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Abstract

We show that a rational expectations equilibrium need not be incentive compatible, need not
be implementable as a perfect Bayesian equilibrium and may not be fully Pareto optimal,
unless the utility functions are state independent. A comparison of rational expectations
equilibria with core concepts is also provided.
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1. INTRODUCTION 1

1 Introduction

A differential information economy (DIE) consists of a finite set of agents each of which
is characterized by a random utility function, a random consumption set, random initial
endowments, a private information set and a prior probability distribution on a finite set
of states of nature. A DIE is an extension of the Arrow - Debreu - McKenzie economy
which enables us to model the idea of trade under asymmetric information.

The rational expectations equilibrium (REE) concept (see for example Radner (1979) and
Allen (1981) among others), is an extension of the deterministic Walrasian equilibrium.
Unlike the Walrasian equilibrium, the REE may not exist in well behaved economies (for
example Kreps (1978)) and, moreover, may not satisfy certain efficiency criteria (see Allen
(1981), Laffont (1985) and Grossman (1981)).

Despite the above non-attractive properties of REE, this concept is widely used because it
is an extension of the classical Walrasian equilibrium idea. Given the central role of REE
in economic theory it is of interest to investigate this concept further, to find out if it has
any other attractive or non-attractive features. Moreover, if it does have non-attractive
features, the question arises whether there is any other concept which behaves better.

The purpose of this paper is four-fold:

First, we show that the REE, whenever it exists, can be fully interim Pareto optimal
and we provide a positive result to that effect. In particular we demonstrate that, under
certain conditions, the REE is always in the interim weak fine core (IWFC), defined in
Yannelis (1991), and therefore it is “full information” Pareto optimal. This result depends
crucially on the fact that the utility function of each agent is state independent. Indeed
we show that if the utility function depends on the state of nature then the REE need not
be in the IWFC. Furthermore, we show that the REE may not be ex ante Pareto optimal.
We demonstrate this by examining the relationship between REE and the weak fine core
(WFC).

Second, we examine the incentive compatibility of the REE. Since the REE is capturing
the idea of contracts under asymmetric information one would like to know if contracts
(trades) are incentive compatible. It turns out that if there is one good per state of nature
then the REE is always Bayesian incentive compatible. However this result ceases to be
true if there is more than one good per state of nature. ' It should be noted that the
Bayesian incentive compatibility criterion used here is coalitional and it implies individual
Bayesian incentive compatibility.

Third, following the ideas of Glycopantis - Muir - Yannelis (2001), we investigate whether
or not the REE can be implemented as a perfect Bayesian equilibrium (PBE) of an exten-
sive form game. A PBE consists of optimal behavioral strategies of the players and the
consistent with these decisions, beliefs attaching a probability distribution to the nodes
of each information set. It is a variant of the Kreps - Wilson (1982) concept of sequential
equilibrium.

The attempt to implement the REE as a PBE of an extensive form game is interesting,
because we see the dynamics of the agents’ decisions, i.e. how agents move sequentially

(or simultaneously) to reach a final outcome. We found that the REE need not be imple-
mentable as a PBE. Thus, if one believes that the PBE is a reasonable rationality criterion

LA related example can be found in Palfrey - Srivastava (1986) and Hahn - Yannelis (2001).
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that most equilibrium notions must satisfy, then the REE should also satisfy this, but we
show that this is not the case.

Fourth, in view of the unsatisfactory features of the REE noted above, one would like to
know if there are better alternatives. To this end, we compare the REE with the private
core (Yannelis (1991). Analyzing Example 3.1, below, we see that, in general, the REE is
not Bayesian incentive compatible and it cannot be implemented as a PBE. On the other
hand, the private core exists under the standard continuity and concavity assumptions
on the utility functions, (Yannelis (1991) and Glycopantis - Muir - Yannelis (2001)), and
has desirable properties. 2 Moreover, we examine the example of Kreps (1978), where,
although fully revealing or non-revealing REE do not exist, the private core does exist.
Hence the private core provides a more sensible outcome than the REE.

The paper is organized as follows. Section 2 defines a differential information exchange
economy and the concept of REE. Section 3 explains the idea of incentive compatibility
and Section 4 discusses the non-implementation of REE as a PBE, in terms of a partic-
ular example. Section 5 looks at the relationship between REE and weak core concepts,
Section 6 comments on the relationship between REE and the private core and Section 7
concludes the discussion with some remarks. Appendix I discusses the relation between
Nash equilibria and PBE, in terms of the same particular example.

2 Differential information economy and REE

For simplicity we confine ourselves to the case where the set of states of nature, €, is finite
and there is a finite number, £, of goods per state. I = {1,2,...,n} is a set of agents, or
players, and Ry will denote the set of positive real numbers and ]Rﬁr its [-fold Cartesian
product.

A differential information exchange economy &£ is a set
{((Q,F), Xi, Fiyui,eiyq) :i=1,...,n}
where
1. F is a o-algebra generated by the singletons of €;

2. X; 1 Q — 2R} is the set-valued function giving the random consumption set of
Agent (Player) i, who is denoted by Pi;

3. F; is a partition of € generating a sub-o-algebra of F, denoting the private infor-
mation® of Pi. We assume that* F = \/,c; Fi;

4. u; Qx]Rl+ — R is the random utility function of Pi; for each w € Q, w;(w,.) is
continuous, concave and monotone;

5.6 :Q — ]RZ_ is the random initial endowment of Pi, assumed to be F;-measurable,
with e;(w) € X;(w) for all w € Q;

2The private core is always Bayesian incentive compatible (Koutsougeras - Yannelis (1993) and Hahn
- Yannelis (2001)) and can be implemented as a PBE of an extensive form game (Glycopantis - Muir -
Yannelis (2001)).

3Sometimes F; will denote the o-algebra generated by the partition, as will be clear from the context.

*The “join” Vics Fi denotes the smallest o-algebra containing all F;, for i € S C I.
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6. ¢; is an F-measurable probability function on €2 giving the prior of Pi. It is assumed
that on all elements of F; the aggregate ¢; is strictly positive. If a common prior is
assumed on F, it will be denoted by p.

We refer to a function with domain €2, constant on elements of F;, as F;-measurable,
although, strictly speaking, measurability is with respect to the o-algebra generated by the
partition. It is assumed that the players’ information partitions are common knowledge.

Agents make contracts in the ex ante stage. In the interim stage, i.e. after they have
received a signal as to what is the event containing the realized state of nature, one
considers the incentive compatibility of the contract (allocation).

For any z; : Q — ]Rl+ we define

vi(mi) = > ui(w, 2i(w))qi(w)- (1)
2

Equation (1) gives the ez ante expected utility of Pi.

Let G be a partition of (or o-algebra on) Q, belonging to Pi. For w € Q denote by Ef (w)
the element of G containing w; in the particular case where G = F; denote this just by
E;(w). Pi’s conditional probability for the state of nature being ', given that it is actually
w, is then
. W' ¢ BY(w
(B (W) =q @) . i EZEw;
ai (Elg (w)) . ’ .

The interim ezpected utility function of Pi, v;(z;|G), is given by

vi(2ilG) (w) = D wilw, zi(w)) g (| BY (). (2)

Equation 2 defines a G-measurable random variable.

We denote by L (q;, ]Rl) the space of equivalence classes of F-measurable functions
fi : Q@ — R!; when a common prior 4 is assumed L (¢;, R!) will be replaced by L; (i, R!).
Ly, is the set of all F;-measurable selections from the random consumption set of Agent
i, i.e.,

Lx, = {z; € Li(g;, R") : z;: @ — R'is F-measurable and z;(w) € X;(w) gi-a.e.}

n
and let Lx = [] Lx;.
i=1
Also let

Ly, = {z; € Li(g;, RY) : z;(w) € X;(w) gi-a.e.}

_ no_
and let Lx = [] Lx;.
i=1
An element z = (21, ... ,mn) € Lx will be called an allocation. For any subset of players
S, an element (y;)ies € [ Lx; will also be called an allocation, although strictly speaking
1€S
it is an allocation to S.
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We now discuss the notion of REE. We shall need the following. Let o(p) be the smallest
sub-o-algebra of F for which a price system p : Q@ — ]Rl+ is measurable and let G; =
o(p) V F; denote the smallest o-algebra containing both o(p) and F;.

Definition 2.1. A pair (p, ), where p is a price system and = = (z1,...,7,) € Lx is an
allocation, is a REF if

(i) for all ¢ the consumption function z;(w) is G;-measurable;

(ii) for all 4 and for all w the consumption function maximizes v;(z;|G;)(w) subject to
the budget constraint at state w,

p(w)zi(w) < p(w)ei(w);
(iii) Yo zi(w) = > ei(w) for all w € Q.

REE is an interim concept which allows us to condition also on information from prices.
A REE is said to be fully revealing if G; = F for alli =1,2,...,n.

In the next section we shall discuss the general idea of whether allocations have certain
desirable properties from the point of view of incentive compatibility. Following this, we
shall turn our attention in particular to REE allocations and their possible implementation
as PBE in the context of contracts described in terms of a game tree.

3 On the incentive compatibility of REE

Since we are concerned with multilateral contracts, we think that the appropriate incentive
compatibility concept should be coalitional rather than individual. In particular, contracts
which are individually Bayesian incentive compatible may not be coalitional Bayesian
incentive compatible and therefore not stable, i.e. viable and self-enforceable (see also
Allen - Yannelis (2001)).

The basic idea is that an allocation is incentive compatible if no coalition can misreport
the realized state of nature and have a distinct possibility of making its members better
off.

Suppose we have a coalition S, with members denoted by i. Their pooled information
Vz'e g Fi will be denoted by Fs. We have assumed that F; = F. Let the realized state
of nature be w*. Each member ¢ € S sees E;(w*). Obviously not all E;(w*) need be the
same, however all Agents i know that the actual state of nature could be w*.

Consider a state ' such that for all j € I'\ S we have v’ € F;(w*) and for at least one
i € S we have o' ¢ F;(w*). Now the coalition S decides that each member i will announce
that she has seen her own set E;(w’) which, of course, contains a lie. On the other hand
we have that w' € N E;(w*).
J¢s

The idea is that if all members of I\ S believe the statements of the members of S then
each 1 € S expects to gain. For coalitional Bayesian incentive compatibility (CBIC) of an
allocation we require that this is not possible. This is the incentive compatibility condition
used in Glycopantis - Muir - Yannelis (2001).°

®See Krasa - Yannelis (1994) and Hahn - Yannelis (1997) for related concepts.
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CBIC coincides in the case of a two-agent economy with the concept of Individually
Bayesian Incentive Compatibility (IBIC), which refers to the case when S is a singleton.

We consider here a strengthening of the concept of Coalitionally Bayesian Incentive Com-
patibility (CBIC)which allows for transfers between the members of a coalition.

Definition 3.1. An allocation z = (z1,...,7,) € Lx, with or without free disposal,
is said to be Transfer Coalitionally Bayesian Incentive Compatible (TCBIC) if it is not
true that there exists a coalition S, states w* and «’, with w* different from «’ and
w' € N E;j(w*) and a net-trade vector among the members of S: z = (2;)ics, with z;
Jjgs
being F;-measurable such that ), 4z = 0, such that for all i € S there exists E;(w*) C
Zi(w*) = Ej(w*) N (N Ej(w*)), for which
Jj¢s

Z u;i(w, e (w) + 2 (w') — € (W) + 2)qi (w] E; (w*)) > Z u;(w, 7 (w))gi (W] B (w*)).

weE; (w*) wek;(w*) ( )
3

The definition in (3) implies that no coalition can hope that by misreporting a state, every
member could become better off if they are believed by the members of the complementary
set.

We condition the interim expected utility on E;(w*) which implies that we require consis-
tency between the declaration of the members of S and the observations of the agents in
the complementary set.

Returning to Definition 3.1, one can define CBIC to correspond to z = 0 and then IBIC
to the case when S is a singleton. It follows that TCBIC = CBIC = IBIC.

In terms of game trees, an allocation will be IBIC if there is a profile of optimal behavioral
strategies and equilibrium paths along which no player misreports the state of nature he
has observed. Players might lie from information sets which are not visited by an optimal
play.

The definition of CBIC and its variants is about situations where a lie might be beneficial.
On the other hand the extensive form forces us to consider earlier decisions by other
players to lie or tell the truth and what payoffs will occur whenever a lie is detected,
through observations or incompatibility of declarations. Only in this fuller description can
players make a decision whether to risk a lie. Such considerations probably open the way
to an incentive compatibility definition based on expected gains from lying.

Observation 3.1. In a differential information economy with one good per state and
monotonic utility functions any REE is TCBIC.

Proof. With one good per state, the measurability of the allocations implies that the only
REE, fully revealing or not, is the initial allocation which is incentive compatible.

In oder to see that the REE and initial allocation coincide we argue briefly as follows.
A price function, p(w), known to all agents, is defined on Q. Each agent apart from his
own private F; C F;, receives also a price signal. Combining the two types of signals he
deduces the event G; € G; that he is observing. If the price function is fully revealing then
G; will consist of just one state. On the other hand if prices provide no extra information
to the agent then G; = FE;.

Then he acts under the constraint of the measurability condition on his consumption
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with respect to his new, possibly more refined information. This means, given also the
measurability of his initial allocation, that he chooses a constant quantity which maximizes
his interim expected utility subject to the budget set at state w in the event he has
observed.

More formally Agent i maximizes v;(x;|G;)(w) subject to the budget constraint at state w,
ie. p(w)zri(w) < p(w)e;(w), and given that there is only one good and the utility function
is monotone he chooses z;(w) = ¢;(w). Hence the REE implies no trade.

The following example shows that for more than one good REE is not necessarily CBIC.

Example 3.1 I = {1,2} with two commodities, i.e. X; = ]R?i_ for each agent i, and three
states of nature Q = {a, b, c}.

We assume that the endowments, per state a,b, and c respectively, and information par-
titions of the agents are given by

€1 = ((77 1)7(77 1)7(471))7 Fi1= {{av b}v{c}};
€2 = ((1710)7(177)7(177))7 Fa = {{a}v{bvc}}'

We shall denote A = {a, b}, ¢1 = {c}, a2 = {a}, Ay = {b,c}.
11
It is also assumed that w;(w, z;1, ®i2) = 727, where the second index refers to the good,

which is a strictly quasi-concave, and monotone function in z;;, and that every player

1
expects that each state of nature occurs with the same probability, i.e. p({w}) = P for
w € €. Some calculations are
up (7,1) = 2.65, ui(4,1) = 2, ua(1,10) = 3.16, up(1,7) = 2.65.

The expected utilities, multiplied by 3, are given by U; = 7.3 and Us = 8.46.

Straightforward calculations show that there is only one, fully revealing REE. The prices,
the allocations and the corresponding utilities are:

§ ., 8 ., 8 . 91 . o
In state a, (p1,p2) = (1, ﬁ)§ T = 590 P12 T 1p0 T2 T o0 T2 T qEi M 4.53,
u} = 4.85.
In state b, (p1,p2) = (1,1); 27y =4, 275 =4, x5, =4, 25, = 4; uf =4, u5 = 4.

37
In state ¢, (p1,p2) = (1, <); 25, = —, 21y, = —, o5 = —, 5y = —; ul = 2.93,u} = 3.40.

The normalized expected utilities of the REE are Uy = 11.46, Uy = 12.25.

The quantities obtained are different in each state of nature and therefore the REE does not
belong to the private core because this concept require F;-measurability of the allocations.
On the other hand a REE is in the WFC under certain conditions which are satisfied here.
However this relation is not stable. We explain this below.

In order to show that the REE redistribution is not CBIC we argue as follows. Suppose
that the realized state of nature is {a} so that P1 sees {a, b}, and P2 sees {a} but misreports
{b,c}. If P1 believes the lie then state b is believed. So P1 agrees to get the allocation
(4, 4). P2 receives the allocation ex(a) + z2(b) — e2(b) = (1,10) + (4,4) — (1,7) = (4,7)

91 91
with u2(4,7) = 5.29 > uz< = 4.85. Hence P2 has a possibility of gaining by

22716
misreporting and therefore the REE is not CBIC (IBIC).

We can also explain the allocation that P2 receives by arguing in an alternative manner. P1
agrees to get (4, 4), and P2 receives the rest of the total initial endowments in state a, i.e.
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ei(a)+ezx(a)—z1(b) = (7,1)+(1,10) — (4,4) = (4,7) as above. The expression on the left-
hand-side matches up with es(a)+xz2(b)—ea(b) by taking into account that by measurability
of allocations we have e1(a) = e (b) and by feasibility e1(b) + e2(b) = z1(b) + z2(b).

On the other hand if P2 sees {b, c} and P1 sees {c}, the latter cannot misreport {a,b} and
hope to gain if P2 believes it is b because the calculations now give e (c) + z1(b) —e1 (b) =

(4,1) + (4,4) — (7,1) = (1,4) with u1(1,4) =2 < uy (?1’—2 i’—é) = 2.93.

4 Non-implementation of REE allocations as a PBE.

In this section we use Example 3.1 to demonstrate that a fully revealing REE, which is not
incentive compatible, is also not implementable as a PBE.S Therefore, in general, REE
allocations are not implementable as a PBE.

First we look at the REE and show that it is not CBIC, by considering which agent,
and under which circumstances, can misreport what he has observed. Then we consider
sequential and also simultaneous play to show that REE is not implementable. Initially,
we assume that P1 acts first and that when P2 is to act he has heard the declaration
of P1. Then we reverse the roles of the two agents. Finally we consider a version with
simultaneous declarations.

4.1 Sequential decisions

Next we show using the sequential decisions approach that the REE is not implementable
as a PBE. Comparisons will be made with i/, and U5 of initial endowments and of REE.
Throughout, payoffs are given in terms of utility.

First we consider the non-simultaneous, sequential decisions case with P1 acting first. We
specify the rules for calculating payoffs, i.e. the terms of the contract:

(i) If the declarations of the two players are incompatible, that is (¢, a2), then this implies
that no trade takes place.

(ii) If the declarations of the two players are (A1, As) then this implies that state b is really
declared. The player who believes it (because he has no reason to disbelieve it) gets his
REE allocation (4, 4) and the other player gets the rest. So aA;A; means that P2 has
lied but P1 believes it is state b and gets (4, 4). P2 gets the rest under state a, that is
(4, 7); bA1 A2 means that both believe that it is the (actual) state b and each gets (4, 4);
cAj Ay means that P2 believes it is state b and gets (4, 4) and P1 gains nothing from his
lie as he gets (1, 4).

(iii) aAyag, bA1 Ag, ccy As imply that everybody tells the truth and the contract implements
the REE allocation under state a,b, and ¢ respectively. (bA;As in (ii) and (iii) give, of
course, an identical result).

(iv) aci A2 implies that both lie but their declarations are not incompatible. Each gets his
REE under ¢ and there is free disposal of (3, 3) which the difference between the total
endowments under state a and the allocation the agents receive.

(v) cAjay means that both lie and stay with their initial endowments as they cannot get

A related example with three agents has been given in Hahn - Yannelis (2001). The extensive form
analysis of the section goes beyond the discussion in Hahn - Yannelis. See also Dubey - Geanakoplos -
Shubik (1987) for related ideas.
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the REE allocations under state ¢ which is the intersection of A; and as.
(vi) bAjas implies that P2 misreports and P1 believes and gets his REE under a; P2 gets

91 43
the rest under b, that is <ﬁ’ E) Then us = 3.33 < 4 and u; = 4.53 > 4 and the lie of
P2 really benefits P1.

(vii) bep Ag means that P1 lies and P2 believes that it is state c. P2 gets his REE allocation

85 37
under ¢ and P1 gets the rest under b, that is the allocation (— ) . Thenu; =4.43 > 4

16710
and us = 3.4 < 4 and P1 benefits from lying.

The analysis is in Figures 1, 2 and the complete optimal paths are shown in Figure 3.
Probabilities next to the nodes of the information sets denote the players’ beliefs. We
assume that each player chooses optimally from his information set. Optimal decisions
and equilibrium paths are shown through heavy lines.

In Figure 1 we show the optimal decisions of P2. It is clear that from all information sets
he will choose to play As as it means for him a better payoff than as. Hence the tree
in Figure 1 folds back to the one in Figure 2, in which the optimal decisions of P1 are
shown. Given the prior probabilities on nature’s choices, P1 expects to find himself with

probability = on each node of the information set I! and therefore he chooses A; from

this set. From the singleton he chooses ¢; as it dominates A;.

In Figure 3 we show through heavy lines, plays of the game corresponding to choices by
nature and optimal behavior strategies of the players. Their beliefs have been obtained
through Bayesian updating. Strategies and beliefs satisfy the condition of a PBE.

The probabilities are calculated as follows. We label the nodes of the information sets:
From left to right, in I] we denote them by j; and jo, in I by n; and ng, and in I3 by
ng and n4. The probabilities of the nodes in Ii follow from the fact that the states of
nature are equally probable. The rest of the conditional probabilities are calculated given
the choices of nature and the strategies of the players by using the Bayesian formula for
updating beliefs.

_ Pr(Ai/ny) x Pr(n;) _ 1x3 _
Prm/A0) = By > Prim) + PriAcm) x Prim) ~ Txi+1x0 0 @
and
Pr(ng/er) = Pric,/ns) x Pr{ns) LD o )

Pr(ec1/n3) x Pr(ns) + Pr(ci/ng) X Pr(ng) T Ix04+1x :

It follows from (4)and (5) that Pr(n2/A;) =0 and Pr(n4/c;) =1

Our analysis shows that there is a unique PBE. The corresponding normalized expected
payoffs of the players are U; = 10.93 and Us = 12.69.

The equilibrium paths imply that REE is not implementable. This matches up with the
fact that it is not CBIC. However comparing the normalized expected utility of the PBE
with those corresponding to the initial allocation we conclude that the proposed contract
will be signed. This follows from the fact that both agents gain from this proposed contract.
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On the other hand P2, because it is advantageous to him to do so, stops P1 from realizing
his normalized REE utility. P1 ends up with ¢/; = 10.93 rather than i/, = 11.46.

We now consider the case when P2 plays first and when P1 is to act he has heard the
declaration of P2. The terms of the contract are the same as in the previous case. They
are repeated here, adjusted for the order of play. Explicitly, the rules are now:

(i) If the declarations of the two players are incompatible, that is (ag, ¢1), then this implies
that no trade takes place.

(ii) If the declarations of the two players are (Ag, A;) then this implies that state b is
believed. The player who believes it gets his REE allocation (4, 4) and the other player
gets the rest. So aA2A; means P2 has lied but P1 believes it is state b and gets (4, 4).
P2 gets the rest under state a, that is (4, 7); bA2 A; means that both believe that it is the
(actual) state b and each gets (4, 4); cA2 A1 means that P2 believes it is state b and gets
(4, 4) and P1 gains nothing from his lie as he gets (1, 4).

(iii) aag A1, bAs A1, cAscy imply that everybody tells the truth and the contract implements
the REE allocation under state a,b, and ¢ respectively. (bAyA; gives an identical result
in both (ii) and (iii)).

(iv) aAzcy implies that both lie but their declarations are not incompatible. Each gets his
REE under ¢ and there is free disposal.

(v) cazA; means that both lie and stay with their e;’s.

(vi) bag A1 implies that P2 misreports and P1 believes and gets his REE under a; P2 gets
the rest under b.

(vii) bAgc; means that P1 lies and P2 believes that it is state c. P2 gets his REE allocation
c and P1 the rest under b.
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We can see now that the PBE depend on the sequence of play, i.e. they vary with a change
in the player who moves first. First it is straightforward to show that one of them is the
same as in the previous case, i.e. we obtain ; = 10.93 and Uy = 12.69. We only show in
Figure 4 the optimal paths. The implied decisions along these paths coincide with those
in the previous case already considered.

A brief argument to justify this conclusion is as follows. From I} player P1 will always
play Ay, and P2 will always play Ao from I}. The only issue is what P2 will play from
the singleton. This will determine also what P1 does from I?. The optimal paths shown
above have P2 play A, from the singleton and P1 play A; from I?. Strategies and beliefs
form a PBE. Information set I} is not visited and therefore the probability, p, determining
the beliefs attached to its nodes by P1, is arbitrary.

However in this case of sequential decisions there exist other PBEs as well. A further PBE
is shown in detail in Figures 5, 6 and 7. When P1 is to act from I? he believes now that
he is at the right-hand-side node and chooses ¢;. For consistency P2 must have played
ag from the singleton and this is shown in Figure 6. Optimal decisions following choices
by nature, and the new PBE, including beliefs consistent with strategies, are shown on
Figure 7. The normalized expected utilities are i1 = 11.89 and Us = 11.65.

The equilibrium paths imply that REE is not implementable but comparing the normalized
expected utility of the PBE with those corresponding to the initial allocation we conclude
again that the proposed contract will be signed. On the other hand P1, because it is
advantageous to him, stops P2 from realizing his normalized REE utility. He ends up
with Uy = 11.65 rather than Uy = 12.69.

It is possible but more involved to show that there is one more PBE which contains



4.2 Simultaneous decisions 12

Nature

/ (
(2.65,3.16)  (293,340) (265, 2.65) (4.43,340) (2, 2.65

Figure 5

completely stochastic behavioral strategies. P1 plays Ay from I}; from I? he plays ¢; with
probability 0.233; from the first singleton he has an arbitrary choice; and from the second
singleton he plays c¢;. P2 plays from the singleton A with probability 0.402 and from I3

11
he plays As. Beliefs consistent with these behavioral strategies are (5, 5) for the nodes

of I, from left to right, (1, 0) for I1 and (0.287, 0.713) for I?. The normalized expected
utilities are U; = 11.25 and Us = 12.10.

The three PBEs just described are the only ones and there is a presumption that P2
might be able to force the one with U; = 10.93 and Us = 12.69 because he is playing
first. Finally mixing the behavioral strategies of the PBEs obtained above will not achieve
another potential equilibrium. This follows from the well known Kuhn’s theorem for games
with perfect recall which implies that there will be equivalent behavioral strategies, and
all these have been considered.

4.2 Simultaneous decisions

Next we consider the simultaneous decisions case. We look at it in terms of trees with
enlarged information sets of the players. We produce two different sets of three tree graphs,
each corresponding to one of the two cases as to who is placed first on the graph. Then
we shall construct normal form type games.

The rules for calculating payoffs are the same as in the corresponding earlier cases when
the player to act second hears the choice made by the player acting before him. The third
graph in each case, i.e. Figures 10 and 13 describe the unique PBE, identical to each
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other. From the analysis of the graphs we obtain that P1 plays A; from {a,b} and ¢; from
{c}. On the other hand P2 plays Ay from both {b,c} and a.

Consider the analysis of their decisions through Figure 8. P2 plays As from both I} and
I22 because it dominates as. Then Figure 9 shows that P1 plays A; from 1'11 and ¢ from
the singleton.

Next consider the analysis starting with Figure 11. P1 plays A; from I} and ¢; from I?.
The choice ¢; from I? is obvious. In order to justify the choice A; from I} we argue as
follows:

Ay will imply 4.53m1 + 4wy + 4.5373 + 4wy,

c1 will imply 2.6571 + 2.9379 + 2.6573 + 4.4374,

where 71, 79, 73, 74 are his beliefs attached to the nodes, from left to right, with 71 +mo =

l\D_I L CY TN

1
and 73 + 74 = —. Now the most favourable probabilities for choosing ¢; are po,pys =

However A; does better even under these conditions. As we move away from this vector
of probabilities A; does even better. Turning next to the optimal choices of P2, Figure 12
shows that he will always play As.

It follows that with respect to their optimal decisions, it does not matter whom we place
first in the tree form representation of the simultaneous game. In effect, in one case we
do backward induction and in the other case we cut through the tree from above. The
outcome is different from the one in the sequential Section 4.2 in which case the sequence
in which the players act matters.
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4.3 Normal form games interpretations

Next we cast the problem in Example 3.1 for the case with the simultaneous decisions in a
normal form type game. The purpose of this section is to provide with the opportunity to
compare the explicit, sequential decisions, game tree formulation with the static normal
form approach.

In general we get a much clearer picture from a game tree of how an equilibrium is reached,
and hence why a particular contract is accepted or rejected. This is especially so when
backward induction is possible.

This section shows that in a normal formulation, of which we offer two types, the con-
struction is really based on having the extensive form game in mind and the interpretation
is more complicated. These features are even more pronounced in the discussion in Sec-
tion 5.3 in which the model is partly based on the analysis of example 3.1, under the
assumption that P1 plays first.

In summary, a normal game does not allow us to capture fully the dynamics of a sequence
of decisions, while the extensive form approach does. In terms of outcome the normal
form here leads to the same outcome as in the case in the previous section when decisions
were simultaneous.

The interpretation of the decisions (strategies) is as follows. A;{a,b} means that P1 has
seen {a, b} and declares Ay; similarly a2{b, c} means that P2 has seen {b, ¢} and declares as,
etc. In all cases the sign X means that, given their information partition, it is impossible,
i.e. not compatible, for P1 to see {c} and for P2 to see {a}.
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Table 1: Observations, Strategies and Payoffs

P2: az{a} az{b, c} Ag{a} Aa{b, c}
P1:
Ar{a,b} (4.53, 4.85) (4.53, 3.33) (4, 5.29) (4, 4)
A{c} X (2, 2.65) X (2, 4)
c1{a, b} (2.65, 3.16)  (2.65, 2.65) (2.93, 3.4)  (4.43, 3.4)
cif{c} X (2, 2.65) X (2.93, 3.40)

Basically, each player is interested in what his opponent might declare. He is not interested,
as in any case it is not possible to confirm it precisely, in what his opponent has seen.
On the other hand he is interested in what he has seen, himself. In order to establish the
Nash equilibria of this game we argue as follows. The first and second columns of payoffs
are eliminated because they are dominated, from the point of view of P2, by the third
and fourth column respectively. Then in the reduced table the second row is eliminated
because it is overtaken, from the point of view of P1 by the fourth row.

Thus we are left with a reduced table with six entries:

Table 2: Remaining Observations , Strategies and Payoffs
‘ P2: As{a} As{b, c}

P1:
Ai{a,b} (4, 5.29) (4, 4)
c1{a, b} (2.93, 3.4)  (4.43, 3.4)
c1{c} X (2.93, 3.40)

However, this is not an ordinary normal form game. The table separates according to
what the players have seen. The first and second row correspond to P1 seeing {a, b} and
being unable to distinguish between them. Given the prior probability distribution on the

1
choices of nature, P1 attaches probability 3 to each of ¢ and b and this implies that the

second row is dominated by the first one. This means that we get the same answer as
from the graphs.

We are in effect crossing the product of the players’ strategies, S; = {Aj1,¢1} and Sy =
{ag, A2}, with their observations O = {{a,b},{c}} and O2 = {{a}, {b,c}}, and obtained
{S1 x 01} x {S2 x Oz}, where the observations of each player are taken with a probability
distribution on their elements. In this way the idea of PBE, which is defined in terms of
game trees, is approached.

Next we cast the problem with the simultaneous decisions in a normal form game of the
usual type. We do this employing Figure 10. For simplicity we have labeled the terminal
nodes from 1 to 12, left to right.

In describing the strategies of a player the first letter refers to his decision from the first
information set, from left to right, and the letter which follows to the one from his second
information set. Given a pair of strategies by the two players the game reaches three
terminal nodes and we calculate the normalized utility payoffs by adding the appropriate
payoff vectors.
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Table 3: Strategies and Payoffs

P2: asan a2A2 AQGQ A2A2

P1:

A A (11.06, 10.83)  (10.53, 12.85)  (10.53, 9.14) (10.53, 13.29)
(Nodes) (14+5+9) (1+6410) (24+5+9) (246+10)

Ay (11.06, 10.83) (11.46, 12.25) (10.53, 11.27) (10.93,12.69) (N)
(Nodes) (14+5+11) (1+6+12) (24+5+11) (24+6+12)

14, (7.3, 8.46) (9.08, 10.56) (7.58, 8.7) (9.36, 10.8)
(Nodes) (3+7+9) (3+8+10) (4+7+9) (4+8+10)

crel (7.3, 8.46)  (10.01, 9.96)  (7.58, 8.7) (10.29, 10.2)
(Nodes) (34+7+11) (34+8+12) (447+11) (4+8+12)

We are now looking for a Nash equilibrium and it is possible to argue in terms of domi-
nant strategies. From the point of view of P1, the row Aic; dominates all other available
strategies. Then P2 will play As A, and we have obtained a Nash equilibrium, indicated
also on the table. We could have also argued that A; Ao dominates all other strategies of
P2.

Notice that the same table of payoffs can also be obtained by combining the strategies of
the players as they appear in Figure 8. Obviously, although the payoffs in the entries of
the table would be identical, the numbering of the terminal nodes from which they are
obtained would be different.

The Nash equilibrium, or PBE, obtained in the simultaneous decisions case coincides with
the one obtained in Figures 1 to 3. It is only in the case of Figures 4 to 7 that more
equilibria appear. On the other hand this implies that this type of sequential decision,
in which P2 plays first and his declaration is heard, offers more information than the
simultaneous decisions problem.

5 REE and weak fine cores

In this section we look at the relation between REE and weak core concepts. The IWFC
is conditional on some information already obtained and shared by coalitions of agents.
We show that only for state independent utilities, no coalition of agents can block a fully
revealing REE and therefore in this case the REE is interim “fully” Pareto optimal. We
also show that in general a REE does not belong to the WFC. If it so happens that REE
does belong to this set then a slight modification of the utility functions imply that the
two sets do not overlap anymore.

5.1 REE and IWFC
Definition 5.1.1. An allocation z = (z1,...,2,) € Lx is said to be a IWFC allocation if

(i) each z;(-) is F;-measurable;”

"Recall that for S C I, Fs denotes the “join” of coalition S, i.e. Vies Fi-
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(i) Yo zi(w) =1, ei(w) for all w € Q;

(iii) there do not exist state of nature w* € Q, coalition S and allocation (y;)ies € [] Lx,
1€S
such that y;(-) — e;(-) is Fs-measurable for all 7 € S, Y yi(w) = > e;i(w), for all w

i€s i€s
and v;(y;|Fs)(w*) > vi(z;|Fs)(w*) for all i € S.

The definition, (see Yannelis (1991)), implies that no coalitions of agents can pool their
own information and make each of its members better off.

Proposition 5.1.1. For state independent utility functions, a fully revealing REE allo-
cation belongs to the IWFC.

Proof. Let (z,p) be a fully revealing REE, so that the state of nature that has occurred is
known to everybody and x be feasible and measurable with respect to F;. Suppose now
that x is not an element of IWFC. Then there exists w* € 2, a coalition S and feasible

(yi)es € I Lx, which is Fg-measurable V i € S, such that 3 y;(w) = 3 ej(w) Vw € Q
i€s i€S i€S
and

vi(yilFs) (") > vi(zi|Gi) (w"). (6)

On the right-hand-side of (6) we have that G; = F which in this case is generated by
singletons.

We consider the two terms in relation to the Definition 5.1.1. The right-hand-side is
vi(2|Gi)(w*) = ui(z;(w*)), i.e. one single term with probability one. This follows from
the fact that « is fully revealing and therefore Ezg Hw*) = {w*}.

On the other hand the left-hand-side is
vi(w*, yi(w")) = > ui(yi(w))ai (| BT (w¥)), (7)
wl

where in (7)
0 oW ¢ Eifs (w*)
q; ((_d’|E]:5 (w*)) — Qi(w,) ) , {FS .
Z wlesen) L ERTED

and Efs (w*) is a subset of Fg on which y; is constant.

This allows us to take the utility term out of the sum® and deduce that wu;(y;(w*)) >
u;(2;(w*)). This implies that when x; was chosen y; was too expensive and therefore
p(wH)yi(w*) > p(w*)z;(w*) = p(w*)ej(w*) Vi € S. Then summing up with respect to
t € S we obtain

(@) Y piw) = 3 plyw?) > 3 piwew) = p) Ve ()

€S €S €S €8

8Notice that if u;(w’, z;(w')) depended separately on w' then, in general, it would not have been possible
to take u; (w', yi(w')) out of the sum. On the other hand measurability of u; with respect to its first argument
would rescue the proof.
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Relation (8) is a contradiction to Y yj(w) = Y e;(w) because in order to obtain the

1ES 1€S
inequality p(w*) 3 yi(w*) > p(w*) > e;(w*) at least one element of the vector Y y;(w)
€S i€s €S
must be larger than the corresponding element of ) e;(w).
1€S

Remark 5.1.1. With state independent utilities, Proposition 5.1.1 can be proven even if
is a partially revealing or non-revealing, REE. It does not matter whether the information
of the coalition is finer or not than the one of the REE. Also with state dependent utilities
the proposition can be proven for general REE and an appropriately defined WFC concept
if coalitions are only allowed to form which have the same information as REE. Then there
is no need to take the utility expressions out of the relation v;(y;|Fs)(w*) > v;i(z;|G;)(w*)
An interpretation of what the proposition implies is that, under certain conditions, allow-
ing all possible coalitions to share their information will not block the REE allocations.

Kwasnica (1998) has discussed a related result for a different core concept which is not
interim fully Pareto optimal.

The conditions under which Proposition 5.1.1 holds are limited. We now construct ex-
amples to show that it does not necessary hold when we have state dependent utilities.
The introduction of Agent 3 is done so that the REE satisfy (i) in the definition of the
IWFC. Alternatively, without introducing a third agent we can argue that given a REE
there exists an IWFC allocation which improves the conditional utility of an agent given
some particular state.

Example 5.1.1 There are only two, equally probable, states of nature, (one can add more
states to make the model richer but this is not important), and two goods. Players 1 and 2
cannot distinguish between states a and b. On the other hand their utility functions differ
per state. Player 3 can distinguish between all states of nature, has no initial endowments
and has some utility function. His role is to ensure that the vector x described below
satisfy condition (i) of IWFC. We turn our attention to the other players.

We are assuming the following. In state a: w; = min{ezx11,212}, where ¢ > 1, and
e1 = (2,0);ug = min{ze,z92}, and es = (0,2). In state b: w; = min{zy1,x12}, and
e1 = (2,0) ug = (r21222)°, where ¢ > 0 will be determined later, and ey = (0, 2).

We construct two Edgeworth boxes and find the fully revealing REE, and hence our vector
z, to be as follows. In state a: p1 = 0,p2 = 1; Agent 1 gets zero quantities and Agent 2
gets everything; u; = 0 and us = 2. In state b: p; = 1,p2 = 1; every agent gets 1 unit if
each good; u; = 1 and us = 1. In both states, Players 3 receives no quantities.

We will now show that this REE is not in the IWFC. Since, when the two players share
their information, they still cannot distinguish between the two states we still require
measurability of the feasible allocation to satisfy condition (iii) of IWFC.

The proposed allocation is that Agent 1 gets y;(a) = y1(b) = (0.75,0.75) and Agent 2 gets
ya(a) = y2(b) = (1.25,1.25). The utility levels are as follows. In state a: uy = 0.75, and
uy = 1.25 and in state b: u! = 0.75, u? = (1.25 x 1.25)°.

We choose state a for the condition (iii) of IWFC. For agent 1 we have that v;(y1)(a) is
larger than his REE utility which is zero. Also, for suffiently large ¢, we have for agent 2

1 1
that va(y2)(a) :<§> 1.25+<§> (1.25 x 1.25)° > uy = 2 (REE utility under a).
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As for the alternative approach, without introducing a third agent we can argue that,
given a REE, there exists an IWFC allocation which does better for some agent. First we
use the above y; allocation to show that it does better under a. Then we can argue that
there exists an IWFC allocation which for some agent does even better in terms of utility
conditioned on state a.

Example 5.1.2 There are two, equally probable states £ = {a,b} and three players
I =1,2,3. Player 3 can detect all states, but he has no initial endowments; his only role
is to ensure that the z; calculated below satisfy condition (i) of IWFC. Players 1 and 2
cannot distinguish between the states.

. . 9 9 4 4
We are assuming that in state a: u; = x%lxu, Uy = m%@%Q el :( >, e :< >,

13713 13713
9 9 4 4
and in state b: w1 = z7°%12, U2 = T21T22, €1 (13, 13>, €2 <133 13>-

The REE is given by p(a) = (8,5), zi(a) = (0.75,0.6), =z2(a) = (0.25,0.4), and
p(b) = (5,8), z1(b) = (0.6,0.75), z2(b) = (0.4,0.25).

In the IWFC definition choose w* = a, S = {1,2}, yi(a) = y1(b) = (0.6,0.8), and
y2(a) = y2(b) = (0.4,0.2).

Then v (y1)(a) = 0.454, uy(a,z1(a)) = 0.337, va(y2)(a) = 0.043, uz(a,z2(a)) = 0.01.

5.2 REE and WFC

Next we define the WFC (Yannelis (1991) and Koutsougeras - Yannelis (1993)). This is
a refinement of the fine core concept of Wilson (1978). The fine core notion of Wilson
as well as that in Koutsougeras and Yannelis may be empty in well behaved economies.
However, WFC allocations always exist, provided the utility functions are concave and
continuous.

Definition 5.2.1. An allocation = (z1,...,2,) € Lx is said to be a WFC allocation if

(i) each z;(w) is Fr-measurable;
(i) Yo zi(w) = >0 ei(w), for all w €

(iii) there do not exist coalition S and allocation (y;)ics € [[ Lx, such that y;(-) — e;(+)
€S
is Fs-measurable for all i € S, Y y; = > e; and v;(y;) > vi(z;) for all i € S.
1€S 1€S
As comparisons are made on the basis of expected utility, the weak fine core is also an
ex ante concept. It captures the idea of an allocation which is ex ante “full information”
Pareto optimal. It can easily be shown that the WFC and the IWFC are different concepts.
The purpose of this section is to see whether or not REE is in the WFC. The examples
below show that the REE need not be in the WFC. This is not surprising because the
REE is an interim concept while the WFC is an ex ante one. Thus, one should not expect
interim contracts to be ex ante fully Pareto efficient, as the examples below demonstrate.

Example 5.2.1 Consider the following two agents economy, I = {1, 2} with one commod-
ity, i.e. X; = R for each i, and three states of nature Q = {a, b, c}.

The endowments and information partitions of the agents are given by
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€1 = (57570)7 Fi= {{avb}v{c}};
es = (5,0,5), Fo = {{a,c},{b}}.

M

The utility functions of the two agents are state independent, given by wu;(x;) = z? and

every player has the same prior distribution u({w}) = %, for w € Q.

i

As explained in Observation 3.1, the REE coincides with the initial endowments. On the
other hand, for the WFC the agents pool their information and therefore any feasible
consumption vector to either agent will be measurable.

There are uncountably many WFC allocations, as for example
5 25 25
5 25 25/
2

This allocation is \/ F;-measurable and cannot be dominated by any coalition of agents
i=1
using their pooled information. Furthermore it is Pareto superior to REE allocation.

Next we turn our attention to a more general model.

Example 5.2.2 For simplicity, we treat originally a case with two players, two goods and
two states. We also assume, in the beginning, that the players are, in all states, endowed
with strictly positive endowments of both goods and that for both players all states are
equally probable. We assume that all states, 7 € €2, are distinguishable by the two players
when they pool their information.

The normalized expected utility functions of the two players are Uy = Z(x]ll)o‘(m{ )8

j
and Uy = 3 (23,)*(2},)?. Namely we assume that they have identical, state independent

J
utility functions. These assumptions can be relaxed. In summary, the result of the analysis
is that in general the REE does not belong to the WFC.

The WFC allocations are characterized through the following problem:

Maximize 3 (z],)%(2,)?
J
Subject to ‘ ‘ ‘ ‘
(ST — 211)*(SE — #1,)? = Uy (fixed),

J
0<x], <8, 0<z],<S) vy,
where Szj denotes the total quantity of Good iin state j. Note that 0 < Uy < Z(S{)O‘(S%)ﬁ
J
Because of the feasibility constraints on quantities, the Lagrange theory cannot be applied
in general in order to obtain the solution. However we can comment on the relation
between REE and WFC allocations by arguing through another route.

We apply a Gorman-type separation argument (see Gorman (1955)). We consider the
contract curve per state. First we consider the following problem.
Maximize (z1,)%(x7,)?
Subject to ‘ .
(87 = 21)*(S2 — #1,)% = uy (fixed),

0<x], <8, 0<a], <S5
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The solution implies S%i{l = S{m{é, which is the diagonal of the Edgeworth box. All
WEFC allocations are on contract curve in each state, for otherwise we can move to a
Pareto superior point on the contract curve. It is also true that a REE, fully revealing
or not, will be on the diagonal with every agent receiving positive quantities from both
goods. This follows from the fact that otherwise, in at least one state, the markets will
not clear.

The actual solution is

i B
i ST\ ats i i B g
o= (3) 7 [ishb s)e - whes).
2

i Sj O‘QTB oo s B L
dy = (2)™ (5D () - ).
Si
We write (S7)a+8(S3)a+? = T7 and (ul)e+F = W, and substitute into the objective
function to get [T7 — W3)(®+F) which is to be maximized subject to the constraints
J

Zu% = Usy. and ul > 0 which are equivalent to Z(Wj)(o“rﬁ) = Uy. and W7 > 0 and

J J
considering the solution for the z's we also have 0 < W7 < T7. So in summary we are

solving:
Maximize > [T7 — W77
j

Subject to
S (W)Y =Usy (fixed), and

j
0<WI<TY.
where v = a + .

We now look at the form of the functions. Consider > (W7)? =1 for any v > 0.

J
For v =1 this is a hyperplane. In the positive orthant, v > 1 causes the surface to bulge
away from the hyperplane so as to enclose a convex set including the origin (y = 2 is the

exemplary case, which is a hypersphere). Conversely for v < 1 produces a surface which
1

bulges in towards the origin. S1(W7)Y = U, is similar in shape but scaled by a factor U, .

j
Finally the shape of > [T/ — W7]?" = K (fixed) can be derived from the above. The origin
J

has been shifted to the point with coordinates (T7) after the surface has been reflected
along each coordinate axis.

Now we look at the solution of the overall Gorman problem. We distinguish between:

(i) v > 1; the constraint is concave, in the nonnegative area, with perpendicular inter-
sections with the axes. The indifference curves of the objective function are convex, with
nonnegative coordinates, (see Figure 14), and increase in value as we move in the direction
of the origin. It follows that the maximum will be at one or both of the corner points.
This means that the REE is not in the WFC.

(ii) v < 1; in this case the constraint is convex and the indifference curves are concave, (see
Figure 14), and increase in value as we move in the direction of the origin. The solution
is away from the corner points at a point of tangency. Even under symmetric conditions
there is no reason why the REE should be in the WFC.

(iii) v = 1; inspection of the objective function and the constraint shows that the WFC
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W2

ua% Wl : Wl
(@ . (b)
W2
W2 W2
,2% 1
< (1,17)
K
U Wt \ Wl
(c) (d)
<1
Figure 14

coincides with the linear constraint. It follows that the REE allocation is in the WFC and
this is the case in Example 3.1. However, attaching a weight to the utility of player 1 in
one state implies a corner solution and therefore the REE is not in the WFC.

5.3 A decomposable model; non-revealing REE and WFC

The idea is to construct a model such that we have a non-revealing REE which does not
belong to the WFC. At the same time we want to show how a model decomposes into two
independent ones. The model we are considering uses in part Example 3.1. We also use
this model for further comparisons between the dynamic, extensive form formulation of a
game and the static, normal form approach.

Example 5.3.1 We assume that there two agents, I = {1,2}, two commodities, i.e.
X; = ]R?Ir for each i € I, and five states of nature Q = {a,b, ¢, d, e}.

We further assume that the endowments, per state a, b, c,d and e respectively, and infor-
mation partitions of the agents are given by

€1 = ((77 1)7 (77 1)7 (47 1)7 (47 0)7 (470))7 Fi= {{av b}v {C}v {dv 6}};
€2 = ((lv 10), (la 7)a (la 7) (Oa 4)? (Ov 4))a Fo= {{a}v {bv C}{d}, {6}}

We shall denote 41 = {a,b}, c1 = {c¢}, D1 = {d,e}, a2 = {a}, Ay = {b,c}, do =
1

{d}, es = {e}. It is also assumed that u;(w,zi1,T2) = z7z2 and that every player
expects that all states are equi-probable.

-
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The REE for states a, b and ¢ are described in Example 3.1 and for states d and e the
prices are equal and the allocations are (2,2), per agent, per state. Since no information
is provided to Player 1 concerning states d and e the REE is non-revealing.

Now the REE will belong to the WFC because it does so separately in the two examples
which have been put together. However attaching a higher weight to the utility function
of Player 1 in one of the periods will imply that the REE will not lie in the WFC.

We now wish to see how the overall model decomposes into two separate ones. We assume
that P1 plays first. We specify the rules for calculating payoffs, i.e. the terms of the
contract. Payoffs are in utility terms:

(i) If the declarations of the two players are incompatible, that is one of

(A1,d2), (A1,e2), (c1,a2), (c1,d2), (c1,e2), (D1,a2), (D1, Asz),

then this implies that no trade takes place.

(ii) If the state is a,b, or ¢ and the declarations of the two players are (A1, A2) then this
implies that state b is really declared. The player who believes it (because he has no
reason to disbelieve it) gets his REE allocation (4, 4) and the other player gets the rest.
So aAj Ay means P2 has lied but P1 believes it is state b and gets (4, 4). P2 gets the rest
under state a that is (4, 7); bA; A2 means that both believe that it is the (actual) state b
and each gets (4, 4); cA1As means that P2 believes it is state b and gets (4, 4) and P1
gains nothing from his lie as he gets (1, 4). If the state is d or e and the declarations of the
two players are (D1,es) or (D1,ds), respectively, then the state in the overlap is believed
and the two players get their REE allocation under this state and end up with allocation
(2, 2) each, which implies u; = 2.

(iii) aAyag, bA1As, cciAs, dD1dy, eDyes, imply that everybody tells the truth and the
contract implements the REE allocation under state a, b, ¢, d and e respectively. (bA; A
in (ii) and (iii) give of course an identical result).

(IV) aClAg, ,aDldg, aDleg, bDldQ, bD162, CDldQ, CD162,

imply that both lie but their declarations are not incompatible. Each gets his REE under
the overlapping state of the difference between the total endowments under the true state
and the allocation which the agents receive.

(V) CAI(IZ, dAlag, dAlAQ, dClAg, 6A1a2, 6A1A2, 661A2

means that both lie and stay with their initial endowments as they cannot get the REE
allocations under the state in the overlap of their declarations.

(vi) bAjas implies that P2 misreports and P1 believes and gets his REE under a; P2 gets

91 43
the rest under b, that is <— ) Then us = 3.33 < 4 and u; = 4.53 > 4 and the lie of

22’ 16
P2 really benefits P1.

(vii) bep Ag means that P1 lies and P2 believes that it is state c. P2 gets his REE allocation
85 37

under ¢ and P1 gets the rest under b, that is the allocation (1_6’ E) . Thenu; =4.43 > 4
and ug = 3.4 < 4 and P1 benefits from lying.

We are looking for a PBE and we analyse Figure 15 by considering first optimal decisions
of P2. From information sets corresponding to states a, b, ¢, player P2 will never play do
or eo, since these are dominated by strategy As. In states d or e, P2 never gains anything
by lying and optimal decisions are to play truthfully, do or e;. Figure 16 contains only

these optimal decisions of P2.

We now consider optimal decisions of P1 on the base of Figure 16. In states a, b, ¢, player
P1 does not need to play D; since this is weakly dominated by c;, and in states d or e he
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Figure 17

will always play D;. Hence we obtain Figure 17, in which heavy lines show plays of the
game corresponding to choices by nature and optimal behavior strategies of the players.
Their beliefs are also indicated and the conditions for a PBE are satisfied.

Figure 17 and the conclusions reached shows that the game splits into two independent
games. One concerns a, b and ¢, already analysed in Example 3.1, and the other states
d and e. We have the REE for both models and so we have the REE for the combined
model which will not be fully revealing because the common prices for state d and e will
not allow P1 to deduce the state of nature.

Note that instead of analyzing the example through a game tree which is slightly larger
than usual, we can tabulate the payoffs for strategy pairs in each state, as it is shown
below in Tables 4 to 7. However, these tables have to be interpreted with care as they are
not independent. This follows from the fact that there exist information sets with more
than one node.

We read the tables assuming P2 plays second having heard the declaration of P1. The
first observation is that in cases a, b, ¢ player P2 will never play dy or es, since these are
dominated by strategy As. This does not contradict the fact that P2 cannot distinguish
between states b and c. This means that the last two columns in Tables 4, 5 and 6 are
eliminated from consideration by P1 who, by taking into account this optimal response by
P2, can discard strategy Dy without any loss. In effect P1 chooses as optimal strategies
A; from the equi-probable, to him, states ¢ and b and ¢; from state c.

In states d and e, player P2 can play either ds or ey, and therefore it is also optimal to
play truthfully. Hence in Table 7 there is only one column for P1 to consider and he plays
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D;. Tt does not matter that he cannot distinguish between d and e.

Hence the game has been fully analyzed through the tables. In effect it is seen that it
splits into two independent games. This enables us to conclude that a non-revealing REE

may not be implementable as a PBE of an extensive form game.
The tables are given below:
Table 4: Strategies and Payoffs; State of Nature a

P2: as As do €2
P1:
Aq (4.53, 4.85) (4.5, 5.29) (2.65, 3.16) (2.65, 3.16)
c1 (2.65, 3.16) (2.93, 3.40) (2.65, 3.16) (2.65, 3.16)
Dy (2.65, 3.16) (2.65, 3.16) (2, 2) (2, 2)

Table 5: Strategies and Payoffs; State of Nature b

P2: a9 A2 d2 €9
P1:
Ay (4.53, 3.33) (4, 4) (2.65, 2.65)  (2.65, 2.65)
c1 (2.65, 2.65)  (4.43, 3.40) (2.65, 2.65) (2.65, 2.65)
Dy (2.65, 2.65)  (2.65, 2.65) (2, 2) (2, 2)

Table 6: Strategies and Payoffs; State of Nature ¢

P2: as As do €2
P1:
Aq (2, 2.65) (2, 4) (2, 2.65) (2, 2.65)
c1 (2, 2.65) (2.93, 3.40) (2, 2.65) (2, 2.65)
D (2, 2.65) (2, 2.65) (2, 2) (2, 2)

Table 7: Strategies and Payoffs; State of Nature d or e

P2: as Ay do €2
P1:
Ay (0, 0) (0, 0) (0, 0) (0, 0)
c1 (0, 0) (0, 0) (0, 0) (0, 0)

D, (0, 0) (0, 0) (2, 2) (2, 2)
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6 REE versus the private core

We comment in this, and the following two subsections, on the relation between the REE
and the private core. First we define the notion of the private core (Yannelis (1991)).

Definition 6.1. An allocation xz € Lx is said to be a private core allocation if

(i) iy @i = 207, e and

(ii) there do not exist coalition S and allocation (y;)ics € [[ Lx, such that Y v = > e;
€S 1€S 1€S

and v;(y;) > v;i(z;) for all i € S.

The private core is an ex ante concept and under mild conditions it is not empty.

It has been shown in Yannelis (1991) and in Glycopantis - Muir - Yannelis (2001) that
the private core exists under the standard concavity and continuity assumptions on the

utility functions. Moreover, the private core is always TCBIC as shown in Koutsougeras
- Yannelis (1993) and Hahn - Yannelis (2001).

We make our first point by using Example 3.1 above. We have seen that the normalized
expected utilities corresponding to the REE allocations are U; = 11.46 and Uy = 12.25.
On the other hand the following allocation z; = ((5.5,5.5), (5.5,5.5), (2.5,5.5)) and
xo = ((2.5,5.5), (2.5,2.5), (2.5,2.5)) is in the private core yielding normalized expected
utilities U; = 14.70 and Uy = 8.10. This example shows that one agent’s utility function is
improved by going from REE to this private core allocation. Therefore there is no reason
why this agent should agree to the REE distributive scheme. Most importantly the REE
allocation is not, in general, incentive compatible, (contrary to the private core which is),
and therefore the contracts may not viable.

Further, it should noted that Glycopantis - Muir - Yannelis (2001, 2003) show that the
private core can be implemented as a PBE, and as a sequential equilibrium of an extensive
form game, contrary to the REE. Therefore it appears the private core is more acceptable
than the REE. Below we show that the private core exists in situations in which the REE
does not. To this end we present the Kreps (1977) example.

6.1 The Kreps example

Kreps (1977), in a general example of a differential information economy, showed the non-
existence of a REE, revealing or not. Here we present a specific example which satisfies
all his assumptions. On the other hand the private core exists which, again suggests that
the latter concept has an advantage over that of REE.

Example 6.1.1 There are two agents I = {1,2}, two commodities, i.e. X; = ]R?F for
each agent, i, and two states of nature 2 = {wq, w2}, considered by the agents as equally
probable. In z;; the first index will refer to Agent i and the second to Good j. If it is
necessary we shall also write z;;(w1) and z;;(ws).

We assume that the endowments, per state w; = 1 and we = 2 respectively, and informa-
tion partitions of the agents are given by

el = ((1.5, 1.5), (1.5, 1.5), .Fl = {{wl}, {wg}};
€9 = ((15, ]_5), (15, ]_5), .7:2 = {{wl,wg}}.
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The utility functions, of Agents 1 and 2 respectively, are for wy given by u1 = log £11 + %12
and uo = 2 log T91 + x9o and for state wo by u1 = 2 log x11 + 12 and us = log x21 + x20.

We consider first the possibility of REE.
Case 1. Fully revealing REE.

Suppose that there exist, after normalization, prices (p1(1),p2(1)) # (p1(2),p2(2)), where
pi(7) denotes the price of good 7 in state j. In this case every agent would know the state
of nature. We now check whether this is possible. The problems of two agents would be
as follows.

State w;:
Agent 1:
Maximize w1 = log 11 + z12
Subject to
p1(1)z11 + p2(l)z12 = 1.5(p1(1) + p2(1))
and
Agent 2:
Maximize ug = 2 log 221 + 222
Subject to
p1(1)$21 +p2(1)l‘22 = 1.5(p1(1) +p2(1)).
The agents solve analogous problems in state wo. However it is not possible to find, after
normalization, (p1(1),p2(1)) # (p1(2),p2(2)). The reason is that in the two problems the
demands of the agents are interchanged so that the total demand stays the same while

the total supply is fixed. It is also straightforward to check that there is no multiplicity
of equilibria per state.

Case 2. Non-revealing REE.

Now we consider the possibility of having prices p1(1) = p1(2) = p1 and p2(1) = p2(2) = po.
The two agents would act as follows.

Agent 1:

He can tell the states of nattir% and obtains the demand functions 15

for wy, T11 = P2 oand Tig = — P1 + 0.5 and for w9, 11 = P2 ond T = — PL 0.5 for
4! b2 4! P2

3p1 > po.

It is clear that the demands differ per state of nature.

Agent 2:

He sets o1 (wl) = X921 (LUQ) = X921 and 29 (wl) = 1722((412) = I92 and solves the problem

Maximize uy = %(2 log T21 + T92) + %( log xo91 + x92) = 1.5 log w91 + 29
Subject to
p1721 + p2r22 = 1.5(p1 + p2).
So the highest indifference curve touches the budget constraint only once. On the other
hand the demands of Agent 1 differ per w. It follows that the markets cannot be cleared

with common prices in both states of nature. It follows that there is no REE, revealing
or non-revealing, in this model.

Next we consider the existence of private core allocations. These are obtained as solutions
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of the problem:

Maximize Eo = 1.5 log 91 + x29
Subject to

%( log z11(w1) + z12(w1)) + %( log z11(w2) + z12(w2)) > E) (fixed),
$1j(&11),$1j(&12) Z 0, El, E2 Z 1.5 log 1.5+ 1.5

To1 + x11(wr) <3, w91 + 211 (we) <3,

Tog + z12(wr) <3, o2 + Ti2(we) < 3.

This problem always has a solution because of the continuity of the objective function
and the compactness of the feasible set. If we set the quantity constraints equal to 3 and
1.5log 1.5 + 1.5 = E; then the initial allocation is in the private core.

Also this analysis indicates that the REE may not be an appropriate concept to capture
trades under asymmetric information. The agents here receive no instructions as to what
they should be doing.

6.2 REE and informational asymmetries

We consider the following three agents economy.

Example 6.2.1 We assume that there are two agents I = {1,2}, one commodity, i.e.
X; =Ry for each i € I, and three states of nature Q = {a, b, c}, considered be the agents
as equally probable.

We further assume that the endowments, per state a, b, and ¢ respectively, and information
partitions of the agents are given by

e1 =((8),(8),(0),  Fi={{a,b},{c}};
€2 = ((8)7 (0)7 (8))7 Fa = {{a}v {bv C}};
€3 = ((0)7 (0)7 (0))7 F3 = {{a}v {b}v {C}}

1
The utility functions of the agents are u;(w, z;) = z7.

A private core allocation in this economy is given by the feasible and F;-measurable
allocation z; = <%, %, ?), To = (3—52, 1—58, %) and z3 = (1—56, 0, 0). For all three
agents, this allocation gives higher expected utility than the initial endowment.
Although Agent 3 has zero initial endowment in each state, she brings about a Pareto
improvement to the whole economy and she is rewarded for this. In effect by revealing her
superior information she makes trade possible between the other two agents in states b and
¢ and she receives a positive quantity under state a. Of course the outcome depends on
the third agent having more information than the other traders. If the private information
set of Agent 3 were to change to the trivial one F3 = {a,b,c} then she would get zero
quantities in each state.

On the other hand the REE cannot capture this phenomenon. It will give zero quantities to
an agent who has zero initial allocation in all states, irrespective of his private information,
i.e. whether it is the full information partition or the trivial one.
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7 Concluding remarks

In this paper we showed that under certain conditions the REE is in the IWFC and
therefore it is interim fully Pareto optimal. This result depends crucially on the fact that
each agent’s utility function is state-independent. In addition we showed that the REE
need not be in the WFC and therefore the REE may not be ex ante “fully” Pareto optimal.

Furthermore, it was shown that the REE can result in allocations (contracts) that are not
incentive compatible and cannot be supported or implemented as a PBE or a sequential
equilibrium. The latter is quite striking because it means that the REE does not fulfil a
widely accepted Bayesian rationality criterion. This casts doubts on the sustainability of
the REE as an appropriate solution concept which can be used to examine contracts in a
differential information economy.

In order to present alternatives to the REE we looked at the example used to show that the
REE is not incentive compatible and cannot be supported as a PBE. In the same example
a private core allocations exists, it is coalitionally Bayesian incentive compatible, (thus
the contract is stable), and can also be supported as a PBE. Moreover we reconsidered the
well known example of Kreps (1978) of a non-existant REE and showed that the private
core exists.

Finally, we looked at examples where the private core provides to agents superior outcomes
in terms of expected utility than the REE. Another advantage of the private core is that it
is sensitive to the private information of the agents, i.e. a change in the private information
of an agent changes the equilibrium outcome.
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Appendix I: On Nash equilibria and PBEs

In this Appendix we are concerned with the relation between Nash equilibria and PBE’s
in the model of the Example 3.1. The purpose of this analysis is to compare the PBE with
the Nash equilibria. A PBE is one of the Nash equilibria, satisfying further conditions.
It is now possible that a pair of players might choose to play simply a Nash equilibrium.
This could be explained on the basis of a bounded rationality argument, i.e. that the
calculation of a PBE is much more involved.

An efficient way of identifying all the Nash equilibria is by the use of the players’ reaction
functions. We shall cast the analysis in terms of reaction functions for the first case, shown
in Figures 1 to 3, and also for the second and more difficult one of Figures 4 to 7.

P1 plays first.

P1 plays from I}, his pure strategies, from left to right, with probabilities 1 — z and =
respectively and from the singleton with 1 — y and y. P2 plays his pure strategies as
follows. From the singleton at the end of a Ay he plays with probabilities 1 — z and z, and
from the one at the end of ac; with probabilities 1 — w and w. From the information set
I} he plays with probabilities 1 — k and k and from I2 with probabilities 1 — ¢ and /.

The normalized expected utilities from which the reaction functions will be

obtained can be seen, through routine calculations, to be

Ey =453(1 —z)(1 —2) +4(1 — z)2 4+ 2.652(1 — w) + 2.93zw + 4.53(1 — z)(1 — k) + 4(1 —
)k +2.652(1 —0) +4.43z0 +2(1 —y)(1 — k) +2(1 —y)k +2y(1 — £) + 2.93y¢ and

Ey = 4.85(1 —z)(1 — 2) + 5.29(1 — z)z + 3.162(1 — w) + 3.40zw + 3.33(1 — z)(1 — k) +
41 — z)k +2.65z(1 — £) + 3.40x¢ 4+ 2.65(1 — y)(1 — k) + 4(1 — y)k + 2.65y(1 — £) + 3.40y.

We need to consider the structure of the reaction functions. In F; we need only consider
terms which depend on z,y and in Fs only those which depend on z,w, k, £.

In E; the coefficient of x is 0.53z + 0.28w + 0.53k 4+ 1.78¢ — 3.76 < 0 which implies z = 0.
On the other hand the coefficient of g is 0.93¢, which implies y = 1 if £ > 0 and y =arb
(arbitrary) if £ = 0.

Next we substitute 2 = 0 into Fy and obtain the reaction of P2 in this case.

The coefficient of z is 0.44 so z = 1. The coefficient of w is zero and therefore w is
arbitrary; of k is 0.67 + 1.35(1 — y) so k = 1; of £is 0.75y so £ = 1 if y > 0 and £ =arb if
y =0.

The relations connecting y, ¢ admit two solutions which correspond to Nash equilibria.
Case 1: y=0,=0

Case 2: y=1,/=1

Turning to PBE conditions we see immediately that the arbitrariness of w is untenable.
That is w = 1 if the strategy of P2 is to be optimal from the corresponding singleton.
For Case 1 the beliefs in I} are % for each node and are arbitrary in I2. In effect any
beliefs in I} are compatible with P2’s strategy from there, because P2 is always going to
play to the right from all his information sets, but the beliefs (%, %) are obtained from
P1’s strategy. However £ = 0 is not optimal from I3 and therefore Case 1 is not a PBE.
This leaves Case 2 with (z,y, z,w,k,¢) = (0,1,1,1,1,1) as the only PBE.
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P2 plays first.

We now use the following notation. P2 plays from the singleton, his pure strategies, left
and right, with probabilities 1 — x5 and x5 respectively and from I with 1 — y, and ys.
P1 plays his pure strategies as follows. From I! he plays with probabilities 1 — z; and
21, from I? with probabilities 1 — w; and wy, from the singleton at the end of cas with
probabilities 1 — k1 and &k and from the one at the end of cAs with probabilities 1 — ¢4
and 4.

Routine calculations imply now
Ey = —1.88(2—x2—1y2)214+(0.43y2—1.0722 ) w1 +0.93y2 41 +terms independent of 21, wq, ki, £1.

Ey = (0.4441.6921 — 1.89w1 )x2 + (2.0240.6821 —0.60w; — 0.60¢1)y2 + terms independent
of 2, ys.

Of course k; is arbitrary throughout because it is not present in E;. Immediately from
E5 we get yo = 1 and inserting this into £; we obtain ¢; = 1.

The reaction function for P1 then depends only on zo. We have

Case 1 If 9 < 0.402 then z1 =0, wy; =1

Case 2 If 9 = 0.402 then z; = 0, wy =arb

Case 3 1f0.402 < 29 < 1 then 2y = w; =0

Case 4 If 9 = 1 then z; =arb, w; = 0.

Substituting each of the above in turn into Fo we obtain that

Case 1 implies 9 = 0 < 0.402 which gives (z1, w1, 41, z2,y2) = (0,1,1,0,1)

Case 2 implies o3 = 0 or 1 which gives a contradiction unless w; = 0.233 which implies
(z1,w1, 41, x2,92) = (0,0.233,1,0.402, 1)

Case 3 implies o2 = 1 which gives a contradiction. It drops out, exactly in the same way
as when P1 plays first.

Case 4 implies z9 = 1 which gives (z1, w1, 1, z2,y2) =(arb,0,1,1,1).

The above Cases 1, 2 and 4 describe the Nash equilibria.

Next we consider the PBEs. Case 1 above is already a PBE since all non-singular infor-
mation sets are visited with non-zero probabilities, so no beliefs are arbitrary. For I} we

1
always have 5), for I we have (1, 0) and for I? the beliefs are (0, 1). Starting from

57
these with the given beliefs the strategies are optimal.

11
In Case 4 the beliefs are (5, 5) for I}, for I} they are arbitrary (1-p, p) and for I?

11
we have <§, 5) Starting from I? the criterion to be optimal with the given beliefs is

—0.32w; which implies w; = 0. So the strategy is optimal from I?. ;From I} only z; = 0
is optimal giving (21, w1, #1,%2,y2) = (0,0,1,1,1). Thus for a PBE the arbitrariness of z;
seen above is removed.

11
Case 2 gives another possibility in which the beliefs are (5, 5) for I, for I} they are (1,

0) and for I? we have (0.287, 0.713). This is consistent with the non-extreme value for w;
because its coefficient, starting from I?, is zero.

It is interesting that in Case 4 if we look at the strategies of the two players even though
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P1 is playing 2nd he will tell the truth whatever he hears P2 say; but P2, although he plays
first, lies when he sees state a and that is essentially the same thing as what happens when
P1 plays first. This confirms that these strategies are feasible no matter who plays first
and we obtain the same payoffs. On the other hand, Case 1 and the one with completely
stochastic behavioral strategies are new.

Cases 1, 2 and 4 do not implement REE. We can see this by calculating normalized
expectations. Also conceptually REE assumes that people tell the truth while each of the
above cases requires a player to lie.
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