceed with question and
answer or menu technique. Another feature to support a user in difficulties is the

implementation of a powerful HELP command.

Advantages of employing a command language
- no unnecessary data transmission
- good for expert users
- low data transmission necessary from both sides
- fully portable if materialized with READ/WRITE and if the programming
language has appropriate character handling facilities.
Disadvantages of employing a command language: ‘
- syntbax and semantics of the command language have to be learned
- mnormally a human being does not talk in a éommand language. Why should

he/she talk to the computer in a command language?



-12 -
3.4. Dialog in the IAS-SYSTEM

When designing the man-machine dialog for Level 3 of the IAS-SYSTEM the

following facts were known from the usage of Level IAS-2.xx:

- Usually the users of the IAS-SYSTEM are expert users, or will become expert
users soon, if they specify, estimate, manipulate and validate a model of, say,

200 equations.

- Short response time is very necessary for an interactive system. Sometimes
users of the IAS-SYSTEM work with very slow data transmission rates (e.g.
dial up line). Note that a line with 300 bits per second allows less than 40
characters per second. That means that more than two seconds are needed to
transmit a full line of 80 characters or nearly a minute to transmit a full
screen of 24 (full) lines or half a minute for a menu which covers half a

screen.

- Portability is one of the main objectives of Level 3 of the IAS-SYSTEM.
For all these reasons it was decided that the IAS~-SYSTEM should employ a simple
(1) command language which is supported by a question-and-answer mechanism in
some cases and by a powerful HELP command.
However, the question to be answered is: "what is a 'simple' command language?":
According to the suggestions of the users of Level IAS-2.xx and according to the
experience of that Level of the IJAS-SYSTEM a command of Level IAS-3.xx has the
following form:
*¥command,option fieldl,field2,...
A field may be divided into subfields:
field: = subfieldl : subfield2 : ...
In most cases, however, an actual command needs only one or two fields. Options
and fields (subfields) are consistent in many commands {(classes of commands).

Expert mode suppresses additional questions by the computer. A special switch

avoids page advance and/or printout of empty lines.



m

-13 -

Examples for constant options and fields:

*SER,I identifier
*EQU,I identifier
*MOD,I identifier

These commands initiate time series, equation or model input, respectively. After
these commands are transmitted the computer solicits input of the title (head line)
of the item to be stored into the data base. Evidently, this question by the
computer is suppressed if expert.mode is 'ON".

After input of the title the computer solicits input of the data, equation string or

model components, respectively.

That means that the process is initiated by the human user, but afterwards the

computer takes over the command position.

Most fields and subfields have a default value if they are not specified by the user.

Unsignificant field and subfield separators (',' and ":") need not be written.

Examgle:
* DB BASE1:RDKEY:WRKEY,2000 full DB-command
* DB BASE?2 minimal DB-command

* DB BASE3,4000

Note, that the field and subfield separators, like other special characters, are

implementer defined parameters which can easily be changed. by the implementer.



- 14 -

3.5. Syntax Analysis in the IAS-SYSTEM

A section of the final report will be devoted to syntax analysis. This subchapter

should only give a short overview.

The syntax analysis is performed in two steps:

Step 1: (command independent):

Step 1.1: decides type of line (command line, data line, scalar definition,

comment line, page advance etc.)

Step 1.2: partitions command string into

- command

option
fields
subfields

Step 2: Tests command dependent the types of the subfields, e.g.

string (unchecked)
- integer

- real

~ identifier

- time definition

The input is immediately prompted by the computer, especially if an error
condition occurs. Error messages are full length sentences in English (German etc.,

see below).

If an error occurs, execution remains at the same place in the program and loops
until the correct input is transmitted. Certainly there is an easy way to escape
from this loop by simply typing a new command which begins with an asterisk "*'

(or by typing an asterisk '*' only).



™

- 15 -
3.6. Additional Features Supporting the Dialog

All messages are stored on a message file. This message file can be translated in
order to get a German, Italian, Spanish or other IAS-SYSTEM. An interactive

utility program is provided to edit this message file.

There is only

1) one READ (from standard input unit)
2) one WRITE (to standard output unit)

in the JAS-SYSTEM. This programming style provides useful features:

ad 1)

Because of the fact that there is only one READ statement from the standard input
unit it is very easy to implement an input log file where all input to the System is
stored. This facility can be used when searching. (supposed?) system errors.

Additionally, a complete session or parts of a session can be repeated.

The creation of the input log file or of parts of the input log file can be suppressed -

by the input log switch, one of the twenty software switches of the IAS-SYSTEM.

Another advantage of this unique READ statement is the easy way to implement
echo mode where all input to the System is echoed. Echo mode is especially useful

for batch runs. Echo mode can again be turned on or off by a software switch.

ad 2)

Because of the fact that there is only one WRITE statement to the standard output
unit it is very easy to implement an output log file where all output of the System
is stored. This facility can be used to send the same output to the terminal as well
as to the line printer. A whole session or parts of a session can be printed off line

after inspecting the output from the terminal.

Again creation of the output log file or of parts of the output log file can be

suppressed by the output log switch, another software switch.



- 16 -

The following software switches are currently implemented in the IAS-SYSTEM:

O 00 ~3 O~ O bk W N

—
- O

19
20

input log

echo mode

walk back in case of system errors

debug mode

output log (0,1,2)

error message if output is truncated

expert mode

quantity of print output (0,1,2,3,4,5,6)
batch mode

assign only minimal number of files

question mark mode

message file assigned

data base assigned

Most of these switches can only have two values (ON/OFF, 0/1), some may have

more.

Currently the IAS-SYSTEM uses eight files with different access methods; some

are only input files, some are only output files and some are used for both input and

output:

File 11 I/O
File 12 1/0
File 13 I/O
File 14 I/O
File 151/0
File 16 1
File 17 O
File 18 O

D/A
D/A
D/A
D/A
sequ
D/A
sequ

sequ

data base: IAS-files, B*-tree

data base: numeric strings

data base: character sfrings
scratch-file to gain virtual memory
interface to operating system files
message file

input log

output log



M

9!

M

-17 -

4. PORTABLE PROGRAM SYSTEMS

4.1. Selection of the Programming Language

It is one of the main objectives of this project to write a portable program. The
motto is: one software system for many hardwa.fe systems. Researchers in
economics or corporate planning should be able fo use the same program system
and to communicate with each other, no matter which hardware or operating

system they employ.

It was therefore decided that a programming language should be used, for which an

American and an International standard exist (or is short before approval).

For a comprehensive description of programming language standardization see Hill
and Meek (HILL and MEEK 1980). |

As the American National Standards Institute (ANSI) originated most standards
which were later adopted by the International Standards Organization (ISO) we
usually quote ANSI as the author of the standard. Nevertheless for our final

decision we claimed both ISO and ANSI standards.

In 1980 there were ANSI standards for only four general purpose programming

languages, namely

ANSI X3.9-1978 FORTRAN
(ANSI X3.9-1966 - FORTRAN)
ANSI X3.23-1974 COBOL

ANSI X3.53-1976 PL/I ;

ANSI X3.60-1978 Minimal BASIC

There were no standards, neither national nor international for PASCAL, ALGOL,
APL etc. Other languages like ANSI X3.37-1977 Programming Language APT or
ANSI X11.1-1977 Programming Language MUMPS are not considered because of

their special purpose.



- 18 -

In spite of the PL/I standard there were not many efficient PL/I compilers
available in 1980. Minimal BASIC really seemed to be too minimal (file handling
etc.) and too slow. COBOL does not seem to be too efficient for extensive
calculations as they were expected in the IAS-SYSTEM. Therefore FORTRAN was
the only language to remain in the competition. As the old standard was already
obsolete and as the new language had many enhancements, the project team finally
decided to use FORTRAN 77 according to ANSI X3.9-1978 and ISO 1539-1980(E)
(ANSI 1978a, ISO 1980, BALFOUR and MARWICK 1979).

Advantages of FORTRAN 77:
- widespread language
- many efficient compilers
- new features like if-then-else, character handling etc.

- file and input/output handling well defined in the standard.

Disadvantages of FORTRAN 77:
- not favoured by the university community
- loop constructs incomplete

- no data structures

4.2. Internal Standards to Achieve Portability

It should be noted that ANSI X3.9-1978 is a permissive standard, that means that
this standard defines a standard-conforming program (and not a standard

conforming compiler) (ANSI 1978a).

A processor (compiler or interpreter together with an operating system and a
hardware system) conforms to this standard if it executes standard-conforming
programs in a manner that fulfills the interpretations of the standard. A standard-
conforming processor may allow additional forms and relationships provided that

such additions do not conflict with the standard forms and relationships.

Note that a standard-conforming program must not use any forms or relationships
that are prohibited by this standard, but a standard-conforming processor may
allow such forms and relationships if they do not change the proper interpretation

of a standard-conforming program.



~

™

)]

-19 -

Obviously any processor has to use some extensions in order to communicate with
the operating system. In Level IAS-3.xx usage of these extensions has been avoided

whenever possible.

Nevertheless the code of the IAS~-SYSTEM is now divided into three well-defined
parts of unequal size (see HAUER 1980):

1) the portable part according to ANSI X3.9~1978

2) the semi-portable part: not portable, but portable calling sequence

3) the non-portable part: machine dependent routines.
The names of all semi-portable routines begin with letter 'Y', the names of all non-

portable routines begin with letter 'Z' and all portable routines begin with the other

letters in order to be able to easily separate these sets of programs.

Example of semi-portable routines:

SUBROUTINE YOPEN {...)

This subroutine opens files according to the standard but it has additional
parameters in order to specify the number of records for direct access files, read

key, write key etc.
SUBROUTINE YDATIM (...)

This subroutine provides date and time, both in character format and encoded in an
integer variable. This program calls the non-portable subroutine ZZDATE (see

below) in order to obtain date and time from the operating system.
Example for a non-portable routine:
SUBROUTINE ZZDATE (...)

Provides date and time in the special internal format of the individual computer.

This program is called by the semi-portable subroutine YDATIM (see above).

Note that, according to internal conventions of the project, a non-portable program
must not be called by a fully portable routine, but only by a semi-portable or by

another non-portable program.



-20 -~

4.3. Additional Portability Problems

The character set and its representation in the computer is machine dependent,

although an ANSI and ISO standardized character set exists (ANSI 1977).

For that reason all special characters (e.g. separators) are stored in a special
common block and can be changed if a character is not available on a certain
machine. This does not really solve the problem, however, as the motto "one
software system for many different hardware systems" is violated in this case.

Commands and/or models will look differently for different character sets.

Another portability problem is that the word length of a computer is machine

dependent.

The standard (ANSI 1978a) defines two types of storage units:
- numeric storage units for integer, real, logical (oecupying one numeric
storage unit) and double precision and complex numbers (occupying two
numeric storage units)

- character storage units for characters.

The standard does not specify how many bits a numeric storage unit or a character
storage unit contains and it does not specify any relationship between a numeric
storage unit and a character storage unit. In fact, mixing of character and numeric

storage units is explicitly not allowed in many cases.

Note that a standard-conforming program must not associate character and
numeric storage units in COMMON, EQUIVALENCE or the like. A standard-
conforming processor may, however, allow this association according to its internal
representation of numeric and character storage units, e.g. a byte machine may
allow association of a numeric storage unit with four character storage units. A

program using this relationship is not standard-conforming, however.

The IAS-SYSTEM does not use any of these relationships, although the current
implementation of Level 3 relies on the assumption that the word length is at least
30 bits plus sign bit(s). This brings problems for the implementation on micro-
computers but otherwise too much overhead would be produced. There will be a

special implementation for 16-bit computers.



O

-21 -

Quite a number of conversion programs had to be written in order to guarantee
portability. Note the overhead which must arise from those conversions while short

response times are a main objective of the project.

Another problem arising from the fact that word length (exactly: the length of a
numeric storage unit) is not defined in the standard is floating point arithmetic.
The results of some arithmetic operations are, strictly speaking, unpredictable.
This will be improved in the new standard of FORTRAN 8x (see ANSI 1981), using a
new PRECISION statement.

The INQUIRE and OPEN statements are not as powerful as they should be for our
application. It would be very useful to know if another program uses a file or uses a
file exclusively, if it employs the file only for READ-operations or if it also
WRITEs onto the file etc.

A semiportable program must be written to enhance the INQUIRE statement and it

is possible that a special operating system cannot answer all these guestions.

The OPEN statement has to be enhanced in similar ways: open a file READ-only,

assign it exclusively, use read/write keys, specify the number of records in a direct

.access file etc..

The implementation group heavily uses the INCLUDE feature which is not part of
the standard. This facility enables both flexibility and consistency over the
different modules, especially for the association and dimensions of arrays and the

association of variables, e.g. separators, status variables, switches etc.

A feature which is even more powerful than this INCLUDE statement is announced
for the next ANSI standard of FORTRAN, however (see ANSI 1981). Larmouth
states in his article on FORTRAN 77 portability that all compilers examined so far
+s« provide an INCLUDE or an INSERT statement (LARMOUTH 1981).



-22 -

4.4, The Future of FORTRAN

In spite of the efforts concerning the new programming language Ada (GOOS and
HARTMANIS, 1981) the American Government still heavily engages in the develop-
ment of FORTRAN.

The committee X3J3 of the American National Standards Institute already
produced numerous standing documents concerning the new FORTRAN standard

which has the working title FORTRAN 8x (ANSI 1981).

The new standard employs a Core plus modules concept, with the Core containing
the most important features of FORTRAN. One of the modules is the OFM
(obsolete features module), containing old and obsolete constructs like arithmetic
IF, computed GOTO, alternate RETURN, ASSIGN and assigned GOTO, statement
functions etc. The Core of FORTRAN 8x consists of FORTRAN 77 modified by the

deletion of the features which are included in OFM.

Another module is the LEM (language extension module). It contains the new and
enhanced features of FORTRAN like new loop handling, CASE statement, new

precision definitions, GLOBAL statement, array handling etc.

Other modules are the SAMs (standard application modules) like graphics or real

time.

The third class of modules are the BUMs (application but unstandardized modules)
which may contain local supplements. Note that these abbreviations are not yet
approved proposals for FORTRAN 8x and have changed considerably thru the
documents (ANSI 1981).

The "minimal” FORTRAN implementation will include all of Core FORTRAN plus
the "obsolete features module (OFM)", and will accept all FORTRAN 77 programs.

In any case, it must be expected that all standard FORTRAN 77 programs will
continue to be accepted during this millenium (i.e., through the year 2000) by
standard-conforming processors (MEISSNER 1981).

After the year 2000 another revision of the FORTRAN standard may begin to be
implemented. Then those "obsolete features" that are in fact no longer widely used

may disappear from most FORTRAN implementations (MEISSNER 1981).



i

[

-23 -

5. DATA BASE ORIENTED PROGRAM SYSTEMS

5.1. External View of the Data Base

Normally the user of a program system wants to store his data on-line and once for

ever and retrieve it by a name rather than any index or the like.

In the IAS-SYSTEM data, equations, models and text are stored into a data base
(permanent working area) on mass storage. When being stored these items receive a

user-defined name by which they can also be retrieved.

There is a unique interface between the application programs (IAS-SYTEM or any
other application program) and the data base (IAS-SYSTEM data base or any other

data base).

The logical structure of the data base is hierarchical. The data base is divided into

files, the files contain elements and the elements may have different versions.

The full form of an identifier (name) of an item in the IAS-SYSTEM is therefore

FILE.ELEMENT (VERSION)

The same element name in a different file specifies a different item, a different

version of the same file.element is a different item.

Examples for calculations, specifying various items:

*CALC AFILE.CP/BFILE.Q
*CALC AFILE.CP/BFILE.CP
*CALC AFILE.CP/AFILE.Q
*CALC AFILE.CP(1)/AFILE.CP(2)

For the handling of the data base no computer or data base expert is necessary, the
IAS-SYSTEM 1is fully self-contained. Using the new DB~command all handling
operations like creation, assignment, enlargement and deletion can be performed

by the user himself.



- 24 -

A new data base is generated with the DB-command, option C.

Example for the creation of a new data base:

*DB,C NEWDB,2000

The new data base NEWDB is to be generated {cataloged). This new data base shall
have space for a maximum of 2000 items (time series, equations, models, text

items), as specified in the second field of the DB-command.

For security reasons READ- and WRITE-keys may be attached to the file name in

subfields two and three of field one.

Examples:

*DB,C SECOND:RDKEY:WRKEY,5000
*DB,C THIRD::WRKEY?2,2000
*DB,C FOURTH:RDKEY,3000

Other options of the DB-command are used to assign an old data base (previously

created by *DB,C), to free such a data base, to delete a data base etc.

5.2. Internal View of the Data Base

Internally the data organization of the IAS-SYSTEM uses standard-conforming
FORTRAN direct access files.

There are two main objectives for a data base:
- fast access to a single item or to a set of items

- resistancy to errors (e.g. after a stop of the operating system)

In order to achieve these objectives the data base of the IAS-SYSTEM uses a
modified B*-tree data organisation (see BAYER and McCREIGHT 1972, HARDER
1978, KNUTH 1972, WEDEKIND 1974). A B¥-tree is a generalization of binary
trees and index sequential storage. The modified B*-tree within the IAS-SYSTEM
has only two levels with a standard maximum of 100 keys per level, which allows a
maximum of 10 000 keys (i.e. 10 000 items) within one data base. Larger data bases

can be generated, but need a few changes in the implementation.



M

- 25 -

According to this data organization it is possible to retrieve a single item with only
two access operations to mass storage. This number is constant and does not
depend on the load factor of the data base (exactly: only one search operation is

necessary if the data base contains less than 100 items).

A third access operation is needed to retrieve the contents of the item (i.e. the
information which is really searched for). Numeric information and character
information is stored on different files in order to avoid portability problems (see

chapter 4.3).

Automatic reorganization of the data base is provided and automatic error
correction (e.g. after system stop) is attempted.
A special section of the final report will be devoted to more internals of the data

organization.



- 26 -

6. RELIABLE PROGRAM SYSTEMS

6.1. Project Organization

The project group is organized as a chief programmer team (see BAKER 1972,
MILLS and BAKER 1973). The members of the group are varying according to the
phase of the life cycle.

The definition was specified in close cooperation with the department of
economics. Collaboration decreased in the design phase. The implementation phase
does not need close cooperation either. During the test phase cooperation increases

again.

As the project group was rather small {4 - 7 members) it was easy to delegate
whole complexes like data base organization, syntax analysis etc. to subgroups

(management by objectives).

Besides numerous informal consultations the team gathered for an official meeting

about once every ten days.

Major decisions of these meetings were collected in protocols. Each member of the
project team received a copy of every protocol. One set of protocols was collected

to become the master set of protocols.

More about the project organization will be written in the final report.

6.2. Design, Programming Style and Programming Conventions

According to the warnings in Brooks' book (BROOKS 1975) all available suggestions
for software engineering were considered (see e.g. ENDRES 1978, GOOS and
HARTMANIS 1975, KIMM, KOCH, SIMONSMEIER and TONTSCH 1979).

The whole program is divided into numerous independent subroutines with a well
defined interface. Subroutines should not have more than 150 lines of code
(excluding comment lines). GOTO is avoided whenever possible (see DIJKSTRA
1968) in spite of the restrictions of FORTRAN 77. IF( JTHEN-ELSE IF( JTHEN-

ELSE-END IF constructs are always used to increase the structure of the program.



o

()

O

™

-27 -

The contents of the individual blocks and the blocks of DO-loops are indented to

improve readability.

Capital letters are used for FORTRAN 77 keywords, lower case letters else.

The internal program documentation must at least contain

function of the program

parameters (input, output, transput)
access to global variables (COMMON)
access to files

documentation of fhe function of individual sections

Critical parts of the code are controlled by code-inspection (see FAGAN 1976). A

debug switch enables the implementer to debug the System at run time. This

debugging is supported by the input and output log file facilities. Test jobs are

available.

The following FORTRAN 77 statements may only be used after consulting the

project group at an official meeting:

COMMON

external READ/WRITE
ASSIGN

STOP

ENTRY

EXTERNAL
INTRINSIC
BLOCKDATA

statement functions

The following FORTRAN 77 constructs should only be used with great care:

EQUIVALENCE

GOTO

arithmetic IF

DATA

transput variables as dummy arguments
constants as actual arguments

mixing character and numeric variables when writing on mass storage



- 28 -

Tricky programming and bit~fiddling has to be avoided whenever possible!

SUBROUTINES may have an alternate return specifier which is always used as
error return. The next parameter (i.e. the first, if no alternate return specifier is
used or the second, else) is an error code. It is positive in case of a severe error,

negative in case of a minor error or zero in case of no error.

The next parameters in the dummy argument list are input parameters, followed by
output parameters, followed by transput parameters (parameters which may be

both input and output).

Portable, semi-portable and non-portable routines are carefully separated and
collected in well-defined sets of programs. The members of these sets can be
distinguished by the first letters of their names. Analogously, subroutines and
function subprograms are separated and within the set of function subprograms
there are three subsets, namely (1) integer and logical functions, (2) real, double

precision and complex functions and (3) character functions.

The PARAMETER statement is used extensively in order to combine flexibility and
consistency. During program development the non-standard INCLUDE statement is
employed for the same reason. For distribution the INCLUDE statement is replaced

by the actual contents of the procedure to be included.



0’7‘

-29 -

APPENDIX



- 30 -
References:

American National Standards Institute, Inc. (ANSI, ed.): ANSI X3.9-1966 American
National Standard Programming Language FORTRAN. New York 1966

American National Standards Institute, Inc. (ANSI, ed.): ANSI X3.23-1974 American
National Standard Programming Language COBOL. New York 1974

American National Standards Institute, Inc. (ANSI, ed.): ANSI X3.53-1976 American
National Standard Programming Language PL/I, New York 1976

American National Standards Institute, Inc. (ANSI, ed.): ANSI X3.4-1977 American
National Standard Code for Information Interchange. New York 1977

American National Standards Institute, Inc. (ANSI, ed.): ANSI X3.9-1978 American
National Standard Programming Language FORTRAN. New York 1978a

American National Standards Institute, Inc. (ANSI, ed.): ANSI X3.60-1978 American
National Standard Programming Language Minimal BASIC. New York 1978b

American National Standards Institute, Inc. (ANSI, ed.): Proposals Approved for
FORTRAN 8X. X3J3/56.80. New York 1981

BAKER, F.T.: Chief Programmer Team Management of Production Programming.
IBM System J. 11(1), 1972

BALFOUR, A. and D.H. MARWICK: Programining in Standard FORTRAN 77.
London 1979

BAYER, R. and E. McCREIGHT: Organization and Maintainance of Large Ordered
Indices. Acta Informatica 1(3), 1972

BROOKS, F.P.: The Mythical Man Month. Reading 1975
DIJKSTRA, E.W.: Go to Statement Considered Harmful. Comm. ACM 11(3), 1968

DIXON, W.J. and M.B. BROWN (ed.): BMDP-79. Biomedical Computer Programs. P-
Series. Berkeley 1979



-31-
ENDRES, A.: Methoden der Programm- und Systemkonstruktion: Ein Statusbericht
(German). In: SCHINDLER, S. and W.K. GILOI: GI-8. Jahrestagung. Berlin-

Heidelberg 1978

FAGAN, M.E.: Design and Code Inspections to Reduce Errors in Program
Development. IBM Syst. J. 15(3), 1976

FUERST, E.: Institute for Advanced Studies Vienna. Wien (Vienna) 1981

GOOS, G. and J. HARTMANIS (ed.): Software Engineering. An Advanced Course.
Berlin-Heidelberg 1975

GOOS, G. and J. HARTMANIS (ed.): The Programming Language Ada. Reference
Manual. Proposed Standard Documentation. Berlin-Heidelberg 1981

HALL, B.H. and R.E. HALL: Time Series Processor. Version 3.5. User's Manual.
Stanford 1980

HAUER, K.-H.: Portable Methodenmonitoren (German). Berlin 1980
HARDER, T.: Implementierung von Datenbanksystemen. Miinchen-Wien 1978

HILL, ID. and B.L. MEEK (ed.): Programming Language Standardisation.
Chichester 1980

International Standards Organization (ISO ed.): ISO 1539-1980(E). Programming
Language FORTRAN. Sine loco 1980

KNUTH, D.E.: The Art of Computer Programming, Vol. 3: Sorting and Searching.
Reading 1972

LARMOUTH, J.: Fortran 77 Portability. Software-Practice and Experience
11(10),1981.

LOCKEMANN, P.C. and H.C. MAYR: Rechnergestiitzte Informationssysteme
(German). Berlin 1978



-32 -
MARTIN, J.: Design of Man-Computer Dialogues. Englewood Cliffs 1973

MEISSNER, L.P.: Core and Modules (Editorial Comments). In: MEISSNER, L.P.
(ed.): Fortran Newsletter 7(4), 1981

MILLS, H.D. and F.T. BAKER: Chief Programmer Teams. Datamation 19(12),
1973

NIE, N.H., C.H. HULL, J.G. JENKINS, K. STEINBRENNER and D.H. BENT:
SPSS. Statistical Package for the Social Sciences. Second Edition. New

York 1975
SPRUTH, W.G.: Interaktive Systeme (German). Stuttgart 1977

TROLL SERIES: DOO94. TROLL Bibliography. Cambridge (M.L.T., Information

Processing Services) 1981 ’

WEDEKIND, H.: On the Selection of Access Paths in a Database System. In:
KLIMBIE, J.W. and K.L. KOFFEMAN (ed.): Data Base Management.
Amsterdam 1974.



N

.

-

page 33

Summary of Current Documentation

(January 1982,

K. Plasser
H. Sonnberger

K. Plasser

K. Neusser

H. Sonnberger

K. Rodler

K. Plasser

K. Plasser

R. Matuschek
K. Plasser
I. Prucha

K. Plasser

K. Plasser

Level IAS-2.16 and IAS-3.1)

B P S i 20 20 o0 D n W e A am - w v wm o W > - .
AR SR MR G n AR R e R N o D SR A D M n e ah e wh oo - ——

IAS-SYSTEM, Level IAS-2.16, Installation Guide
and Implementer Manual. Institutsarbeit Nr.148,
Institute for Advanced Studies, Vienna(Austria)
May 1981

TAS-SYSTEM, Level IAS-2.16, BRIEF DESCRIPTION.
Institutsarbeit Nr.143, Institute for Advanced
Studies, Vienna (Austria), February 1981

JAS-SYSTEM, Level IAS-2.16, USER REFERENCE
MANUAL - PART TWO. Institutsarbeit Nr. 140,
Institute for Advanced Studies, Vienna
(Austria), December 1980

JAS-SYSTEM, Level IAS-2.15, UPDATE TO USER
REFERENCE MANUAL - PART ONE (Level TAS-2.14),
Institutsarbeit Nr.138, Institute

for Advanced Studies, Vienna (Austria),
November 1980 |

IAS-SYSTEM, Level IAS-2.14, USER REFERENCE
MANUAL - PART ONE. Institutsarbeit Nr.129,
Institute for Advanced Studies, Vienna
(Austria), July 1980

IAS-SYSTEM, Level IAS-2.14, PROSPECTUS.
Institutsarbeit Nr.123, Institute for
Advanced Studies, Vienna (Austria),
February 1980

Interface between the IAS and the LINK-SYSTEM.
Internal Discussion Paper No. 371978,
Institute for Advanced Studies, Vienna
(Austria), March 1978

Vermarktung des IAS-SYSTEMS (bisherige
Erfahrungen und (Miss-)Erfolge) (German).
Institutsarbeit Nr. 151, Institute for
Advanced Studies, Vienna (Austria), June 1981,

Anvwendung des IAS-SYSTEMS fuer den
oekonometrischen Modellbau und fuer die
modell- und computer-unterstuetzte
Unternehmensplanung. Instututsarbeit Nr. 155,
Institute for Advanced Studies, Vienna
(Austria), November 1981.



Plasser
Sonnberger
Rodler
Philipp

page

On Writing a ‘Comprehensive’, ’“Interactive’,
‘Portable’, ‘Data Base Oriented’ and
‘Reliable’ Program for Econometric Modeling
and Corporate Planning (Interim Report).
Forschungsbericht/Research Memorandum No. 169,
Institute for Advanced Studies, Vienna
(Austria), January 1932.

34



™

!

page

THE IAS-SYSTEM AT A GLANCE

= - R N R N R

Dialog-oriented Systenm
Bateh mode
Interactive mode
Easy command language
Immediate error detection
System answers and error messages in English

Data-management
Integrated data-base
Time-series (=vectors)
Equations (=algebraic strings, see below)
Models (=systems of equation, see below)
Data-manipulation
Automatic aggregation
Vector-algebra
Addition, subtraction
Multiplication, division (component by component)
Multiplication, division (by sealar)
Elementary functions
SIN, COS, EXP, LOG
Scalar product
Data-transformation
Differences
Absolute differences
Relative differences
Exponentiation, logarithm
Lags
Data-generation
Random number gererator
Recursive process
Input from terminal, card deck
Results from different operations
Estimation

Residuals
Calculated time-series
Seasonal adjustment
Seasonal factors
Seasonally adjusted series
Calculated series
Interfaces to other data bases
Data-update
From terminal, card deck
Calculated from other series
In differences
Absolute differences
Relative differences
Differences over the current period
Differences over previous periods
As result of an equation (=algebraic string)

As result of a model (=system of equations)
Interfaces to other data-bases

35



page

Qutput of data
Lists
Reports
Without transformation
With differences (see above)
Calculated time-series (see vector-algebra)
Tables (see reports)
Scatter diagrams
One time-series
With or without differences
Up to twelve time-series

Estimation
Ordinary least sgaures
Homogenous and inhomogenous equations
Polynomial lag
Autocorrelative transformation
Hildreth-Lu
Cochrane-Orcutt
External specification of RHO
Transformation of input data
Differences
Absolute differences
Relative differences
Exponentiation, logarithm
Calculated time-series (see vector algebra)
Instrumental variable estimation
Simultaneous estimators
Two stage least squares
Limited information maximum likelihood
K-class
System estimators
Two stage least squares
Three stage least squares
Limited information instrumental variable efficient
Full information instrumental variable efficient

Equations (=algebraic strings)
Different types of equations
Behaviorial (estimation see above)
Definitorial (=identities)
Inequalities
Objective functions for LP/QP
Linear and non-linear equations
Manipulation of equations
Input from terminal, card deck
Print-out
Check of equations

36



)

page 37

Models (=systems of equations)
Manipulation of models
Input from terminal, ecard deck
Update of models
Short print-out
Long print-out, ineluding all equation strings and parameters
Estimation with system estimators (see above)
Solution of models (=equation systems)
Forecast, poliey simulation
Ex post simulation
Call of submodels
Block structure of models

Linear and quadratic programming models (=systems of equations and
inequalities and an objective funetion)
Manipulation of LP/QP-models (see models)
Solution of LP/QP-models
Maximization, minimization
Print-out of results, slack variables, reduced costs and
value of objective function
Update to data base

Seasonal adjustment
Additive, multipliecative Seasonal factors
Monthly data, quarterly data
Storage of Seasonally adjusted series and seasonal factors

Documentation (in English, computer readable)
Prospectus
Brief Description
User Reference Manual
Part One
Part Two: Estimation
Implementer Manual (installation guide)
Special manuals
Interface between the IAS and the LINK-System

Programmer orientation (Level TAS-3.xx)
FORTRAN 77 (ANSI X3.9-1978, ISO 1539-1980)
(Level IAS-2.xx in a FORTRAN V dialeect)
Modular
Highly structured
Direct access files
Data base
Message file
Virtual (main) memory
Sequential Files
Input log
Output log
Internal tables
File control table (FCT)
Time control table (TCT)
Status table (STATUS)



page 38

Worldwide Installations of the JAS-SYSTEM

SR L > T T P - T R
2 2 2 2 - - R R R R i i

In July 1981 the IAS-SYSTEM was installed 22 times in 10
countries in 4 continents:

AUSTRIA (4)

Bundesministerium fuer Finanzen (Federal Department of
Finance), Wien

International Institute for Applied Systems Analysis
(ITASA), Laxenburg S

Oesterreichische Nationalbank (National Bank of Austria),
Wien

SPERRY UNIVAC Austria and Comecon, Wien

FINLAND (1)

Suomen Pankki (Finlands Bank), Helsinki

GERMANY (6)

These German installations are installations of the IAS-SYSTEM Bonn.
This version is based on Level 2.3 of the TAS-SYSTEM Wien and has
been developed independently since 1975 at the Institute fuer Gesell-
schafts- und Wirtschaftswissenschaften of the University of Bonn.

Deutsches Institut fuer Wirtschaftsforschung (German
Institute for Economic Research), Berlin

Fernuniversitaet Hagen (Open University of Hagen), Hagen

Gesellschaft fuer Mathematik und Datenverarbeitung (GMD)
(Society for Mathematies and Data Processing), Bonn

Universitaet Berlin (University of Berlin), Berlin
Universitaet Bonn (University of Bonn), Bonn

Universitaetseminar der Wirtschaft (University Seminar of
the Domestic Economy), Bonn



g

()

M

page

ITALY (3)

INDATA s.r.1. (INDATA 1td.), Roma

Istituto Nazionale per il Commercio Estero (National
Institute for Foreign Trade), Roma

Universita di Roma (University of Roma), Roma

MALAYSIA (1)

Petroliam Nasional Berhad (PETRONAS) (National Petroleunm
Company), Kuala Lumpur

PORTUGAL (1)

Banco Espirito Santo e Comercial de Lisboa, Lisboa

SOUTH AFRICA (2)

Buro vir Ekonomiese Ondersoek (BEQ) (Bureau for Eeconomic
Research (BER)), Stellenbosch

Universiteit van Wes-Kaapland (University of the Western
Cape), Bellville :

SPAIN (1)

Compania Espanola de Petroleos (CEPSA) (Spanish
Petroleum Company), Madrid

SWITZERLAND (1)

- - = s - ———

Universite de Geneve (University of Geneva), Geneve

UNITED STATES QF AMERICA (3)

Bureau of the Census, Washington D.C.
University of Alabama, Tuscaloosa Al.

University of Maryland, College Park, MD

39





