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Abstract 

Many macroeconometric models depict situations where the shares of the major demand 
aggregates in output are stable over time. The joint dynamic behavior of the considered 
demand aggregate and output may thus be approximated by a cointegrated vector 
autoregression. However, the shares of many demand sub-aggregates in output are rather 
mobile and changing over time. In order to simultaneously capture the flexibility of the shares 
of the sub-aggregates and the long-run constancy of the share of the total aggregate, we 
consider trivariate systems of two macroeconomic sub-aggregates and output with error-
correction terms that are non-linear functions of the original variables. The merits of the 
models are evaluated by means of several forecasting experiments. 
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1 Introduction

Econometric forecasting necessarily has to strike a balance between statistical
evidence and plausibility. It is well known that excellent short-run macroeco-
nomic forecasts can be obtained from models that generate quite infeasible
economies in the longer run. For example, E���� ��� Y�� (1987) have
shown that cointegration is able to improve prediction only at larger fore-
cast horizons, even in simulated structures, where the cointegrated model is
known to be true (see also C�	
����	��� ��� D
�����, 1998). How-
ever, cointegration expresses plausible and well accepted economic equilib-
rium conditions. This means that, for example, good one-quarter forecasts
for private consumption can be derived from models that imply enormous
or negative household saving in the longer run. Similarly, good forecasts for
the unemployment rate sometimes can be derived from models implying a
longer-run rate below zero or above 50%.

If a forecaster aims at longer horizons–developing scenarios for several
decades–pure extrapolation of statistically identified coefficient structures
often fails. In a period of slow growth, predicting the unemployment rate to
rise by 0.5 percentage points a year may work for some more years. To predict
that rate for values of 20% after 30 years may appear implausible. In order
to attain plausibility, long-run equilibrium conditions have to be accounted
for, even if they are rejected on statistical grounds for a sample of limited
time range. On the basis of this reasoning, the current paper focuses on the
longer-run implications of certain error-correction models for macroeconomic
scenarios rather than on statistical tests.

The problem at hand is one that concerns longer-run scenarios, even
though it has been mostly ignored in the forecasting literature. Demand
aggregates such as private consumer expenditure, in short consumption, and
gross fixed capital formation, in short investment, are known to keep to a
rather stable share of total output as measured by gross domestic product
(GDP). In some theoretical models, the properties of long-run constant ratios
of consumption to output and of investment to output can also be derived
from the assumptions of collective utility maximization and relatively general
forms of aggregate production functions (see, e.g., R���	, 1996). In macro-
economic works, this long-run constancy of ‘great ratios’ is usually captured
by the econometric condition of cointegration that ties demand aggregates to
roughly constant shares of output in dynamic equilibrium (see also S����
��� W�����, 1988, K���� ��� N�����	, 1990).

1



Usually, economic forecasters are also required to compile predictions
for subaggregates of the main demand aggregates, such as consumption of
durable goods and investment in machinery. For these subaggregates, no
long-run relationships are known or have been found to hold. For example,
wealthier economies are found to spend more on durable goods than poorer
economies, thus we would expect the share of durables in output to increase
as the economy develops. Imposing cointegration or error correction with
regard to the subaggregates may result in implausible longer-run scenarios.
Unfortunately, imposing long-run constancy of the main demand shares in
equations for subaggregates implies non-linear error correction models. These
will be outlined in Section 2.

For longer-run scenarios, asymptotic properties of such error-correction
models are crucial. Simulating the basic non-linear error-correction mod-
els usually leads to a high probability of one of the subaggregates disap-
pearing from the market, while the other subaggregates take over the whole
time-constant share. For example, construction investment may disappear
altogether, while the total investment share remains at 20%. Although a uni-
versally accepted economic theory for the long-run demand for investment
components is missing, such a perspective seems implausible. We show how
restricting the deterministic drift part of the cointegrating models may serve
in a considerable delay of such unwanted long-run features.

As empirical examples for the techniques, we use data for investment com-
ponents in Austria, France, and the United Kingdom. Minor components are
aggregated such that total capital formation is split among the two parts of
construction investment, including residential structures, and the remainder.
The scenarios serve to highlight the main longer-run features of the models.
In real applications, the same techniques can be used for consumption com-
ponents and for a finer disaggregation of investment. The data are described
in Section 3, while Section 4 presents the main empirical results. Section 5
presents a small prediction evaluation experiment for the British series and
points to some of the problems of merits of the non-linear error-correction
model in empirical applications. Section 6 concludes.
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2 Methodology

2.1 Traditional error-correction models

According to economic theory and also to observation, the share of a major
demand aggregate–say, consumption or investment–in output is roughly
constant in the long run. If a modeler just wished to fulfil the task of de-
veloping a joint model for the considered demand aggregate and output, she
may approximate dynamic behavior by a cointegrated vector autoregression,
otherwise known as vector error-correction model (VECM)

(
∆xt

∆yt

)
= µ+ α (xt−1 − yt−1) + Γ

(
∆xt−1

∆yt−1

)
+ εt . (1)

In (1), x denotes the demand aggregate in logarithms and y denotes output
in logarithms. Depending on the loading vector α, which typically has a
negative first and a positive second entry, and on Γ, the model is marginally
stable in the sense that first differences (∆x,∆y) form a stationary and er-
godic process, while (x, y) do not. For some applications, particularly for
the consumption-output ratio, the second entry of α is close to zero and y
becomes weakly exogenous for α. The model is called error-correcting, as the
variable x−y tends to move back to its long-run equilibrium. Nonlinear func-
tions of x− y, such as the original ‘great’ or characteristic ratio exp(x− y),
will also remain close to their equilibrium. For a good presentation of the
linear VECM and its statistical features, see J������� (1995).

In large macroeconometric models, many demand aggregates are decom-
posed into subaggregates. Gross fixed investment is disaggregated into in-
vestment on construction and on equipment. Private consumer spending may
be disaggregated into spending on services, durable goods, and non-durables.
Therefore, there is a theoretical exact adding-up condition

exp (x) = exp(z1) + . . .+ exp(zq)

with zj, j = 1, . . . , q denoting the subaggregates. In some cases, the share of
some subaggregate in output will itself be constant in the long run. Then,
bivariate models of (z1, y) can be built in the vein of (1), albeit with some
loss of information relative to larger models. Alternatively, one may consider
(q + 1)—variate VECMs for (z1, . . . , zq, y) with a matrix α of dimension q ×
(q − 1) and the q − 1 error-correction terms z1 − y, . . ., zq − y.

3



In many other cases, individual ratios exp(zj)/ exp (y) are rather mobile
and changing through time, while exp(x)/ exp(y) remains stable. For ex-
ample, after World War II, the share of construction in total investment
and hence in total output was decreasing for several decades, in many main
European economies. During that phase, perhaps excepting the immedi-
ate aftermath of the war, the investment-output ratio was roughly constant.
Expenditures on machinery simply replaced expenditures on construction.
Similarly, the consumption-output ratio has shown a remarkable constancy
over the last few decades, while the components of household expenditure
were subject to trends that reflected the increasing wealth and also shifts in
taste. A relative decrease in expenditures on non-durables reflects the lesser
importance of basic goods. Simultaneously, durable goods showed a relative
expansion. Later on, an increased demand for luxury services implied a ris-
ing share of services in consumer expenditures. In summary, sizeable shifts
occur among the subaggregates, while the total aggregate grows in parallel
with the general economy.

2.2 A nonlinear error-correction model

In the following, the focus will be on the case q = 2 in order to keep notation
simple. Generalizations to larger q are straightforward. A trivariate variable
X = (z1, z2, y)

′ consists of two parts of a demand aggregate and gross output.
We consider the model

 ∆z1t
∆z2t
∆yt


 = µ+ α [ln {exp (z1,t−1 − yt−1) + exp (z2,t−1 − yt−1)} − δ]

+Γ


 ∆z1,t−1

∆z2,t−1

∆yt−1


+ εt, (2)

which contains a non-linear error-correction term. It is convenient to include
an explicit target for the logarithmic ‘great’ ratio δ and to separate it from
economic growth represented by µ. As in (1), the third element of α may be
close to zero, expressing the fact that there is no tendency in overall output
to adjust to disequilibrium. In that case, y can be regarded as exogenous for
the longer-run characteristics α and δ.

The model (2) is a member of a class of nonlinear dynamic models that
was analyzed by E���	
��� ��� M	�� (2001, EM). These models are char-
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acterized by two main features. Firstly, the equilibrium term is a nonlinear
function of a linear transform of the original variables, in EM’s notation
J(β′X) and

J(w) = J (w1, w2) = α [ln {exp (w1) + exp (w2)} − δ] .

This corresponds to (2) for X = (z1, z2, y)
′ and

β =


 1 0

0 1
−1 −1


 .

Secondly, the function ∂J (w) /∂w follows a Lipschitz condition. This deriv-
ative can be represented as

∂J(w)

∂w′
= α

[
{1 + exp(w2 − w1)}

−1 , {1 + exp(w1 − w2)}
−1
]
= J1(w) .

The function J (w) has bounded derivatives and therefore obeys the required
Lipschitz condition. According to EM’s Theorem 3.7, the model (2) is stable
in the sense that ∆X has a stationary solution, if the spectral radius of the
matrix (

Γ J1 (w)
β ′Γ I2 + β′J1 (w)

)
(3)

is less than 1− ε.
For the model (2), estimation constitutes no problems, as the error-

correction vector is given and thus OLS can be applied. Linear regression
yields estimates µ̂∗, α̂, Γ̂ of parameters µ∗, α, Γ, where µ∗ denotes the total in-
tercept µ−αδ. Then, δ̂ is obtained as the sample mean of the error-correction
variable ln {exp (z1 − y) + exp (z2 − y)}. In a second step, µ̂ is obtained as
µ̂∗ + α̂δ̂.

Unfortunately, this approach may yield estimated model structures that
do not fulfil important features of the observed data. Firstly, unrestricted
α̂ may contain elements that violate stability conditions. A simple remedy
is to replace such elements by zero. For example, α̂3 may be positive, thus
driving away the output variable y from the equilibrium. A valid model
is obtained by replacing α̂ = (α̂1, α̂2, α̂3)

′ by α̂∗ = (α̂1, α̂2, 0)
′. This is not

the maximum-likelihood estimate under the restriction α3 = 0, which would
require a GLS—type correction.
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Another critical feature of the OLS estimates may be inhomogeneous
growth in X, whenever E∆X is not scalar. This does not impair non-linear
integratedness and stationarity of ∆X or of the error-correction variable.
However, inhomogeneity tends to drive the ratios exp (zj − y), j = 1, 2, to
marginal values in the sense that, for the slower-growing zj, exp (zj − y)
approaches 0 and the other exp (zk − y) with k �= j approaches exp (δ).

Growth homogeneity can be imposed in the following steps. If the mean
error-correction variable is δ, one obtains

E∆X = µ+ ΓE∆X

and therefore

E∆X = (I− Γ)−1 µ ,

where I denotes the identity matrix. For example, the estimate µ̂ will lead

to an estimate mx =
(
I− Γ̂

)
−1

µ̂ of E∆X. The averaged version

m̃x = 3−1 (1′mx) 1,

with 1 = (1, . . . , 1)′, then yields a modified estimate of µ as

µ̃ = (I− Γ) m̃x . (4)

The estimate µ̃ enforces homogeneous growth among components and gives
more realistic trajectories. Again, an alternative solution would be to use
restricted maximum-likelihood estimation. If the generating model is simu-
lated using the model (2) with an intercept µ∗ = µ − αδ, then an estimate
for this intercept is formed according to µ̃∗ = µ̃− α̂δ̂.

3 The data

We use three sets of parallel country data from Austria, France, and the
United Kingdom. For each country, (quarterly) total fixed investment (or
gross fixed capital formation, GFCF) is the sum of investment in equipment
and machinery, investment in residential construction, investment in non-
residential construction, and some minor positions. As a general rule, we
simplify this breakdown by dividing total GFCF into two categories, con-
struction investment and non-construction investment, though we will refer
to the latter position in a slight abuse of wording as ‘equipment investment’.
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Additionally to the two investment subaggregates, we use a quarterly time
series of gross domestic product (GDP) for each country. All variables are
at constant prices.

Austrian series cover a relatively short time range from 1988 to 2002. This
time range has been dictated by the availability of the new national accounts
(according to the ESA 95 standard) on a quarterly basis. GFCF is decom-
posed into construction investment and the remainder, which is equated to
equipment investment. Figure 1 shows that all variables, particularly con-
struction investment and to a lesser degree all other series including GDP,
are affected by strong seasonal variation. Unreported tests on seasonal unit
roots following H�������� et al. (1990) find seasonal unit roots at least in
the construction series, which confirms the time-varying nature of the sea-
sonal cycles. In order to safely remove potential seasonal unit roots and
simultaneously permit a uniform treatment of all variables in a multivariate
framework, all series were subjected to de-seasonalizing filters of the form
S(B) = 1 + B + B2 + B3, where B denotes the lag operator. This filter
is a main ingredient of the mentioned test procedure by H�������� et al.

Because of the uncertain effects of officially used seasonal adjustment filters
on subsequent analysis, such filters were avoided. Henceforth, all variable
names such as ‘construction investment’ and ‘GDP’ will refer to the filtered
series.

Table 1 summarizes some statistical unit-root tests. Unit roots cannot
be rejected for the ratios of the subaggregates to output, while the evidence
for the ratio of total GFCF to GDP is ambiguous. The Dickey-Fuller test
rejects a unit root at the significance level of 10%. According to Figure 1,
there is some longer-run increase of the share of equipment investment and
some decrease of the share of construction investment. A characteristic of
the Austrian series is the large slump in total investment in 2002, which may
exert a strong influence on all results. Because of the relatively short time
range of the Austrian data, we did not experiment with reducing the sample.

For France, ‘new’ national accounts are available for a rather short time
range only, hence we used the ‘old’ national accounts data for the time range
1970 to 1998. Figure 2 displays the data set as ratios of investment com-
ponents over GDP. Four subaggregates of GFCF are available for the ‘old’
French national accounts: livestock and plants, machinery and equipment,
residential construction, and other construction. We added the relatively
small first category to the second one to obtain ‘equipment investment’,
while the latter two categories represent ‘construction investment’. Figure
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2 demonstrates that a longer-run relative decrease of construction invest-
ment is reflected in a shrinking investment/GDP ratio, while the share of
equipment investment remains approximately constant. These features are
slightly different from the other two countries, while the relative decrease of
construction investment is a common feature. According to formal unit-root
tests, all three variables are classified as first-order integrated. In line with
visual evidence, test statistics for the equipment investment share come clos-
est to a rejection and to stationarity yet fail to surpass the 10% significance
boundary. These statistical results are summarized in Table 2.

British series were taken from the UK quarterly national accounts for
the time range 1965:1 to 2002:3. Figure 3 shows the evolution over time
of ratios of total GFCF and of some raw investment components to GDP.
The investment components were aggregated to the two main components
later. It is seen that the ratio of total GFCF over GDP has remained fairly
stable over the whole time range, at around 17—18%. By contrast, the share
of equipment investment has increased from less than 5% to around 8%,
while the share of residential construction has fallen from 5—6% to less than
3% over the same time range. These three subaggregates do not sum to
total investment. Besides some smaller components and discrepancies, a
fourth major position of ‘transport equipment’ adds to the overall increase
in equipment investment.

In order to keep the historical distinction of the two major components
of investment (see, e.g., B����	, 1996), we form the two subaggregates
‘construction investment’ from the residential and non-residential series and
summarize the remainder, i.e., the difference of total GFCF and construc-
tion investment, in a variable ‘non-construction investment’, which we will
identify with ‘equipment investment’ in the following. The share of these
two components in GDP output is shown in Figure 4. In the notation of
the previous section, the logarithms of construction and of non-construction
investment correspond to z1 and z2, while y corresponds to the logarithm of
GDP.

Some descriptive unit-root test statistics are summarized in Table 3. The
variables are logarithms of the share of construction investment in GDP, of
equipment investment in GDP, and of total GFCF in GDP. While for the
Dickey-Fuller tests the lag order was determined by the AIC information
criterion, a window length of 4 was generally used for the Phillips-Perron
version of the test. In summary, unit roots are never formally rejected for
any variable, although the share of total GFCF comes closer to a rejection
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than the shares of the subaggregates. This result is slightly at odds with
visual evidence and is likely due to the long swings and high volatility of the
total share series. The result is confirmed by a multivariate cointegration test
on the three variables. A search for the cointegrating rank according to the
J
����� method (see J
�����, 1995, for a detailed description) yields a
rank of zero and hence no cointegrating vector. This excludes the possibility
of self-cointegration and stationarity of any of the individual variables.

In summary, stationarity of the investment quota is not supported statis-
tically, although it should be imposed for longer-run prediction, for reasons of
plausibility. By contrast, stationarity of subaggregate quotas is unsupported
by statistics as well as by plausibility.

4 Estimation

4.1 Austrian data

Table 4 gives the results of a preliminary unrestricted VAR estimation in dif-
ferences, with the non-linear error-correction term and a constant included as
additional regressors. One lag of the differences of the three variables c (log-
arithm of construction investment), e (logarithm of equipment investment),
and y (logarithm of GDP) was used in the VAR, according to the recommen-
dation by information criteria. As outlined in the previous section, Austrian
series have been seasonally filtered. Consequently, c now corresponds to the
logarithm of the seasonally filtered construction investment series, as e and y

denote the logarithms of seasonally filtered equipment (non-construction) in-
vestment and output. In order to predict a seasonal series that corresponds
to raw data, seasonality can be easily generated from the forecasts of the
non-seasonal variables and actual starting values. For brevity we restrict
attention to the non-seasonal variables in the following. Note that first dif-
ferences of the filtered variables, for example ∆yt, equal seasonal differences
of the original seasonal variables. Seasonal filtering was applied to the orig-
inal non-logarithmic series, therefore ∆yt does not equal y

∗

t
− y∗

t−4, when y∗
t

denotes the logarithm of quarterly output.
The influence of the error correction terms for the investment aggregates

is rather small, while the coefficient in the ∆y equation is significant. That
coefficient must be set to zero as it has the wrong sign and would cause
unstable behavior in prediction. Kruskal’s Theorem (see, e.g., D����
�
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��� M�K���
�, 1993) implies that an unrestricted VAR with additional
regressors is estimated efficiently by least squares. This does not hold for a
system with imposed restrictions, where efficiency gains can be achieved by
a transformation based on the estimated error variance structure. In small
samples, however, the gains from using this procedure are unclear. Therefore,
we estimate all restricted systems by least squares. The restricted estimates
for the y equation are reported in the last column of Table 4, while coefficient
estimates for the other two equations are identical to those shown in the first
two columns. Excepting the coefficient of the error correction term, which
was set at zero, the coefficient estimates are close to those for the unrestricted
VAR.

The restricted VAR permits the calculation of forecasts with zero residu-
als. These form a benchmark scenario that is shown in Figure 5. The share
of construction investment tends to re-increase to its sample maximum, while
equipment investment tends to lag behind. Seen from a judgmental view-
point, this scenario is not so plausible, as the downturn of the construction
share in the late 1990s is mainly due to a budget consolidation. The scenario
of Figure 5 may require either a budget expansion, with large construction
projects financed by the government, or crowding-in effects, with an emphasis
on construction in the private sector. Assuming zero residuals for prediction
does not yield the conditional expectation in nonlinear models, hence the
graphs of deterministic forecasts are only meant as rough sketches.

The results of a stochastic forecast of the non-linear Austrian system
are displayed in Figures 6 and 7. These figures are based on 999 random
draws from a normal distribution, with standard deviations conforming to
those estimated from the sample. This procedure is sometimes called the
parametric bootstrap. At each forecast horizon τ = 1, . . . , 100, the 999
values were sorted. Suppose they are sorted upward. Then, the value at
position 50 represents the lower 5% fractile, the value at position 500 is the
median and the value at position 950 is the upper 5% fractile. Note that these
values stem from different trajectories of the time-series model at different
τ . Specific trajectories typically show large variation within the bounds and
thus their behavior corresponds neatly to the observed series in the sample
range. Comparing the scenario for the total investment quota in Figure 6 to
the baseline prediction of Figure 5, the considerable downward risk in 2003
becomes visible. However, even if the pessimistic lower bound is assumed,
the investment quota is predicted to recover fast. The parallel scenarios for
the component quotas show that the distribution of total investment to its
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components is far less certain than the baseline of Figure 5 may insinuate.
There is even a sizeable risk of equipment investment overtaking construction.

If growth homogeneity is imposed according to (4), forecasting perfor-
mance changes from the one depicted in Figure 7 to the one of Figure 8.
This version assumes identical growth rates across variables, i.e., E∆c =

E∆e = E∆y. In short, it is assumed that the deterministic part of the
trend is the same, while there is no restriction on the stochastic trend except
for the non-linear cointegration term, which imposes long-run constancy in
the total GFCF to GDP ratio but not in its components. This model takes
an intermediate position between the hitherto used model and a traditional
cointegrating model with long-run constancy of component quotas. Figure 8
shows that the median prediction is constant, according to assumptions, but
also that strong deviations from this median are not uncommon. Specifically,
the probability of equipment investment overtaking construction is slightly
higher for the model with growth homogeneity than for the model without
that restriction. Note that, even if growth homogeneity is imposed, the com-
ponent ratios are not assumed as stationary. The widening cones reflect this
assumption. For the (less plausible) assumption of linear cointegration for
both subaggregates, the median forecast is similar to Figure 8, while the
confidence bands remain much tighter.

4.2 French data

Table 5 gives the results of a preliminary VAR estimation. One lag of the
differences of the three variables c, e, y was used in the VAR, according to
the recommendation by information criteria. The t—values show that many
entries in Γ are statistically insignificant. Aggregate output growth shows
some reaction to the investment variables, and construction reacts to lagged
equipment investment. The error correction term has the correct sign in
the e and in the y equation, though it is hardly significant. The sign in
the c equation is wrong, therefore it has to be dropped or otherwise the
system becomes unstable, which must be ruled out for forecasting. Again,
we estimate the restricted system by least squares. The coefficient estimates
for the c equation are shown in the last column of Table 5.

A baseline forecast for the restricted nonlinear error-correction system is
given as Figure 9. In the long run, the investment quota converges to its in-
sample mean, while equipment investment overtakes construction investment,
extrapolating the in-sample evolution. Stochastic simulation allows a more
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adequate evaluation of the properties of the forecasting model. Figure 10
summarizes the distribution of the predictions by their upper and lower 5%
fractiles and their median.

Figure 10 shows that the distribution is asymmetric. Positive deviations
from the median position are more probable than large negative deviations,
while the median comes close to the baseline of Figure 9. Note that the
confidence intervals are comfortably strict. This is even true for the predicted
component quotas in Figure 11. It appears that the model forecasts with high
probability that equipment investment will overtake construction investment
in the near future.

If growth homogeneity is imposed, one gets the scenario shown in Figure
12. The median forecast for the construction to GDP ratio remains at its
current value, while the equipment to GDP ratio continues to increase for a
while. There is a sizeable probability that both components remain in the
same range for some years, although the model supports a higher share for
equipment in the longer run.

An instructive experiment is depicted in Figure 13. Instead of the non-
linear error-correction model used otherwise in this paper, we assumed a
linear error-correction model with constant long-run component ratios. The
variables of logged construction investment to output and equipment invest-
ment to output were inserted as error-correction terms instead of the total
ratio. The effect of the error-correction terms in the ∆c equation resulted
unstable and explosive, therefore this equation was formed in pure first dif-
ferences. Similarly, the effect of the equipment quota had the wrong sign
in the ∆y equation. As a consequence, the construction quota continues its
decline in the prediction scenario, while the equipment quota stabilizes. The
share of total investment in output also declines, which may not be very
plausible. Even more disturbing are the narrow confidence bands that reflect
the cointegration assumptions and add an undue precision to the implausi-
ble scenario. The experiment confirms that the non-linear error-correction
model used here may be a necessary requirement to obtain plausible longer-
run scenarios. There is no better linear alternative.

If linear modeling is applied to the Austrian and British data sets, linear
models generate scenarios that are similar to the French one in Figure 13.
If the influence of destabilizing error-correction terms is ignored and these
coefficients are estimated freely, the resulting scenario is equally unlikely and
displays extremely wide confidence bands.
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4.3 British data

Table 6 gives the results of the preliminary unrestricted VAR estimation.
Again, only one lag of differences was included according to information
criteria. The non-linear error-correction term has the correct sign for the
investment subaggregates, though it has a wrong sign for output and must
therefore be excluded from the ∆y equation. For this restricted VAR system
with non-linear error correction, mean forecasts with zero residuals are shown
in Figure 14, while Figures 15 and 16 show stochastic forecasts. The low
values of R2 in Table 6 imply that the model has less explanatory power
for the British data than for the other two countries, hence the confidence
bands are relatively wide. The coefficient that is most severely affected by the
exclusion of the error-correction term is the intercept, which reflects the fact
that the error-correction variable is more ‘constant’ than the other regressors.

The forecast for the total investment quota in Figure 15 reflects the fact
that the British investment quota is right at its historical mean close to the
end of the sample. Therefore, the median forecast is almost constant over
the whole forecast time range. Figure 16 shows that construction investment
is in a long-run decline that is assumed to continue into the future. Never-
theless, the lower confidence boundary with values around 2% for this quota
is difficult to accept. On the other hand, the upper confidence bound over-
laps with the confidence band for equipment investment. This means that
there is a small but non-zero possibility that construction investment again
overtakes equipment investment.

If growth homogeneity is imposed on the British system (see Figure 17),
median forecasts for both investment components become flat at the end-of-
sample value, thus reflecting the low degree of dynamic dependence in the
model. This variant avoids the probably too low construction shares of the
model with inhomogeneous growth, at the price of reducing the scenario to
an uninformative random-walk behavior. Contrary to a usual cointegration
model, there is no stochastic restriction on the difference between investment
components, excepting the error-correction term for the sum, which keeps
the components from undue expansion.
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5 Forecasting evaluation

5.1 Different concepts of evaluating forecasts

Even though we suggest to mainly rely on visual evaluation of the plausibility
of longer-range prediction rather than on a numerical prediction evaluation,
because of the prominence of sample-specific features in any selected finite
time range, we also report here the results of an out-of-sample prediction
evaluation for completeness. The British series offer the best opportunities
for such an experiment, due to the relatively long time range of observations.

Regarding the stochastic assumption about the prediction model and the
true model, one can distinguish four types of forecast evaluations. The sim-
plest way of evaluating forecasts is by comparing a mean forecast x∗

s+h
for an

observation xs+h, which is a function of the observations x1, . . . , xs and the

observation xs+h, typically by a distance function g
(
x∗
s+h, xs+h

)
. Typically,

such evaluations are summarized by averaging over a range of values for s,
tacitly assuming that m−1

∑
n

s=n−m+1 g
(
x∗
s+h, xs+h

)
converges to some con-

stant, which we denote symbolically by g (x∗, x). The forecasting model with
the lowest value for g (x∗, x) is then interpreted as the best one. This ap-
proach is not appropriate for non-linear forecasting models and for stochastic
prediction.

Most prediction experiments rely on a variant of approximating the inte-
gral ∫

g (x∗, x) f (x) dx,

where x denotes the data-generating process, x∗ is the forecast, and g (x, y)
is a distance function, for example the squared distance g2 (x, y) = (x− y)2.
It is obvious that this approach is used as a backdrop for the prediction
accuracy tests, as suggested byD������ ��� M�	���� (1995), for example.
Again, for a stochastic forecast x∗, this interpretation of measuring accuracy
is inconvenient, and the assumption of a true probability model for the data
also appears to be restrictive.

As an alternative, one may consider integrals of the type

∫
g (x∗, x) f (x∗) dx∗,

where the expectation of g (x∗, x) is conditioned on the observed data x and
the forecast x∗ is random. Such an interpretation is in line with the current
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popularity of fan charts and appears to be more appropriate for our purposes.
For empirical applications, the integral is to be approximated by

m∑
t=1

Ω∑
ω=1

g (x∗
t
(ω) , xt) ,

where ω is drawn according to the probability distribution of the stochastic
forecast. For our experiment, we use Ω = 200, i.e. there are 200 replications
of the stochastic forecast, and m = 50, i.e. we evaluate predictive accuracy
over the last 12.5 years of the sample. We repeat the experiment for a
whole range of horizons, ranging from single-step to forty-step forecasts, and
remember to focus on a prediction horizon of five to ten years. Note that for
a horizon of h and a time range ofm, only the first n−h−m+1 observations
can be used for estimating the model parameters, if the prediction is supposed
to be truly out-of-sample.

A fourth variant assumes stochastic processes for both the forecast x∗

and the true model x, i.e.

∫ ∫
g (x∗, x) f (x∗, x) dx∗dx.

Here, the difficulty is that the generating law for x is unknown. A workable
solution would be to act as if the estimated parameters from the observa-
tions x1, . . . , xs determined the true structure and to draw from the assumed
statistical distribution. One obtains an approximation by sums of the form

m∑
t=1

Ω1∑
ω1=1

Ω2∑
ω2=1

g (x∗
t
(ω1) , xt (ω2)) ,

where the notation simplifies the fact that both the generating laws for x∗

and for x are time-changing in the sense that an increasing ‘training sample’
is used to determine the parametric structures. Such evaluations answer the
question whether the suggested prediction method performs satisfactorily, if
the true model class is given. For example, the assumed true model class may
be non-linear cointegration models and the methods may be linear or non-
linear error-correction models. Because of sampling variation in parameter
estimation, a match between method and true class does not necessarily de-
fine the best method. We shall first consider the above mentioned alternative
with fixed x and then return to the double-stochastic version.
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5.2 Evaluations conditional on observed data

As candidates for stochastic forecasts, we use model-based predictions for five
models: an unrestricted VAR in differences, the non-linear error-correction
model without and with imposing growth homogeneity, a linear VECM with
stationary subcomponent ratios, and a VAR in differences with growth homo-
geneity. For all error-correction models, instability was excluded by changing
unstable influences of the error-correction terms to zero. This criterion was
used separately at each time point, such that the experiment is out-of-sample
in all regards. While various other models could be used for a comparison,
note that it is not necessary to impose growth homogeneity on the linear
cointegration model, as it is fulfilled automatically.

For the function g2 (x, y) = (x− y)2, i.e. mean squared errors, results
are displayed in Figures 18 and 19. For g1 (x, y) = |x − y|, i.e. mean ab-
solute errors, the ranking of forecasts is very similar. The benchmark model
in differences without any further restriction clearly yields inferior forecasts.
Contrary to the simulations of E�
�� ��� Y�� (1987), cointegrating mod-
els dominate at almost all horizons for all series, not only at larger horizons.
Note, however, that we do not use the VAR in levels as a benchmark that
was used by E�
�� ��� Y�� but in differences, and that we evaluate pre-
dictive accuracy for the (stationary or at least bounded) ratios and not for
the assumedly integrated variables, such as y.

For the total investment quota and for the construction subaggregate, the
nonlinear cointegration models dominate convincingly. Growth homogeneity
appears to achieve a further reduction in forecast errors. The linear coin-
tegration model ranks third, well ahead of the VAR variants in differences.
For the equipment investment quota, the evidence is less clear. Linear coin-
tegration of subcomponents and therefore also of the equipment quota yields
the best forecasts at shorter horizons, while nonlinear models take over at
longer ones. Interestingly, imposing growth homogeneity implies a deteriora-
tion for this subaggregate, probably reflecting the marked longer-run shift in
the contribution from this subcomponent. Presumably, growth homogeneity
would prove more beneficial at even longer horizons, while different growth
rates for subaggregates are acceptable within the limits of the experiment.
The general impression from all three variables is anyway that the nonlinear
error-correction model with growth homogeneity yields the most satisfactory
results.

Similar results were obtained for the French data set, which is much
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shorter than the British one. Therefore, m was reduced to 40, which corre-
sponds to 10 years. Thus, the last 10 out of 29 years were predicted using
the first nine to 19 years for estimating the forecast model for the longest
horizon h = 40, while longer samples were available for the shorter horizons.

The results are shown in Figures 20 and 21, again for the distance func-
tion g2. It is evident that the nonlinear cointegration models are optimal
for the total investment quota and the equipment investment quota. For
construction investment, imposing growth homogeneity fails at large fore-
cast horizons. For the French data, the linear error-correction model is not
really competitive, as error correction of subcomponent ratios is not found
at nearly all considered subsamples. Rather, usage of these ratios would
exert a destabilizing influence due to reaction parameters with wrong signs.
These were automatically set at zero, thus there is virtually no difference
between the linear cointegration model and the VAR in differences. In sum-
mary, the nonlinear error-correction model with growth homogeneity shows
the best performance, excepting one of the subaggregate quotas. This out-
come matches the evidence from the British data. Results for the Austrian
series were also qualitatively similar. Due to the even shorter time range,
they are not so reliable and are therefore not shown.

5.3 Evaluations conditional on simulated data

These evaluations assume that a specified model class is the correct one and
determines the free parameters by estimation from the full available sample.
From this estimated ‘pseudo-true’ model, artificial samples are generated
(‘parametric bootstrap’), which are then ‘predicted’ using all of the previ-
ously specified methods. One of the methods corresponds to the class used
for generating the data. These evaluations are helpful, as they provide infor-
mation on the relative merits with regard to the accuracy of forecasts from
correctly specifying the model class. Because of sampling variation in para-
meter estimation, the true model class is not necessarily the best one at all
forecast horizons.

Figures 22 and 23 rely on experiments for the British data set and 100
replications both for the stochastic predictors and for the pseudo-true model.
The assumed true model class is the nonlinear cointegration model with the
growth homogeneity restriction. Figures are drawn for mean absolute errors
rather than mean squared errors to allow a more instructive visual separa-
tion of curves. For both criteria, the ranking is the same. Predictions based
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on the true model dominate at all horizons, while the ranking of the other
predictors varies. For the equipment investment quota, the nonlinear model
without the homogeneity restriction falls behind the linear error-correction
model, while for the construction and total quotas, linear cointegration per-
forms worse than the unrestricted nonlinear model. The primitive models
without any error-correction restriction are worst for the construction and
total quotas, whereas the differences VAR with growth homogeneity achieves
a similar performance as the unrestricted nonlinear model for the equipment
investment quota.

For the French data, mean absolute errors are summarized in Figures 24
and 25. The linear error-correction model is not a good choice for this data.
Its performance is even worse for the mean-squared errors evaluation, which
corresponds to the empirical results reported above. While setting error-
correction adjustment at zero is a satisfactory solution for the given data, it
implies locally unstable behavior for the bootstrapped version.

These simulations also offer an informal test of whether the assumed
model is a likely data-generating mechanism for the British data, even though
such tests are not in the focus of our investigation. If a nonlinear error-
correction model actually had generated the British investment data, Fig-
ures 22 and 23 should roughly match the features seen in the observational
counterparts, Figures 18 and 19. While that correspondence is acceptable
in general, there are some noteworthy differences. For the British data, the
empirical plots support the linear cointegration model as a forecasting tool
at some prediction horizons, while this model is not among the preferred
ones for the simulation graphs. This mismatch may indicate that true data
behavior is ‘in between’ the linear and the nonlinear model, in the sense that
the persistence of subcomponent quotas is stronger than would be implied
by the nonlinear error-correction model, though not as strong as would be
implied by the linear error-correction model. For both data sets, prediction
errors increase monotonously for the bootstrap version, while they deviate
from monotonicity for the empirical version. This may indicate that longer-
run cycles play a larger role in empirical data than in all suggested model
classes. These longer-run cycles may reflect cycles in political attitudes, as
particularly construction investment is severely influenced by policy deci-
sions. Finally, the numerical values of mean absolute and mean squared
errors show noteworthy differences, which however is to be expected due to
sampling variation, if the data is viewed as a single observation of a trajectory
from a time-series process.
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6 Summary and conclusion

Non-linear error correction modeling was applied to three-variable systems
for two main investment components and aggregate output in three industri-
alized economies. While macroeconomic theory is informative with respect
to the share of total investment in output, which is supposed to be constant
in the steady state of an economy, there is little information on the develop-
ment of its components. Attempting to forecast the subcomponents under
the restriction of long-run constancy of the total investment share yields a
relatively simple example for non-linear cointegration. We suggest the elim-
ination of unstable features from longer-run scenarios in an iterative dialog
with the data. Particularly in longer-run forecasting, statistical test decisions
obtained from samples of limited length should be overridden in favor of ad-
missibility restrictions imposed by plausibility and economic theory. We also
demonstrate that automatically generated forecasts from statistical analysis
of linear structures may not fulfil such plausibility requirements. In scenarios
with a very long time horizon, restricting the deterministic part of the system
can also become crucial in order to avoid that one subcomponent disappears
in the longer run.

The presented partial models on investment and output can be used as
building blocks in larger macroeconometric models, where the relationships
between the investment sector and other sectors of the economy can be fully
captured. In order to permit a focus on the main issues, we exclude such
extensions from the present paper. The study could, however, form a basis
for future work on this subject.

Without substantial modification, similar techniques to the one outlined
in this paper can be used for other cases where the total share is known
to be ‘more constant’ than the shares of components, such as in modeling
components of consumer demand. We feel, however, that the basic modeling
idea may have even wider applicability in other areas of economic modeling.

19



References

[1] B�����, E. (1996) The Practice of Econometrics: Classic and Con-

temporary. Addison-Wesley.

[2] C�����	

�����, P.F., ��� D���	�, F.X. (1998) ‘Cointegration
and long-horizon forecasting’, Journal of Business & Economics Statis-

tics 16, 450—458.

[3] D�����	�, R., ��� J.G. M��K���	� (1993) Estimation and infer-

ence in econometrics. Oxford University Press.

[4] D���	�, F.X., ��� M�����	, R.S. (1995) ‘Comparing Predictive
Accuracy’ Journal of Business and Economic Statistics 13, 253—263.

[5] E���, R.F., ��� Y		, B.S. (1987) ‘Forecasting and Testing in Co-
integrated Systems’, Journal of Econometrics 35, 143—159.

[6] E�������	, A., ��� S. M��� (2001) ‘Nonlinear Error Correction
Models’, Documento de Trabajo 2001-03, Universidad Carlos III de
Madrid.

[7] H������, S., E���, R.F., G������, C.W.J. ��� Y		, B.S.
(1990) ‘Seasonal integration and cointegration’, Journal of Econometrics
44, 215—238.

[8] J	������, S. (1995) Likelihood-Based Inference in Cointegrated Vector

Autoregressive Models. Oxford University Press.

[9] K����, R.M., ��� N������, K. (1990) ‘Cointegration in a Macro-
economic System’, Journal of Applied Econometrics 5, 351—365.

[10] R	���, D. (1996) Advanced Macroeconomics. McGrawHill.

[11] S�	��, J.H., ��� M.W. W���	� (1988) ‘Testing for Common
Trends’, Journal of the American Statistical Association 83, 1097—1107

20



Figures and Tables

Table 1: Unit root tests on Austrian series

log(IFC/GDP) log(IFE/GDP) log(IF/GDP)
Dickey-Fuller tests
augmenting lags 2 1 3
µ—statistics -0.077 -1.681 -2.762

Phillips-Perron tests
window length 3 3 3

statistics 0.326 -1.519 -1.239

IFC is construction investment, IFE is equipment investment, IF is total
fixed investment. All series, including GDP, were subjected to a seasonal
moving average filter S(B) = 0.25 ∗ (1 +B +B2 +B3).

Table 2: Unit root tests on French series

log(IFC/GDP) log(IFE/GDP) log(IF/GDP)
Dickey-Fuller tests
augmenting lags 5 8 8
µ—statistics -1.033 -2.269 -2.084

Phillips-Perron tests
window length 4 4 4

statistics 0.109 -2.074 -0.902

IFC is construction investment, IFE is equipment investment, IF is total
fixed investment.
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Table 3: Unit root tests on British series

log(IFC/GDP) log(IFE/GDP) log(IF/GDP)
Dickey-Fuller tests
augmenting lags 2 1 1
µ—statistics -0.752 -1.234 -2.003

Phillips-Perron tests
window length 4 4 4

statistics -1.121 -1.406 -2.310

IFC is construction investment, IFE is equipment investment, IF is total
fixed investment.
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Table 4: Coefficient estimates for the Austrian data. Estimation time range
is 1989:1-2002:4.

∆ct ∆et ∆yt ∆yt

∆ct−1 0.421 -0.218 -0.022 -0.041
[ 2.671]] [-0.780] [-0.506] [-0.908]

∆et−1 0.124 0.503 0.060 0.027
[ 1.291] [ 2.945] [ 2.295] [1.082]

∆yt−1 -0.207 0.985 0.593 0.722
[-0.407] [ 1.090] [ 4.253] [5.144]

µ∗ -0.218 -0.140 -0.089 0.002
[-1.838] [-0.666] [-2.741] [2.169]

α -0.151 -0.094 -0.062
[-1.853] [-0.651] [-2.790]

R2 0.229 0.370 0.644 0.589

The first three columns give the results for the unrestricted non-linear error-
correction model. The last column gives least-squares estimates for the ∆yt

equation without the error-correction term.
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Table 5: Coefficient estimates for the French data. Estimation time range is
1970:3-1998:4.

∆ct ∆et ∆yt ∆ct
∆ct−1 -0.014 0.461 0.119 0.001

[-0.140]] [ 2.637] [ 3.194] [0.008]

∆et−1 0.097 0.047 0.080 0.093
[ 1.651] [ 0.468] [ 3.744] [1.591]

∆yt−1 0.343 0.570 -0.052 0.386
[ 1.211] [ 1.181] [-0.503] [1.383]

µ∗ 0.021 -0.074 0.019 -0.002
[ 0.827] [-1.715] [ 2.026] [-0.746]

α 0.015 -0.051 0.009
[ 0.893] [-1.808] [ 1.432]

R2 0.081 0.128 0.259 0.075

The first three columns give the results for the unrestricted non-linear error-
correction model. The last column gives least-squares estimates for the ∆ct
equation without the error-correction term.
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Table 6: Coefficient estimates for the UK data. Estimation time range is
1965:3-2002:3.

∆ct ∆et ∆yt ∆yt

∆ct−1 -0.156 0.007 -0.016 -0.017
[-1.839] [ 0.069] [-0.665] [-0.701]

∆et−1 0.069 -0.213 0.036 0.036
[ 0.969] [-2.482] [ 1.779] [1.763]

∆yt−1 0.619 0.418 -0.028 -0.026
[ 1.971] [ 1.110] [-0.310] [-0.293]

µ∗ -0.136 -0.083 -0.000 0.006
[-1.808] [-0.922] [-0.017] [6.041]

α -0.076 -0.051 -0.003
[-1.806] [-1.014] [-0.280]

R2 0.074 0.055 0.026 0.025

The first three columns give the results for the unrestricted non-linear error-
correction model. The last column gives least-squares estimates for the ∆yt

equation without the error-correction term.
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Figure 1: Shares of investment components in Austrian GDP. Time range is 1988—

2002.
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Figure 2: Ratios of construction investment to GDP, equipment investment to

GDP, and total investment to GDP for France. Sample period is 1970:1—1998:4.

Figure 3: Shares of investment components in British GDP. Quarterly data

1965:1—2002:3.
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Figure 4: Shares of constructed investment components in British GDP. “con-

struction” comprises residential and non-residential construction, while “equip-

ment” refers to all categories of total fixed investment excluding construction.

Figure 5: 25 years of forecasting for the Austrian nonlinear system with zero

residuals. A vertical bar separates the sample from the prediction interval.
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Figure 6: Median and upper and lower 5% fractiles for stochastic forecasts from

the Austrian nonlinear system. Predicted variable is the total investment quota.

Figure 7: Stochastic prediction from the nonlinear model for the Austrian data.

Median forecasts for construction investment quota (solid curve) and for equipment

investment quota (dashed curve). Dotted curves represent lower and upper 5%

fractiles of the forecast distribution.

29



Figure 8: Stochastic prediction from the nonlinear model for the Austrian data

under the restriction of homogeneous deterministic growth. Median forecasts for

construction investment quota (solid curve) and for equipment investment quota

(dashed curve). Dotted curves represent lower and upper 5% fractiles of the fore-

cast distribution.

Figure 9: 25 years of forecasting for the French nonlinear system with zero resid-

uals. A vertical bar separates the sample from the prediction interval.
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Figure 10: Median and upper and lower 5% fractiles for stochastic forecasts from

the French nonlinear system. Predicted variable is the total investment quota.

Figure 11: Stochastic prediction from the nonlinear model for the French data.

Median forecasts for construction investment quota (solid curve) and for equipment

investment quota (dashed curve). Dotted curves represent lower and upper 5%

fractiles of the forecast distribution.
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Figure 12: Stochastic prediction from the nonlinear model for the French data

using the restriction of growth homogeneity. Median forecasts for construction

investment quota (solid curve) and for equipment investment quota (dashed curve).

Dotted curves represent lower and upper 5% fractiles of the forecast distribution.

Figure 13: Stochastic prediction for a linear error-correction model based on

French data. Solid curve corresponds to construction investment, dashed curve to

equipment investment, and dashes and dots to total investment.
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Figure 14: 25 years of forecasting for the UK nonlinear system with zero residuals.

A vertical bar separates the sample from the prediction interval.

Figure 15: Median and upper and lower 5% fractiles for stochastic forecasts from

the UK nonlinear system. Predicted variable is the total investment quota.
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Figure 16: Stochastic prediction from the nonlinear model for the UK data. Me-

dian forecasts for construction investment quota (solid curve) and for equipment

investment quota (dashed curve). Dotted curves represent lower and upper 5%

fractiles of the forecast distribution.

Figure 17: Stochastic prediction from the nonlinear model for the UK data under

the restriction of growth homogeneity. Median forecasts for construction invest-

ment quota (solid curve) and for equipment investment quota (dashed curve).

Dotted curves represent lower and upper 5% fractiles of the forecast distribution.
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Figure 18: Mean squared errors for prediction horizons h = 1 to h = 40. Pre-

dicted variable is the UK construction investment quota.
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Figure 19: Mean squared errors for prediction horizons h = 1 to h = 40. Pre-

dicted variable is the UK equipment investment quota.

Figure 20: Mean squared errors for prediction horizons h = 1 to h = 40. Pre-

dicted variable is the French construction investment quota.
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Figure 21: Mean squared errors for prediction horizons h = 1 to h = 40. Pre-

dicted variable is the French equipment investment quota.

Figure 22: Mean absolute errors for prediction horizons h = 1 to h = 40.

Predicted variable is a parametric bootstrap version of the British construction

investment quota.
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Figure 23: Mean absolute errors for prediction horizons h = 1 to h = 40.

Predicted variable is a parametric bootstrap version of the British equipment in-

vestment quota.

Figure 24: Mean absolute errors for prediction horizons h = 1 to h = 40.

Predicted variable is a parametric bootstrap version of the French construction

investment quota.
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Figure 25: Mean absolute errors for prediction horizons h = 1 to h = 40.

Predicted variable is a parametric bootstrap version of the French equipment in-

vestment quota.
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