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Abstract

The empirical joint distribution of return-pairs on stock indices displays high tail-dependence
in the lower tail and low tail-dependence in the upper tail. The presence of tail-dependence is
not compatible with the assumption of (conditional) joint normality. The presence of
asymmetric-tail dependence is not compatible with the assumption of a joint student-t
distribution. A general test for one dependence structure versus another via the profile-
likelihood is described and employed in a bivariate GARCH model, where the joint
distribution of the disturbances is split into its marginals and its copula. The copula used is
such that it allows for the presence of lower tail-dependence and for asymmetric tail-
dependence, and that it encompasses the normal or t-copula. The model is estimated using
bivariate data on a set of European stock indices. We find that the assumption of normal or
student-t dependence is easily rejected in favour of an asymmetrically tail-dependent
distribution.
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Value-at-Risk, copula, non-normal bivariate GARCH, asymmetric dependence, profile
likelihood-ratio test
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1 INTRODUCTION 1

1 Introduction

The dependence structure of international financial markets has always at-
tracted attention from various fields of finance including portfolio selection,
pricing of complex financial products, and risk management. One of the
crucial questions in risk management is how to aggregate individual risk
into overall portfolio risk. At some point in the aggregation process, one has
to make assumptions about the dependence structure between the factors
which drive individual risk.

The standard practice in assessing the overall risk of a portfolio is to assume
that asset prices are driven by jointly normal random variables. The as-
sumption of joint normality (or ellipticity) is often implicitly made through
the use of linear correlation as the measure of dependence. One example
is JPMorgans CreditMetrics (1997), where credit ratings are driven by un-
observed jointly normal distributions. However, different joint distributions
with the same correlation matrix can well give rise to different Values-at-
Risk (see for example Embrechts et al. 2002).

One approach in the Value-at-Risk literature to circumvent the dependency
problem is to look at return series of an entire portfolio rather than at the set
of univariate return series. Since it is then possible to investigate the distri-
bution of the portfolio return and its Value-at-Risk directly, dependence or
correlation are not an issue. Examples of this approach are Engle and Man-
ganelli (1999), and McNeil and Frey (2000). Engle and Manganelli (1999)
propose a modified GARCH model to model the evolution of the Value-at-
Risk directly, while McNeil and Frey (2000) suggest using a GARCH model
to estimate the conditional mean and variance of the portfolio return first,
and then modelling the distribution of the residuals by employing extreme
value theory and historical simulation, to provide estimates for the Value-
at-Risk.

In considering problems such as the selection of optimal portfolio weights,
however, it is necessary to understand the dependence structure between
individual assets. One approach to address dependency is to model corre-
lation itself as changing over time. Studies on international equity markets
such as Longin and Solnik (1995) document that correlation is higher in
periods of larger volatilities. Boyer, Gibson and Loretan (1999) suggest
that the widely observed difference of correlations during periods of high
and low market volatilities, the so-called correlation breakdown, may reflect
time-changing (conditional) volatilities rather than a structural break in the
underlying distribution. They show that the observed sample correlations,
conditional on one variable falling below/above a certain threshold value,
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may differ substantially even if the true correlation is constant. Loretan
and English (2000) find that this theoretical relationship can account for a
large part of empirical correlation movements.

Acknowledging the correlation breakdown critique, Longin and Solnik (2001)
still confirm time-changing correlations in international equity markets. In
fact, their results suggest that the crucial condition for high correlation is
not high volatility itself, but high volatility coupled with negative returns.
Longin and Solnik show that the correlation between stock return series
tends to be higher in market downturns than in market upturns, a fact
for which standard symmetric models of multivariate stock returns cannot
account. Indeed, the authors reject joint normality for the negative tail of the
multivariate distribution, but not for the positive tail. In other words, there
seems to be significant dependence in the lower tail of the joint distribution,
which cannot be explained by assuming joint normality with its implied zero
tail-dependence. One drawback of the approach of Longin and Solnik (2001)
is that it uses extreme value theory and so concentrates on the tails of the
distribution while neglecting the rest. Yet for many applications we want
a complete model for the joint behaviour of the return series, which will
describe both the tails and the central part of the distribution.

This paper introduces an alternative way of modelling (asymmetric) de-
pendence in asset returns, which can also capture the return dynamics of
the univariate time series. We propose a bivariate (multivariate) GARCH-
model with a dependence structure which allows for the existence of lower
tail-dependence by employing copulas. OQur model is similar to a number
of models recently put forward by Patton (2001), Rockinger and Jondeau
(2001), Hu (2002), and Mashal and Zeevi (2002). They also suggest mod-
elling financial return series through bivariate GARCH models with copulas,
in slightly different versions. The main contribution of our paper is the pro-
vision of a general test procedure of testing various copulas against each
other. This is the normal or t versus a few selected copulas which are able
to display positive and asymmetric lower and upper tail-dependence. In ad-
dition, the paper presents empirical evidence on the dependence structure
of European stock markets.

The starting point of our discussion is the observation that a multivariate
distribution function F' can be split into two parts. The first part is the set of
univariate distribution functions of each of the random variables (marginals)
involved, F;, the second part is the dependence structure between the ran-
dom variables, the copula C.

F(@1,...,20) = C(F1(31), .., Fo(wn) (1)
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It seems logical to make use of copulas in risk management in order to
capture different natures of risk, the individual and the portfolio risk. Ob-
viously, one particular copula has already been used extensively, that is the
copula induced by the joint normal distribution. The normal or gaussian
copula is entirely specified by its functional form and the correlation matrix
of all random variables (assets) involved.

In this paper we are concerned with testing the hypothesis of normal or
t-dependence against the alternative hypothesis of the presence of tail-
dependence. Ideally, one might want to test joint ellipticity against non-
ellipticity in financial data, since non-ellipticity and not non-normality
causes concern when one relies on linear correlation in capturing depen-
dence. One possible way of testing ellipticity could be a non-parametric
approach to copula modelling, e.g. by means of Bernstein approximations
to copulas as in Sancetta and Satchell (2001).

This paper, as a first step, only provides a test of a special case of ellipticity,
the normal or the t-copula, against a special case of non-ellipticity which puts
asymmetrically more probability on joint extreme outcomes, as discussed in
Section 3. We provide a general test based on the profile likelihood to
test one copula against another. There are two sources of complication in
deriving the asymptotic distribution of the suggested test statistic. The
first is the presence of nuisance parameters under the null hypothesis. The
second is the fact that we are testing whether a certain parameter is on
the boundary of the parameter space. To solve the first problem we make
use of the profile likelihood, in which the nuisance parameters are taken as
fixed at their estimated levels. Due to our large sample size the estimated
parameters should be sufficiently accurate. The second problem is solved by
appealing to a result in Chernoff (1954) which states that the distribution of
the likelihood-ratio statistic can be found to be a mixture of the degenerate
x4 and a x; distribution, where k is the number of unestimated parameters
under the null. A simulation exercise confirms that the presence of nuisance
parameters does not bias the result in our large sample of close to 3,000
return pairs. An application of this test using data on European stock
indices yields a significant rejection of the normal as well as the t-copula in
favour of a more tail-dependent copula. The results are very robust both to
the assumptions on the marginals and to the exact form of the alternative
copula. The results are very similar for a set of different bivariate stock
index series.

We then proceed to investigate whether the alternative model we propose
is well-specified by employing the non-parametric hit-test of Patton (2001).
We first test whether our model is correctly specified ignoring possible time-
dependence or auto-dependence using a simplified hit-test. For data on the



2 MOTIVATING INFORMAL EVIDENCE 4

DAX, FTSE, and CAC indices, we do not find the alternative model thus
misspecified. However, as Patton (2001) pointed out, for the alternative
model to be well specified we also need time-independence. Employing the
hit-test with regressors including past hits, we test for misspecification of
this kind and find one of our three return-pair series to be misspecified.
We then propose to model the series of return-pairs by means of the same
GARCH-process, but with a time-changing copula. The way the copula
changes over time is slightly different from Patton’s, which is due to the fact
that in contrast to the exchange rate data Patton investigates, in our data
there is hardly any upper tail-dependence.

Finally, our bivariate model is slightly modified to enable testing of volatility
spillovers. The conditional variance of the return on one stock index is
then modelled to depend additionally on the variance of the return on the
second index. We employ likelihood-ratio tests to determine the direction
of spillover effects.

The reminder of the paper is organized as follows. Section 2 presents in-
formal evidence of asymmetric dependence in the DAX/FTSE return pairs.
Section 3 provides an account of the concept of a copula and the properties
it should have to be of interest for financial data and our testing exercise.
Section 4 lays down a bivariate GARCH model with general copula depen-
dence structure for the analysis of bivariate stock returns, and describes the
various tests undertaken in this paper. The results of estimation and testing
are presented in Section 5. Section 6 concludes.

2 Motivating Informal Evidence

In this section we present crude estimates of lower and upper tail-dependence
for the series of DAX/FTSE return-pairs suggesting that joint normality (or
even ellipticity) may not be an adequate model to explain bivariate stock-
return data.

Figure 1 shows a scatter plot of DAX versus FTSE returns for the period
August 3, 1990 through December 31, 2001. Considering the different pat-
tern of joint negative and joint positive extreme values, the graph suggests
a non-linear dependence structure between DAX and FTSE returns. For
the moment let us call a DAX return extreme if it exceeds 4% in absolute
value, while a FTSE return is denoted extreme if it exceeds 3% in absolute
value. Different threshold values are used for the DAX and the FTSE as the
two index series display different variances. The cut-off values of 4% and
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Figure 1: Scatter Plot of DAX/FTSE Returns.

3% equal approximately three times the standard deviations, respectively!.
Given these definitions, we observe 39 extreme DAX and 28 extreme FTSE
returns in the slightly more than 11 years under consideration.

Let us now consider the occurrence of an extreme return event of one index
given the return of the other index is also extreme. This yields crude empir-
ical estimates of lower and upper tail-dependence (for a rigorous definition
see Section 3) in the bivariate equity returns. Consider first the event that
the FTSE return is greater than +3%. This event is observed 13 times in
our sample period. Of these 13 positive FTSE extremes there are 4 which
are classified as (positively) extreme also for the DAX, the remaining 9 be-
ing ordinary returns. A rough estimate for the upper tail-dependence in
DAX/FTSE returns is thus % ~ 0.3077. Conditioning on DAX returns, the
estimate for upper tail-dependence would be % = (.25, since there is a total
of 16 positive extreme returns in the DAX index series.

On the negative side, consider all return-pairs, where the FTSE return is
lower than —3%. There are 15 such instances, of which 11 are considered
(negatively) extreme also for the DAX. This yields a crude estimate of lower
tail-dependence of % = 0.7333. Conditioning on DAX returns, we have an

'The two average returns are below 0.0015%.
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estimate of lower tail-dependence of % ~ 0.4783, since there is a total of
23 extreme negative FTSE returns. Values of 0.25 and 0.31 for the positive
quadrant versus values of 0.48 and 0.73 for the negative quadrant suggest
that there is substantially higher dependence in the lower tail of the dis-
tribution (negative extremes) than in the higher tail (positive extremes).
This observation is not compatible with the presence of linear dependence
structures like the one implied by the bivariate normal or the bivariate t-
distribution. The bivariate normal distribution implies zero tail-dependence
in both tails, while the bivariate t-distribution does display non-zero tail-
dependence, but the same on both ends.

Table 1: Empirical Tail Dependence for DAX/FTSE Returns
This table lists empirical conditional upper and lower tail-probabilities
/\%(YD|YF) = P(YD < OA‘YF < Oé) and )\%(YD|YF) = P(YD > a|YF > a),
where Yp and Yy are the GARCH(1,1) standardized DAX and FTSE re-
turns, respectively. The last column shows the corresponding values for the
bivariate normal with a correlation of 0.56, the estimated value.

Empirical Probabilities Bivariate Normal

a  AY|Yr) AYr|IYD) Ag(Yp|Yr) Ap(Yr|YD) 2= AG

0 0.7050 0.7050 0.6841 0.6841 0.6908
0.5 0.6000 0.5791 0.5448 0.5358 0.5626
1 0.5061 0.4725 0.4248 0.4042 0.4337
1.5 0.4432 0.4271 0.2564 0.2339 0.3159
2 0.3333 0.3571 0.1633 0.1667 0.2172
2.5 0.3333 0.4118 0.1000 0.0909 0.1408
3 0.3684 0.4118 0.1000 0.1429 0.0859

It is well-known that stock returns are generally not identically distributed
over all time periods. In fact, variances may change considerably over time.
Let Ypax and Yrrgg denote the standardized returns, where the time-
changing variances have been separately estimated by a GARCH(1,1) pro-
cess for each return series. The returns are now in units of their respective
standard deviations. Table 1 shows empirical estimates of lower and upper
tail-dependence and compares them to the tail-dependence implied by the
joint normal distribution with a linear correlation of 0.56, the estimate for
our data. These numbers indicate that the assumption of joint normality
is seriously violated in a dangerous direction. The true joint distribution of
the standardized returns of DAX and FTSE seems to display far heavier,
especially lower, tail-dependence than the normal distribution implies. The
asymmetry between lower and upper tail-dependence is also pronounced.

Assuming a normal distribution, the probability of a standardized return
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falling below the threshold of —3% is about 0.0014. In our sample such
an event should only happen about 4 times. Yet it is observed 19 times
for the DAX and 17 times for the FTSE return data, that is, 4 to 5 times
the amount suggested by the normal distribution. This suggests that the
marginal distributions should be modelled as student-t rather than normal.
Let us assume that the probability of a return falling short of —3% is 0.006
as suggested by our numbers above. Under normal dependence (normal cop-
ula), given a correlation parameter of 0.56, the probability of both return
series realizing below —3% is 8.2 in 10,000. In a sample of 3,000 we would
thus expect roughly 2.5 jointly extremely negative returns. Our DAX/FTSE
data offers 7 such instances. Conversely, the event of both returns exceeding
+3% is observed only once in our sample. Using the empirical distributions
for the marginals and the t4-copula implies an expected number of roughly
5.7 jointly extreme negative return-pairs, as well as 5.7 jointly extreme posi-
tive return-pairs. Of course the presence of 7 jointly negative extreme return
pairs and of 1 jointly positive extreme return pair in the DAX/FTSE data
could be due to sampling error. Hence, we have to resort to more powerful
tests than the simple one just undertaken. This is what this paper is about.
Still we find Table 1 highly suggestive, and it motivates our testing exercise
in this paper.

3 Copula Choice

This section gives the definition of a copula, and definitions of tail-
dependence and Spearman’s rank correlation in terms of copulas. A few
useful transformations of copulas and their properties are stated. Then
some well-known families of copulas and their properties are discussed. Fi-
nally, a flexible, parameterized copula is constructed from these copulas,
which meets a set of requirements we believe a copula should have in order
to be of interest for financial data in general and for our empirical study in
Section 5 in particular. The definitions and results in this section are mostly
taken from Nelsen (1999), Joe (1997), and Embrechts et al. (2002).

Definition 1 (Copula) Let F be the joint distribution function of random
variables X and Y with marginal distribution functions Fy and Fy, respec-
tively. The copula C : I? — I is defined so as to satisfy

F(z,y) = C(Fu(z), Fy(y))

I is the closed unit interval. If F; and F, are continuous, then C' is unique.
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Definition 2 (Symmetry) A copula is said to be symmetric if C(u,v) =
C(v,u).

Definition 3 (Independence Copula) U and V are independent if and
only if C(u,v) =uv =1L

Fact 1 (Invariance) If (X,Y) has copula C and hy, he are increasing, con-
tinuous functions, then (h1(X),ho(Y)) also has copula C.

Fact 2 (Convex Combination) A convex combination
C(u,v) = Y1 MiCi(u,v) of n copulas, with 37 1 X\i = 1 and N\; > 0 is
again a copula.

Fact 3 (Density) Let U and V' be standard uniform random variables with
copula C(u,v). Then the joint density of U and V is given by

7. (1, v). (2)

Fact 4 (Rotation) LetU =1-U andV =1-V. Then U and V are also
standard uniform random variables and the following statements are true:

o U and V have copula C~ (u,v) = u+v—1+C(1 —u,1 —v) and
density ¢ (u,v) = ¢(1 —u,1 —v)

e U and V have copula C~F(u,v) =v — C(1 — u,v) and
density ¢t (u,v) = c¢(1 — u,v)

e U and V have copula C*~ (u,v) = u — C(u,1 —v) and
density ¢t (u,v) = c(u,1 — v)

If C(u,v) is symmetric, then CT~(u,v) = C~ (v, u).

Definition 4 (Tail-Dependence) Let X and Y be random variables with
continuous marginal distribution functions Fy and Fy and copula C. The
coefficient of upper tail-dependence of X and Y is

o= lim P(Fy(X)>1—u|F,(Y)>1—u)
u—0t
—  lim 2u—1+C(1—u,1—u). 3)

u—0t u
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The coefficient of lower tail-dependence is given by

r = Tim P(Fy(X) < ulF,(Y) <u) = lim 0%

u—0t u—0t u

(4)

If ty(rr) € (0,1] X and Y are said to be asymptotically dependent in the
upper (lower) tail. If Ty = 0 (1, = 0) they are asymptotically independent
in the upper (lower) tail.

Definition 5 (Spearman’s Rho) Let X and Y be random variables with
distribution functions Fy and Fy, and copula C. Spearman’s rank correlation
is given by

pS(XaY) :p(Fx(X)’Fy(Y))a (5)

where p is the usual linear correlation operator. Spearman’s rank correlation
can be expressed in terms of the copula C':

ps(X,Y) =12 /01 /01 C(z,y)dzdy — 3. (6)

For the independence copula, II, Spearman’s Rho is 0. If two random vari-
ables X and Y display a linear correlation of —1 or 1, then their Spearman’s
Rho is also given by —1 or 1, respectively.

Fact 5 (Properties of Convex Combinations and Rotations) Let C;
and Cy be copulas and let C = ACi + (1 — X\)Ca, for A € (0,1) be a convex
combination of the two copulas. By fact 2 C is a copula. It is true that
its lower (upper) tail-dependence is the \-convex combination of the indi-
vidual coefficients of lower (upper) tail-dependence. The same is true for
Spearman’s Rho and the density of C'. Let C be a copula and let C~ be its
180°-rotation as given in fact 4. Then the lower (upper) tail-dependence of
C~ "~ is the same as the upper (lower) tail-dependence of C. Also Spearman’s
Rho of C~ is the same as Spearman’s Rho of C.

Definition 6 (Well-Known Copulas) Various well-known copulas are
given below. The first three belong to the class of archimedean copulas, the
remaining two are elliptical. ®~' denotes the inverse of the cumulative dis-
tribution function of a standard normal random wvariable, T, denotes the
inverse of the cumulative distribution function of a student-t random vari-
able with v degrees of freedom, and I' is the gamma function. The a in Cy,
is the vector of all parameters of the copula Cl,.
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Copula Co(u,v) a

Clayton (v 0400 —1)"1/0 00

Gumbel  exp(—[(— lnu)e + (= Inv)?]1/9) 0>1

Joe 1-[(1- u) +(1 - U)e —(1- u)o(l _ ,0)0]1/0 0> 1

Gaussian fqﬁ ' (u) f¢ (v) ﬁ exp {—522—_(355;2—"')#} dsdt pe(-1,1)

T v+2

Student-t f_ f_v '(v) ﬁ)((lﬁ e (=1,1)

{1+s el i v, v>2

Fact 6 (Properties of the above Copulas)

Copula range of ps  TIL, TU
Clayton (0,1) 2-1/9 0
Gumbel (0,1) 0 2—21/0
Joe (0,1) 0 2 —2l/¢
TL = TU
Gaussian (-1,1) 0

Student-t (-1,1) 2 (1 - tuH(%,ﬁ_p))

The definitions and facts stated above are the basic tools we need in or-
der to construct flexible copulas to be applied to financial data. The brief
investigation of the DAX/FTSE return series in Section 2 as well as the
results of e.g. Longin and Solnik (2001) suggest that financial data might
well show significant non-zero tail-dependence. This tail-dependence may
be higher in the lower than in the upper tail. We should thus allow for the
existence of asymmetric tail-dependence when specifying a copula model.
Neither the normal copula nor the t-copula (see Fact 6) have this feature.
Obviously, any degree of (positive) correlation should be possible. Finally,
since we are interested in testing normality or t-dependence versus asymmet-
ric tail-dependence, a copula of interest should nest the normal or student-t
copula.

Hence, we believe a copula of interest for positively correlated financial data
should be flexible enough to allow for (i) asymmetric tail-dependence, (ii) the
whole theoretical range of lower tail-dependence (71, € [0, 1)), (iii) any degree
of (positive) Spearman’s rank correlation (pg € [0,1)), and (iv) it should nest
either the normal or the student-t copula as a special case. Unfortunately,
to our knowledge there is no nice and simple copula which would combine
all the above-mentioned properties. We will thus take advantage of the fact
that any convex combination of copulas is again a copula (Fact 2) with
nice properties (Fact 5) to construct our ideal copula by combining different
copulas, of which each exhibits at least one of the desired properties.
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One possible choice for a copula which satisfies all the above-mentioned
criteria is the convex combination, as given in Definition 6, of e.g. the
Clayton and gaussian copulas. Both the Gumbel or Joe copulas (as given
in Definition 6) must be rotated by 180° as done in Fact 4, before use,
as both copulas exhibit tail-dependence only in the upper tail. A convex
combination of the rotated copula and the gaussian copula would then meet
all the criteria. The copulas used to test joint normal (joint student-t)
dependence in this paper are thus A-convex combinations of the gaussian
(student-t) copula and one the copulas mentioned above, the Clayton, the
rotated Gumbel (Gumbel,), or the rotated Joe (Joe,) copula.
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4 Model, Likelihood and Tests

In this section we first describe the econometric model for the joint distribu-
tion of asset returns, which serves as the framework for our testing exercise.
We then provide the profile likelihood-ratio test employed for testing one
dependence specification versus another and give a brief account of Pat-
ton’s (2001) hit-test for goodness-of-fit, which we employ to test whether
our alternative hypothesis is correctly specified. The model we introduce
is a generalization and specialization of the multivariate GARCH model of
Bollerslev (1990), and is similar to the bivariate GARCH models suggested
by Patton (2001), Rockinger and Jondeau (2001), Hu (2002), and Mashal
and Zeevi (2002). Yet our model differs from theirs in the specific copula
assumed for the joint distribution of the disturbances, which is tailored (see
Section 3) to allow likelihood-based testing of the null hypothesis of normal
or student-t dependence versus the alternative hypothesis of asymmetric
tail-dependence.

Let y;4, 7 = 1,2 denote the return series of financial assets. Each return
series is assumed to marginally follow a GARCH(1,1)-process (see Boller-
slev, 1986). The joint distribution of any two time ¢ disturbances is given by
assumed marginal distributions, F;, and the A-parameterized convex combi-
nation, C, of two copulas.

Yit = Wit Oigeit, (7)

0it? = Yitai@Wie— )+ Bi (i) (8)
Flerg,e20) = C(Fi(ery), Faleat)), 9)
C = (1-xctd ol (10)

In our testing exercise we assume the marginal distributions, F; and F5,
to be either student-t, as suggested e.g. by Bollerslev (1987), or to be
given by the empirical distribution of the fitted disturbances. The normal
distribution does not describe the univariate tail-probabilities very well, due
to the existence of fat tails in our financial data, and so fails to qualify for
a marginal distribution. The actual copula used in our testing exercise is
a convex combination of a traditional copula, C*?4, and an archimedean
copula, C*!. The traditional copula is assumed to be either the gaussian
copula, C), with parameter p, with zero tail-dependence in both tails, or the
t-copula, C,, with parameters p and v, with positive but symmetric lower
and upper tail-dependence. The archimedean copula is either the Clayton,
the rotated Gumbel, or the rotated Joe copula, each with parameter 8, and
is such that it generally displays asymmetric tail-dependence. In fact, the
archimedean copulas proposed exhibit non-zero tail-dependence only in the
lower tail (see Section 3).
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Let I; denote all information available at time ¢. In the model above this
information includes asset returns and variances up to time ¢. Then condi-
tional on I;_;, the joint density for the observed returns (yi4,y2,:) is given

by2
Flyeyzelli-1) = C<F1 <M>FQ <w>>
O1,t o2t

— 1 — 1
i (yl,t Nl) = <y2,t Mz) 1)
O1,t O1,t 02t 02t
iide]
udv

where c(u,v) = 55 (u,v) is the density of copula C.

The log-likelihood is now easily obtained as the sum of the logarithm of the
above joint densities over all ¢. Let ® denote the vector of all parameters
used in the model given by equations (7-10). The log-likelihood function
can then be written as

T

0O; {yrti=1, {y2eti=1) = D I (f(yre y2,lTe-1)) (12)
t=2

where the density f(yi1+,y1,¢/It—1) is given by expression (11).

In the model given by equations (7-10) we take the dependence structure
C and thus tail-dependence to be time-invariant. One might want to test
whether this assumption is too restrictive. We will do so by allowing A
to change over time and test for the nested case of a constant A\ via a
likelihood-ratio test. First, we have to specify a functional form for the
evolution of A. In the constant A situation, the larger A the larger the
potential lower tail-dependence in the resulting convex copula. Consider
now the Euclidean distance between a realization in the unit square and
the origin. The smaller this distance the closer the return realization is to
the negative extreme situation, suggesting higher probability in the negative
tail and thus a convex copula which puts more weight on the copula with
asymmetrically higher lower tail-dependence. We thus propose the following
equation® for the evolution of A, where u and v are the ’uniformed’ student
t or empirical disturbances from the univariate GARCH(1,1)-models.

_ 1 & 55
At = A (51 + do A I(At_l) + 53 M Z:ZI U%ﬁi + ’Ut21> , (13)

*Note that the following is true: If X is a random variable with density fx and
Y = p+0X, then fy(y) = fx(¥34);

3This is slightly different from Patton’s (2001) time changing copulas. First, Patton
makes the tail-dependence itself change over time. Second, the changes are driven by the
distance of the uniformed disturbances to the diagonal in the unit square. This makes
sense for Patton’s data on exchange rates where both tails show dependence, but is not
appropriate for our data on stock returns.
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where A(z) = H% is the logistic transformation, which maps the real line
IR into the unit interval I. At any time ¢, A; is then explained by a constant
d1, by an autoregressive term doA1(X\;_1), and by the average distance of

the disturbance pairs and the origin over the last M days.

We are interested in the structure of the dependence between extreme events,
and in particular whether either the traditional gaussian copula with its
implied zero tail-dependence or the t-copula with positive but still sym-
metric lower and upper tail-dependence are sufficient to capture the de-
pendence structure in bivariate stock returns. Preliminary results from the
exploration of the DAX/FTSE data in Section 2 suggest that the observed
tail-dependence may indeed be higher than the one implied by the normal
copula, and the dependence structure may well be asymmetric. In order to
test rigorously for the presence of positive tail-dependence and/or asymmet-
ric dependence in bivariate stock returns, we suggest performing a profile
likelihood-ratio (pLR) test. We want to test the null hypothesis that copula
C' in our econometric model given by equations (7-10) is the gaussian or the
t-copula, respectively, i.e. we want to test the null Hy : A = 0 versus the
alternative Hy : A > 0.

In this case, the derivation of the asymptotic distribution of the LR-statistic
is complicated by two things. First, there are nuisance parameters present
under the null hypothesis. These are the parameters in the univariate
GARCH models. Second, the subset of the parameter space where A = 0 is
on the boundary of the parameter space, which means that the distribution
of the LR-statistic is not simply asymptotically Chi-square.

To deal with the first problem, we use the profile likelihood (see e.g.
Barndorff-Nielsen and Cox, 1994), i.e. the likelihood as a function of A
only, where the random parameter estimates are assumed to be fixed at
their estimated levels given A. Under the null, these parameter estimates
will be very accurate given our sample size of close to 3,000 return pairs. For
the profile likelihood the result of Chernoff (1954) holds, that the asymp-
totic distribution of the pLR-statistic is an even mixture of the degenerate
x2-distribution and a x3-distribution. The degrees of freedom in the second
distribution are 2 since, under the null, there are two parameters which are
not estimated, A\ and the parameter of the archimedean copula, 6. To give
an indication of how well the asymptotic distribution of the pLR-statistic
is approximated by this x?-mixture, given the true nuisance parameters are
replaced by their estimates, we perform a small simulation exercise for the
DAX/FTSE model with the rotated Gumbel copula. A pair of return series
is generated 100 times from the model with parameters as estimated under
the null. For each of these pairs of return series the unrestricted as well as
the restricted model is estimated and their pLR-statistic computed. Out of
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the 100 realizations of the pLR-statistic, 47 were (virtually) zero, the re-
maining 53 are given in ascending order in table 2. The average of these
53 numbers is 2.2, the estimated variance 4.2. These numbers are close to
the theoretical values for the mean and variance of the x3-distribution of 2
and 4, respectively. Also the higher quantiles are very much in line with the
theoretical ones.

To evaluate whether our proposed copula models are correctly specified,
we employ the non-parametric hit-test introduced by Patton (2001). In
its simplest form this test involves comparing the theoretical and empirical
number of realizations of uniformed disturbance-pairs in a set of specifically
designed regions of the unit square. These regions are illustrated in Figure
2. We use the regions suggested by Patton (2001), which are chosen to
capture potential misspecification in the lower and upper tails. In addition,
the more elaborate version of this test allows testing the null of (residual)
independence over time. This is of particular interest for our model with a
time-invariant copula. In this case any hit in a particular region is regressed
on past hits (one day, one week, one month past) using maximum likelihood.
The null of no (residual) time-dependence can then be tested for by means
of a likelihood-ratio test, testing whether all the coefficients of past hits are
Z€ero.

5 Empirical Results

In this section we use data on stock return-pairs to estimate our model
given by equations (7-10), and to test our hypotheses. The data consists
of daily returns as of 4pm UK time of the DAX 30, the FTSE 100 and the
CAC 40 indices for the period August 3, 1990 through December 31, 2001,
as reported by Thomson Financial Datastream. We explicitly chose to use
only stock indices for which simultaneous price quotations were available, so
as to avoid problems resulting from non-synchronicity of price observations.*
Our sample period covers a total of 2976 observations for each index and
includes the stock market crashes following the Asian and Russian crises in
1998 and the terrorist attack in September 2001, as well as the period of
internationally declining stock markets starting as of March 2000.

We use Ox version 2.20 (Doornik, 1999) and the return series on the three
asset pairs DAX/FTSE, DAX/CAC, and FTSE/CAC to estimate the bi-
variate return model given by equations (7 - 10). Tables 3 to 6 present

“Patton (2001) shows that for the copula representation theorem (Sklar’s theorem)
to hold it is a sufficient and (often) necessary condition that the information sets in the
marginal distributions and the copula be the same.
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Figure 2: Test regions on the unit square for Patton’s (2001) hit-test. There
are 8 regions, regions 1 to 7, and one region consisting of the remaining
(unnumbered) patches.

estimation results for the various models with a time-invariant copula. In
addition to the parameter estimates we also report the coefficient of lower
tail-dependence 7y, the coefficient of upper tail-dependence 7y in the models
involving the t-copula®, the profile log-likelihood®, and the profile likelihood-
ratio statistic.

Tables 3 and 4 give the results for the models with student-t marginals for
the disturbances; Tables 5 and 6 state results for the models where we use

5 A convex combination of the gaussian copula and any of the three archimedean copulas
always displays zero upper tail-dependence, see Section 3.

5Not for the models with empirical disturbance distributions. In these cases, for com-
putational convenience we added a constant to the profile log-likelihood, which does not
affect the profile log-likelihood-ratio statistic.
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the empirical distribution for the marginal distribution of the disturbances.
For the latter we still apply the GARCH-filtering to account for the time-
changing volatility of returns, but the two univariate GARCH(1,1)-processes
and the copula-models are estimated separately now.

For each of the model specifications, we perform the profile likelihood-ratio
(pLR) test as described in Section 4. We test the hypothesis that the copula
C in the econometric model (7-10) is the gaussian or the t-copula, i.e. we test
the null hypothesis Hy : A = 0 against the alternative hypothesis H; : A > 0.

For any of the three data pairs, for any of the four different specifications of
the model, and for any of the three different alternative copulas used, both
the hypothesis of normal and that of student-t dependence are strongly re-
jected. This rejection together with an estimated coefficient for A ranging
from 0.26 to 0.65 for the gaussian, and 0.16 to 0.60 for the t-copula, in the
unrestricted models implies that the symmetric copulas exhibit too little dif-
ference (in fact none) between lower and upper tail-dependence to describe
adequately the dependence structure between DAX, FTSE, and CAC re-
turns. Furthermore, the degree of lower tail-dependence is in general under-
estimated by both the gaussian and student-t copulas. Our results suggest
that the “true” dependence is rather a mixture of the normal or t-copula
and a second copula, which exhibits asymmetric tail-dependence, here the
Clayton, the rotated Gumbel, or the rotated Joe copula.

Having established the need for a copula allowing for asymmetric depen-
dence, we now turn to test the goodness-of-fit of the estimated asymmetric
bivariate return models, using Patton’s (2001) hit-test. We do this only for
the apparently superior models where the marginal distribution of the dis-
turbances is taken as their empirical distribution. Table 7 reports p-values
for model (7-10), where C*™d is the gaussian or the t-copula, respectively.
We consider any p-value of less than 0.05 as evidence of a model misspeci-
fication. Given the number of tests we undertake this is not very conserva-
tive. We first perform the hit-test with no lagged information. Of all the
models estimated, only the model with the Clayton-gaussian copula for the
DAX/CAC return data is misspecified.

The more interesting hit-test is the one where we test whether lagged hits
can explain current hits. Even according to this test the majority of models
is correctly specified. Three of the gaussian and one of the t-copula models
are misspecified given our rejection criterion. Three of these four rejections
are observed for the DAX/CAC returns, one for DAX/FTSE returns. Three
of these are well-specified, however, if the t-copula instead of the normal one
is used. The only misspecified model according to the time-varying version
of the hit-test, when the t-copula is taken to be the symmetric copula, is
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the Clayton-t model for the DAX/CAC data.

At least in the DAX/CAC data, the bivariate return model should probably
allow for a time-varying copula. We thus estimate a modified version of our
return model as given by equations (7-10), where we let A; evolve over time
according to equation (13). Parameter estimates for various specifications
of this model are shown in Table 8. In addition, the profile likelihood-ratio
statistic is given. Interestingly, this test easily rejects all the time-invariant
models. The fact that the hit-test in most cases does not reject the time-
invariant models, while the profile likelihood-ratio test does, is due to the
fact that the pLR-test has much higher power than any non-parametric test,
such as the hit-test, if we have a particular parametric alternative model at
hand. Of course pLR-tests cannot be used if no such parametric alternative
is assumed. For the time-varying models parameterized through equation
(13) the hit-test cannot not find any additional time-dependence. Table 7
shows that all the time-changing models pass the goodness-of-fit test.

The bivariate return model as given by equations (7-10) allows to test for
volatility spillovers among the three markets if we introduce appropriate
exogenous variables in the variance equations (8). The modified variance
equation of stock return i is then given by

Oit? =i+ (Yig—1 — i) + Bi (0ip—1) >+ 8; (Yjum1 — p)% § #i. (14)

The general model now allows both conditional return variances to depend
on the other market’s volatility, respectively. We employ likelihood-ratio
tests to determine the direction of spillover effects. Consider for example
the DAX/FTSE return pair. We first test the hypothesis that spillovers
occur only in one direction, i.e. either from London to Frankfurt, Hy :
dpax = 0 (in the FTSE-variance equation), or from Frankfurt to London,
Hy : 0prse = 0 (in the variance equation of the DAX returns) against the
alternative that both spillover terms are present. We then proceed to test
the new null of no spillovers, i.e. Hy : Spax = OprsE = 0, against the
alternative that spillovers work in one direction only, where the direction is
determined by the outcome of the above tests.

In the DAX/FTSE and the DAX/CAC return data, the results of the test
procedure described above are as follows. In both bivariate models the null
that spillover effects exist only in one direction, from Frankfurt to London or
from Frankfurt to Paris, i.e. lagged volatility in the DAX helps to explain
the current variability in both the FTSE and CAC stock indices, cannot
be rejected at a significance level of 0.01. When testing the null of zero
spillover effects in either direction against these semi-restricted models, the
hypothesis of no crossover effects whatsoever is rejected at a significance



6 CONCLUSION 19

level of 0.01. Our results, which do not depend on the specific heavy tail-
dependent copula used, therefore indicate that volatility transmissions occur
from Frankfurt to London, and from Frankfurt to Paris, and not vice versa.
These results, at least those for the Frankfurt /London case, contrast with the
evidence reported by Kanas (1998), who examines volatility transmissions
across London, Frankfurt and Paris, and finds unidirectional spillovers from
London to Frankfurt.

To present a thorough picture of the directions of volatility spillovers among
European stock exchanges, acknowledging asymmetric dependence at the
same time, a more detailed analysis should be undertaken. FExogenous
volatility shocks, for example, might better be modelled as averages over
a certain period than simply as lagged volatilities. It could also be interest-
ing to analyze the changes in different volatility coefficients, depending on
whether and which exogenous shocks are found to be present. Also when
analyzing spillovers between three markets one should probably model them
simultaneously in a three-variate model.

6 Conclusion

We study the nature of dependence between return pairs on European stock
indices. The model of stock-return pairs we use is a bivariate GARCH(1,1)-
model with a fairly general dependence structure similar to recent models of
Patton (2001), Rockinger and Jondeau (2001), Hu (2002), and Mashal and
Zeevi (2002). The dependence between the disturbances is characterized by
their marginal distribution, assumed to be either student-t or taken as their
empirical distribution, and their copula. The copula in this paper is such
that it allows for (i) asymmetric tail-dependence, (ii) any degree of lower
tail-dependence, (iii) any positive value for Spearman’s Rho, and (iv) such
that it nests either the gaussian or the student-t copula, copulas usually
used when analyzing financial data.

This model allows us to use write down a profile likelihood test of the hypoth-
esis of either normal or student-t dependence against the alternative of asym-
metric tail-dependence. Since we are testing for a parameter being on the
boundary of the parameter space, the pLR-statistic has an asymptotic distri-
bution given by an even mixture of the degenerate 2 and a x3-distribution.
In using the profile likelihood we are assuming away the stochastic nature
of the estimates of the nuisance parameters in the model, which are the pa-
rameters describing the GARCH-processes for the marginals. A simulation
exercise is undertaken to illustrate the validity of this assumption.
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The profile likelihood-ratio test easily rejects the assumption of both normal
and student-t dependence in any specification of our basic model. The data
displays significantly asymmetric tail-dependence as well as higher lower
tail-dependence than it would under the null hypothesis of either normal
or student-t dependence. Our findings, which are in line with the results
of Longin and Solnik (2001), are important for a number of financial appli-
cations. The 1-day Value-at-Risk may well be seriously underestimated if
normal or student-t dependence is assumed. Also optimal portfolio weights
may well differ substantially from the normal or student-t case.

Finally we use Patton’s (2001) hit-test to test for misspecification of our
alternative model with a time-invariant copula. Most models cannot be re-
jected on evidence from the hit-test. For the DAX/CAC return pair series,
however, the hit-test indicates that at least one model is seriously misspec-
ified. In order to account for the apparent dependence over time we adopt
another model which differs from the ones used previously in one respect.
The copula is allowed to change over time, in a slightly different manner
than in Patton (2001), due to the different nature of our data on stock-
returns as opposed to Patton’s data on exchange rates. Interestingly, profile
likelihood-ratio tests of the null of time-invariance reject the hypothesis even
in the models the hit-test did not identify as misspecified. This is due to the
fact that tests based on the likelihood function are generally more powerful
than any non-parametric tests such as the hit-test. Patton’s hit-test, how-
ever, is applicable against any alternative. We therefore employ it again for
our time-varying model to see whether any additional dependence over time
is present in the data and find that according to the hit-test all models are
finally correctly specified.
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7 Tables

Table 2: Simulation Results for the pLR-statistic, where parameters are
taken from the restricted (purely gaussian) bivariate GARCH model for the
DAX/FTSE series. Only the 53 positive values (out of the total sample
of 100) are shown. The copula of the unrestricted model is the convex
combination of the normal and the rotated Gumbel copula.
0.1062 | 0.11412 | 0.15676 | 0.27262 | 0.3207
0.42113 | 0.57949 | 0.60932 | 0.64102 | 0.68202
0.7199 | 0.76298 | 0.77278 | 0.82365 | 0.90562
0.90947 | 0.94683 | 1.0357 | 1.0454 | 1.0842
1.1885 1.2247 1.2904 1.3902 1.4419
1.4606 | 1.4795 | 1.5146 | 1.5205 | 1.5875
1.684 1.6899 | 1.7682 | 1.7877 | 2.3405
2.3495 | 2.6168 2.899 3.0661 | 3.1596
3.2356 | 3.4551 | 3.5562 3.726 3.741
3.8981 | 3.9807 | 4.3574 | 4.4467 5.913
7.085 8.7867 | 9.7493
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Table 3: Estimation Results for the Gaussian Copula (1) for the
bivariate return model given by equations (7-10), where margins are
student-t, and the copula is a convex combination of the gaussian and
one of the Clayton, rotated Gumbel, or rotated Joe copulas.

Unrestricted Restricted

Clayton Gumbel, Joe, (A=0)

DAX, FTSE /i 0.0715 0.0689 0.0686 0.0667
) 0.0477 0.0448 0.0442 0.0417

Y1 0.0167 0.0147 0.0150 0.0182

Vo 0.0143 0.0116 0.0118 0.0172

ay 0.0413 0.0365 0.0364 0.0439

do 0.0404 0.0328 0.0327 0.0413

51 0.9231 0.9308 0.9308 0.9190

B2 0.9250 0.9384 0.9380 0.9193

t1 5.8744 5.9291 6.0459 6.4846
ty 9.1996 8.4636 8.3423 8.5529
A 0.2835 0.5877 0.3848 0
0 2.2866 1.3560 1.3599 -
p 0.5032 0.7894 0.7399 0.5708
TL 0.2094 0.1956 0.1290 0

pLL -7,816.57 -7,793.57 -7,796.00 -7847.72
pLR  62.30 108.30  103.44
DAX, CAC /i 0.0718  0.0726  0.0729 0.0655
[is 0.0498  0.0506  0.0505 0.0464
1 0.0181  0.0179  0.0182 0.0201
i 0.0410  0.0405  0.0411 0.0510
0.0344  0.0338  0.0336 0.0360
0.0303  0.0300  0.0296 0.0327
0.9302  0.9306  0.9309 0.9278
0.9222  0.9229  0.9232 0.9110
6.2204 59783  6.1235 6.7224
8.0029  7.9933  8.0481 8.0105
0.3918 05187  0.3442 0
0.5314  1.4042  1.4063 -
0.8335  0.8560  0.8132 0.6532
7, 0.1063  0.1876  0.1249 0
pLL -8428.24 -8425.62 -8428.87  -8509.71
pLR 16294  168.18  161.68

= D >‘>S">:‘">E§b>\9>g) S)
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Table 3: Estimation Results for the Gaussian Copula (1), ctd.

Unrestricted Restricted
Clayton  Gumbel, Joe, (A=0)
FTSE, CAC i) 0.0467 0.0461 0.0466 0.0452
o 0.0624 0.0626 0.0616 0.0529
Y1 0.0126 0.0125 0.0124 0.0136
Yo 0.0318 0.0306 0.0317 0.0309
0.0367 0.0361 0.0362 0.0374
0.0316 0.0305 0.0313 0.0326
0.9331 0.9341 0.9339 0.9299
0.9303 0.9321 0.9306 0.9304
9.0482 9.1453 8.9544 8.4245
8.0179 7.7296 7.8796 8.3574
0.2878 0.4091 0.2588 0
0.5555 1.4410 1.4277 -
0.8048 0.8189 0.7947 0.6816
7L, 0.0826 0.1564 0.0970 0
pLL -7637.22 -7632.78 -7637.87 -7686.21
pLR 97.98 106.86 96.68

™ D> TH T T 9 R,
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Table 4: Estimation Results for the t-Copula (1) for the bivariate
return model given by equations (7-10), where margins are student-t,
and the copula is a convex combination of the t-copula and one of the
Clayton, rotated Gumbel, or rotated Joe copulas.

Unrestricted Restricted
Clayton Gumbel,  Joe, (A=0)
DAX, FTSE 0.0697 0.0696 0.0695 0.0717
) 0.0458 0.0461 0.0459 0.0481
Y1 0.0146 0.0144 0.0146 0.0151
Y2 0.0111 0.0111 0.0111 0.0118
a 0.0351 0.0349 0.0350 0.0354
o) 0.0320 0.0320 0.0320 0.0328
51 0.9321 0.9324 0.9322 0.9316
32 0.9400 0.9399 0.9399 0.9380
A 0.2146  0.4722  0.2268 0
0 1.3934 1.4400 1.9074 -
v 5.7740 5.2996 5.9673 5.6976
p 0.5681 0.6689 0.5949 0.5765
1
to
TL

57134  5.6333  5.6817 5.8203
8.3946  8.3381  8.2813 8.1468
0.2173  0.2611  0.2170 0.1142
T 0.0867  0.0808  0.0896 0.1142
pLL -7793.43 -7791.96 -7792.72  -7802.18
pLR  17.50 20.44 18.92
DAX, CAC /iy 0.0738  0.0741  0.0739 0.0769
(i 0.0508  0.0509  0.0509 0.0542
51 0.0182  0.0181  0.0181 0.0179
5o 0.0402  0.0401  0.0401 0.0392
a1 0.0318  0.0318  0.0316 0.0311
dy 0.0291  0.0293  0.0288 0.0280
Bi 0.9320  0.9321  0.9324 0.9338
Bo 0.9239  0.9241  0.9243 0.9264
0.2435  0.3663  0.2134 0
0.6959  1.4306  1.5815 -
4.3621  4.4879  4.7612 4.2666
0.7347  0.7650  0.7263 0.6605
5.6689  5.6710  5.6477 5.7087
7.5760  7.7140  7.5554 7.5069
7L 0.2438  0.2747  0.2467 0.1735
T 0.1538  0.1368  0.1507 0.1735
pLL -8420.94 -8421.28 -8421.72  -8431.67
pLR  21.46 20.78 19.90

SHSH T D >
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Table 4: Estimation Results for the t-Copula (1), ctd.

Unrestricted Restricted
Clayton Gumbel, Joe, (A=0)
FTSE, CAC i\ 0.0459  0.0453  0.0459 0.0466
Lia 0.0629  0.0631  0.0627 0.0627
ol 0.0119  0.0122  0.0120 0.0120
o 0.0292  0.0291  0.0293 0.0292
a1 0.0348  0.0351  0.0347 0.0349
Ay 0.0292  0.0291  0.0292 0.0295
Bi 0.9358  0.9351  0.9358 0.9353
Bo 0.9336  0.9338  0.9335 0.9332
A 0.1847  0.3039  0.1616 0
6 1.0057  1.5226  1.8433 -
v 5.9629  6.4342  6.3187 5.5644
p 0.7249  0.7542  0.7222 0.6863
£ 8.6629  8.7853  8.6234 8.4303
£ 7.0187  7.0221  7.0139 7.0238
7L 0.2283  0.2475  0.2191 0.1557
7 0.1355  0.1188  0.1313 0.1557
pLL -7629.03 -7628.75 -7629.78  -7637.30
pLR  16.54 17.10 15.04
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Table 5: Estimation Results for the Gaussian Copula (2) for the
bivariate return model given by equations (7-10), where margins are given
by the empirical distributions, and the copula is a convex combination of the
gaussian and one of the Clayton, rotated Gumbel, or rotated Joe copulas.
GARCH(1,1) parameter estimates are not given.

Unrestricted Restricted
Clayton Gumbel, Joe, (A=0)
DAX, FTSE ) 0.3265  0.6475  0.3316 0
6 2.3320 1.9522  2.9007 -
p 0.4756  0.3163  0.4927  0.5549
7L 0.2426  0.3715  0.2421 0
pLR  97.84 124.70  98.34
DAX, CAC ) 0.3264  0.5572  0.3968 0
6 2.7394  2.5027  1.4833 -
p 0.5732  0.4254 0.8178  0.6355
7L 0.2534  0.3794  0.1604 0
pLR  97.71 156.96  165.09
FTSE, CAC ) 0.3273  0.6075  0.2916 0
6 0.6804  2.1651  1.5498 -
p 0.8018  0.5671  0.7888  0.6728
7L 0.1182  0.3783  0.1272 0
pLR  101.35 89.12  101.23
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Table 6: Estimation Results for the t-Copula (2) for the bivariate
return model given by equations (7-10), where the margins are given by
the empirical distributions, and the copula is a convex combination of the
t-copula and one of the Clayton, rotated Gumbel, or rotated Joe copulas.
GARCH(1,1) parameter estimates are not given.

Unrestricted Restricted
Clayton Gumbel,  Joe, (A=0)
DAX, FTSE ) 0.2527  0.5434  0.2525 0
6 22377 1.9595  2.8908 -
p 0.5116  0.4080  0.5212  0.5665
D 7.6303  10.9758 7.5469  6.4276

TL 0.2852 0.3340  0.2884 0.1948
TU 0.0998 0.0212  0.1044 0.1948
pLR  42.07 46.02 43.32

DAX, CAC A\ 0.3369 0.6011  0.2993 0
0 0.7343 1.4745  1.6209 -
p 0.7573 0.8625  0.7443 0.6479

1 4.7486 10.1154  5.4849 4.7058
TL 0.4054 0.3937  0.3969 0.3198
TU 0.2743 0.1533  0.2573 0.3198
pLR 3847 51.19 36.89

FTSE, CAC ) 0.2308  0.4330  0.2075 0
6 1.1635  1.6010  1.9882 §
p 0.7199  0.7689  0.7189  0.6796
% 6.4997  6.9617  7.0901  6.0591

TL 0.3623 0.3921  0.3454 0.2839
TU 0.2350 0.1937  0.2245 0.2839
pLR  27.04 33.07 25.59
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Table 7: Specification Tests

30

This table reports p-values for the test that the models are correctly specified
(joint test in 8 regions, see Figure 2). We consider any p-value smaller than
0.05 (asterisked) a rejection of the hypothesis that the model is correctly

specified.
Constant Regressor Time Series Regressors

Clayton Gumbel, Joe, Clayton Gumbel, Joe,
DAX, FTSE
Gaussian copula 0.0915  0.8109 0.0564 0.0561  0.2655 0.0413*
T-copula 0.7727  0.8609 0.7691 0.2523 0.2848 0.2511
T-copula, A\; 0.8342 0.8843 0.8411 0.4152 0.4822 0.4145
DAX, CAC
Gaussian copula  0.0000*  0.1803 0.3716 0.0001* 0.0477*  0.0812
T-copula 0.1240  0.6541 0.3401 0.0367* 0.1313 0.0758
T-copula, A\ 0.4800  0.4211 0.3683 0.0867  0.1432 0.0635
FTSE, CAC
Gaussian copula 0.9476  0.5094 0.8938 0.6853  0.4650 0.6481
T-copula 0.9653  0.9333 0.9776 0.7014  0.6741 0.7152
T-copula, A\ 0.9494  0.8533 0.9116 0.6921  0.6498 0.6577
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Table 8: Estimation Results for the t-Copula (3) for the bivariate
return model given by equations (7-10), where the margins are given by the
empirical distributions, the copula is a convex combination of the t-copula
and one of the Clayton, rotated Gumbel, or rotated Joe copulas, and A is
modelled to be time-changing as given by equation (13). Profile likelihood
ratios for the hypothesis that A is not time-varying, i.e. Jo = d3 = 0, are
reported. GARCH(1,1) parameter estimates are not given.

Cctll = Clayton C*il — Gumbel, Cctal = Joe,
unrest. restricted unrest. restricted  unrest. restricted
8y =083 =0 8o =083 =0 8y =083 =0

DAX, FTSE
5 0.2455 0.2319 0.3303 0.5310 0.2396 0.2381
5o 0.9631 0 0.9733 0 0.9618 0
53 -0.4063 0 -0.4604 0 -0.4023 0
6 3.0490 2.5081 2.1992 1.9722 3.8283 3.0758
p 0.4991 0.5072 0.4109 0.4088 0.5028 0.5156
I 8.6698 7.9684 14.0922  11.1789  8.5905 7.7957
pLR  15.99 29.49 14.86
DAX, CAC
51 -0.2393 0.3393 0.3673 0.3816  -0.2582 0.3043
8o 0.9700 0 0.9823 0 0.9670 0
83 0.3161 0 -0.5458 0 0.3279 0
6 0.6257 0.7025 3.2765 2.6338 1.4863 1.5747
p 0.8258 0.7625 0.5760 0.5280 0.7990 0.7526
D 8.0473 5.0114 6.7362 7.5470 8.4876 5.9714
pLR  26.24 51.77 21.24
FTSE, CAC
81 -0.2111 0.2306 0.2248 0.4333  -0.2046 0.2074
5o 0.9818 0 0.9821 0 0.9819 0
53 0.2647 0 0.3077 0 0.2515 0
6 0.7996 1.1612 1.5444 1.5949 1.6342 1.9833
p 0.7689 0.7200 0.8161 0.7710 0.7626 0.7192
1 8.6176 6.5342 11.9961 7.1570 9.9144 7.1339
pLR  15.31 21.83 14.14
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