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Abstract 

In systems of variables with a specified or already identified cointegrating rank, stationarity of 

component variates can be tested by a simple restriction test. The implied decision is often in 

conflict with the outcome of unit root tests on the same variables. Using a framework of 

Bayes testing and decision contours, this paper searches for a solution to such conflict 

situations in sample sizes of empirical relevance. It evolves from the decision contour 

evaluations that the best test to be used jointly with a restriction test on self-cointegration is a 

modified version of the Dickey-Fuller test that accounts for the other system variables, 

whereas strictly univariate unit-root tests do not help much in the decision of interest. 
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1 Introduction
The procedure designed by Johansen for the estimation of the cointegrat-
ing rank and of the cointegrating vectors in vector autoregressive systems
has enjoyed tremendous popularity among researchers in economic applica-
tions. Usually, the procedure is conducted in several sequential steps. First,
univariate unit-root tests classify the variables of interest according to their
degree of integration. Variables integrated of order zero or one are kept
while higher-order integrated variables are eliminated or di¤erenced. Then,
the cointegrating rank is determined. Last, linear restriction tests are ap-
plied that check whether pre-speci…ed vectors of interest are contained in the
cointegrating space. In other words, the basis of the cointegrating space is
rotated in order to become interpretable in economic terms.

Unit vectors may be contained in the cointegrating space. Whenever a
unit vector cointegrates, the corresponding component variable is stationary.
Practitioners often report that the decision resulting from the restriction
testing step of Johansen’s procedure disagrees with the decision of the pre-
liminary unit-root tests. A speci…c variable may be classi…ed as stationary ac-
cording to the preliminary univariate unit-root test and as non-cointegrating
according to the restriction test, and vice versa. The natural question is then
how to combine these contradictory pieces of evidence to reach a statistically
well-based classi…cation of these problematic variables.

We note that many researchers tend to avoid including stationary vari-
ables in the Johansen framework, although the procedure has been designed
to incorporate cases with integration order zero as well. The statement that
all individual components must be integrated of order one is erroneous, al-
though it can be found in some sources, including software descriptions. In
the spirit of the procedure, stationary components imply cointegrating unit
vectors, in other words the stationary variable is cointegrating with itself.
The hypothesis that a speci…c unit vector is contained in the cointegration
space can be subjected to a restriction test after determination of the rank
and estimation of the full system (‘post-testing’). In contrast with most pre-
liminary unit-root tests, stationarity of the component is the null hypothesis
of these restriction tests and …rst-order integration is the alternative. The
distribution of the corresponding test statistic is chi-square and not any of
the non-standard mixture distributions that are known from the unit-root
testing literature (see also Tanaka, 1996).

In related work, Rahbek and Mosconi (1999) use a slightly di¤erent
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model frame and view cointegration as conditional on stationary variables
that may develop cointegration among their cumulated sums. For the full
system of conditioned integrated and conditioning stationary variables, a
vector autoregressive representation does not exist. In contrast, we assume
the existence of a multivariate autoregressive representation for the whole
vector of variables, in line with the original model that was analyzed by
Johansen (1995).

This paper attempts to answer some of the questions that are implied by
the outlined procedure. Firstly, how can a unit-root test exist with standard
critical values, if the construction of non-standard critical points was one
of the main tasks of the early literature on unit-root tests. Secondly, how
should one act in cases of con‡ict? Cases of con‡ict arise from changes in
the identi…ed integration order between the pre-testing and the post-testing
phase. A variable may be classi…ed as stationary in the pre-testing stage but
its unit vector is rejected as a cointegrating vector in post-testing. Conversely,
a variable may be classi…ed as …rst-order integrated in pre-testing but its unit
vector is accepted as cointegrating in post-testing. In the former case, we
will ignore the potential con‡ict situation where a cointegrating rank of zero
has been found in the main testing stage, as it appears altogether unlikely
and may point to a more general speci…cation failure.

In order to avoid distracting attention from the main focus, important
side issues will be ignored in this paper, such as the possible appearance of
seasonal unit roots, the complex restriction test for second-order integration
within the framework of the multivariate Johansen procedure, or the correct
speci…cation of the deterministic features of the system.

The outline of this paper is as follows. Section 2 describes three hypothesis
tests that are more or less commonly used in discriminating stationary and
integrated variables. Section 3 introduces the semi-Bayesian method that is
suggested for evaluating combinations of any two of these tests. The results
of an application of this suggested method are presented and commented in
Section 4. Section 5 concludes.
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2 Testing for unit roots in cointegrated sys-
tems

2.1 A standard test for a unit root
Suppose the vector variableXt has n components that are individually either
I(0) or I(1), and obeys a vector autoregression of order p

©(B)Xt = ¹+ "t

with "t an ideally Gaussian white noise. Then, the system can be transformed
into its error-correction representation

¦(B)¢Xt = ¹+ ®¯0Xt¡1 + "t

with n £ r–matrices ®;¯ of full rank that are uniquely determined up to a
non-singular matrix factor of dimension r £ r. r denotes the cointegrating
rank, ¯ is the matrix with cointegrating column vectors, and ® is the so-called
loading matrix. ¦(z) is a polynomial of order p¡ 1.

In line with many applications of the Johansen procedure, only a con-
stant ¹ is allowed as the deterministic part of this model, which is a debatable
choice. It is at odds with the common usage of trend regressors in univari-
ate unit-root tests, which are included for the sake of similarity properties
at the expense of test power, but it is in line with the usual interpretation
of error correction. A linear combination of non-stationary variables that is
trend-stationary does not correspond to this concept.

If X contains an I(0) component X (j), say, the unit n–vector with 1 at
its jth entry and 0 otherwise is contained in the column space of ¯. This
implies that r ¸ n0 if n0 denotes the number of stationary components. If
r = n0, there is no non-trivial cointegration in the system, as all cointegrating
vectors are unit vectors or linear combinations thereof. If r = n = n0, the
whole system is stationary. Without restricting generality, assume that the
variable in question is the …rst one X (1) such that the critical cointegrating
vector is e1 = (1; 0; : : : ; 0)0. Then, the hypothesis would be

¯ = (e1; ') ; (1)

where ' is an n £ (r ¡ 1)–matrix. Because ¯ is identi…ed only up to an
r £ r transformation matrix, identifying its …rst column with the proposed
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basis vector implies no restriction of generality. For this problem, Johansen
(1995, p. 108) shows that ¯ is estimated by a sequence of conditioning opera-
tions. When e1 is the only cointegrating vector, the solution is extremely sim-
ple, as then the system reduces to ¦(B)¢Xt = ¹+®X

(1)
t¡1+"t, a multivariate

regression problem. The likelihood-ratio statistic Tfln(1¡¸max)¡ ln(1¡ ½)g
of this restricted solution versus the solution for unrestricted r–dimensional ¯
is distributed as chi-square with n¡r degrees of freedom. Here, ¸max denotes
the largest eigenvalue of the unrestricted problem and ½ is the conditional
multiple correlation of X (1)

t¡1 and ¢Xt. This ½ can be obtained from …rst re-
gressing both sides on a constant and on lagged di¤erences and keeping the
residuals. Then, the possibly non-stationary residual from the ‘purged’ X (1)

t¡1
is regressed on the similarly …ltered ¢Xt. The R2 of this second regression
is the required ½.

Under the null hypothesis of this test, the component variable is station-
ary, as the corresponding unit vector cointegrates. However, the alternative
is not the usual general hypothesis of …rst-order integration. Rather, the
presence of r cointegrating relationships or of n¡ r unit roots in the system
is maintained. Therefore, the test is not a valid unit-root test for general pur-
poses, although it is a valid check on univariate unit roots conditional on an
already speci…ed cointegrating rank. Note that, in the system, the same num-
ber of unit roots is present under the null and under the alternative, which
explains the validity of the standard distribution for the likelihood-ratio test.

Some of these issues have been considered by Horvath and Watson
(1995) who analyze the general case of testing for given cointegrating vectors,
which includes unit vectors as a special case. Because they set up the problem
in such a way that the given vector does not cointegrate under the alternative,
they obtain non-standard distributions, contrary to the original Johansen
idea. The use of multivariate VAR analysis for assessing the stationarity
of individual components is mentioned by Johansen and Juselius (1992)
who assume the cointegrating rank as having been pre-tested and therefore
…xed. Most applications proceed (correctly) by …rst identifying the rank and
then testing for special vectors, hence the original approach is in focus here.
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2.2 Traditional non-standard tests for unit roots
For a scalar variable xt, the most popular test for unit roots is based on the
t–statistic on ¯ in the regression

¢xt = a + bt+ ¯xt¡1 +
p¡1X

j=1

¼j¢xt¡j + "t : (2)

The null hypothesis is one unit root in the autoregressive operator for xt, i.e.,
'(1) = 0 for '(z) = (1¡ Pp

j=1 ¼jz
j)(1¡ z)¡¯z or, equivalently, ¯ = 0. The

alternative is that '(z) has stable roots only. Although this test, whose idea
is due to Dickey and Fuller (1979), has been criticized in the literature
(for a critical review, see Maddala and Kim, 1998), its apparent simplicity
is one of its greatest virtues. Also note that it exactly corresponds to an
univariate version of the Johansen test for cointegration. Hence, one of the
key arguments against the DF test, i.e., doubts on the autoregressive nature
of the generating mechanism, is misplaced in the setting of the Johansen
procedure, which assumes an autoregression for the system variable Xt.

Like the multivariate Johansen procedure, the univariate Dickey-Fuller
test can be used with several combinations of deterministic terms. Because
the test is often used to discriminate drifting integrated from trend-stationary
variables, it makes sense to use the test as in (2), though the set-up of hy-
potheses is then non-standard, as b is implicitly restricted under the null.
In the model that is investigated here, i.e., the multivariate autoregression
with a constant, trend-stationary variables can only appear in paradox cases
and are therefore best excluded. Hence the speci…cation without the trend
regressor deserves consideration.

For the pre-test stage in the Johansen procedure, unit-root tests are com-
monly applied with the aim of classifying the variables into one out of three
classes: I(0), I(1), and I(2) variables. According to what is sometimes known
as the Pantula principle (after Pantula, 1989), a two-stage sequence of
Dickey-Fuller tests starts with testing the I(2) null hypothesis against an
I(0)[I(1) alternative ‘I(0/1)’, then in case of …rst-stage rejection an I(1) null
is tested against an I(0) alternative. It was outlined above that the second
test in the sequence is potentially unnecessary, as I(0) variables are treated
correctly in the comprehensive multivariate model. The …rst stage, however,
serves to eliminate objects outside the focus of the analysis. Unless the re-
searcher decides to proceed with the …rst di¤erence of the original variables,
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which has been suggested for certain price series, the …rst Dickey-Fuller test is
really a speci…cation test and is comparable to tests for breaks, non-normality
etc. This speci…cation test is not in focus here.

2.3 Multivariate augmentation of the Dickey-Fuller test
It may be argued that a comparison of the Dickey-Fuller test and the post-
test of Johansen is not appropriate, as the latter incorporates multivariate
information whereas the former is strictly univariate. Notwithstanding the
swap of null and alternative hypotheses, the multivariate test has the advan-
tage of processing more ‘information’, which may improve its discriminatory
power. Multivariate information can easily be incorporated into the Dickey-
Fuller test. For example, assuming a second variable yt to be I(0/1), the
t–statistic on ¯ in the regression

¢xt = a+ bt + ¯xt¡1 +
p¡1X

j=1

¼j¢xt¡j +
p¡1X

j=1

~¼j¢yt¡j + "t (3)

will have similar asymptotic properties to the original Dickey-Fuller test.
Using certain assumptions, Hansen (1995) shows that the null distribution
of t¯ is a mixture of Dickey-Fuller and standard distributions. Although
Hansen develops his results in a univariate regression framework conditional
on¢yt, (3) can also be viewed as a component in a vector autoregression. For
demonstration, assume a …rst-order vector autoregression for the variables
(¢xt;¢yt) augmented by a lag of xt, i.e.,

¢xt = ®1xt¡1 + ¼11¢xt¡1 + ¼12¢yt¡1 + "
(1)
t

¢yt = ®2xt¡1 + ¼21¢xt¡1 + ¼22¢yt¡1 + "
(2)
t :

This is the general form for a VAR on (xt;¢yt) with mixed lag orders of two
and one for the variables. This is also an error-correction representation for
a second-order VAR on (xt; yt) with the potential cointegrating vector (1;0)0

assumed as known. For the parameter value (®1; ®2) = (0;0), both variables
are I(1) and there is no cointegration. For ®1 6= 0 and arbitrary ®2, xt is
self-cointegrating and stationary while yt is I(1). The case ®1 = 0 and ®2 6= 0
is not possible, as it violates the assumption that both variables are I(0) or
I(1). Honoring Hansen, the t–test for ®1 = 0 (or ®2 = 0) will be called the
CADF (covariate-augmented Dickey-Fuller) test in the following.
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Any stationary augmentation is possible, although cointegrating condi-
tioning variables will still be ignored. An augmentation by ‘level’ I(0/1)
variables is not possible, as these may be cointegrated with the xt¡1 regres-
sor and may therefore impair the evidence on stationarity in xt.

2.4 The geometry of the problem
In traditional Neyman-Pearson testing, usually the lower-dimensional hy-
pothesis is chosen as the ‘null’ hypothesis and the higher-dimensional one as
the ‘alternative’. Occurrences of dimension change between null and alter-
native in comparable tests may draw special attention. In many apparent
events of dimension change, such as the pair of the Dickey-Fuller and the
Saikkonen-Luukkonen tests that was analyzed by Hatanaka (1995), null
and alternative are embedded in parametric modeling frames that only par-
tially overlap. For example, the unit-root hypothesis is ‘small’ within …rst-
order autoregressions that do not include over-di¤erenced time series, and is
large within …rst-order moving-average models for the di¤erenced series that
do not include autoregressions excepting white noise. In these problems, the
‘true’ null and alternative hypotheses of interest to the researcher are insuf-
…ciently matched by the limited structures of both parametric models. The
present case is inherently di¤erent.

Dickey-Fuller tests, or comparable unit-root test procedures for a single
series in a bivariate vector autoregressive frame, can best be seen as con-
densing the classi…cation problem for the overall number of unit roots in the
system. This system might have no, one, two, or more unit roots, though
for the needs outlined here, it is preferable to exclude the cases of more than
two unit roots, of two or more unit roots within a single direction, and of
explosive roots. Let us denote the three basic hypotheses by £0, £1, and
£2. The null hypothesis of the DF test then consists of £2 and a part of £1,
while the alternative comprises £0 and the remainder of £1. £2 is a set of
lower dimension within £1 [ £2, while £1 [ £2 is again of lower dimension
within the maintained hypothesis or general frame £0 [ £1 [ £2. One may
envisage a point (£2) on a curve (£1 [ £2) on a plane (£0 [£1 [ £2). The
point and a part of the curve constitute the null and the remaining plane
constitutes the alternative of the DF test.

In the Johansen test, interest focuses on the curve. The point £2, the
case of no cointegration, has been excluded in the preliminary step. The
punctured curve is isomorphic to a half-open interval of angular frequencies,
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such as [0; ¼), which represent the direction of the cointegrating vectors in the
(x1; x2)–plane. For the points 0 and ¼=2, one of the two series is stationary by
self-cointegration, while for all other points a non-trivial linear combination
of the two variables is needed to achieve stationarity. Then, for example,
the sliced background plane £0 and the end point of this interval constitute
the null hypothesis, while the open interval (0; ¼) constitutes the alternative.
Identifying the cointegrating rank as 1 …nally excludes the sliced background
plane, and the researcher is left with the traditional testing problem with a
point null and an interval alternative.

This analysis implies that, contrary to the more involved problem investi-
gated by Hatanaka (1995), no real change of the reference frame has taken
place. Rather, the exchange of null and alternative is caused by restricting
attention to a part of the original parameter space.

3 A comparison of tests
The debate on the correct way of assessing the merits of a joint application
of hypothesis tests with exchanged null and alternative hypotheses remains
unresolved in statistics. So-called con…rmatory analysis (see Charemza
and Syczewska, 1998) is shunned in the literature (see Maddala and
Kim, 1998). This technique, although of interest in its own right, is still
‘local’ in the sense that it evaluates test power and size at speci…ed points
of the parameter space. This may imply the verdict that the prescription
of the joint picture is of little help to the practitioner, as it is exactly this
point of the parameter space that is unknown, or testing would otherwise not
be necessary. By contrast, traditional Bayes testing is ‘global’ in the sense
that the points of the parameter space are weighted by a prior distribution.
Critics of Bayes testing point out the sensitivity of the global decision to
the choice of such prior distributions, while practitioners are often reluctant
to conduct the lengthy computation that is involved in the calculation of
posterior odds by way of numerical integration.

In previous work (see Kunst and Reutter, 2002), a compromise be-
tween frequentist (local) and Bayesian (global) evaluation principles was sug-
gested that was inspired by the work of Hatanaka (1995). It was attempted
to standardize the prior distributions for both hypotheses in such a way that
each hypothesis is given an a priori weight of 0.5. In this setting, the labels
‘null’ and ‘alternative’ are certainly incorrect and will be replaced by hypoth-
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esis A and B in the following. The hypotheses correspond to parts of the
parameter space with possibly identical dimensionality, and the frequentist
interpretation swaps across tests. The basic problem should rather be seen
as involving a parameter space £ that is partitioned into £A and £B and a
decision that is searched for regarding whether the unknown µ is in £A or
in £B . Unfortunately, prior distributions over these parameter spaces have
also to be de…ned, and such priors necessarily involve some arbitrariness.
However, once such a prior speci…cation is accepted, further proceeding is
very simple. Finite trajectories of processes can be generated from a vector
of normal random numbers, conditional on a parameter µ drawn from the
prior over £. From each trajectory, statistics and, for example, their nominal
p–values can be calculated. A bivariate (0; 1)£ (0; 1)–diagram can be drawn
from these p–values and can be split into small grid bins. Each bin contains a
large quantity of similar pairs of p–values that correspond to statistics that,
in turn, stem from a variety of trajectories. If most trajectories stem from
£A, then hypothesis A is seen to dominate the bin. The researcher, who just
observes the statistics or p–values but does not know µ, will then decide in
favor of hypothesis A. Otherwise she will decide for B. This technique can
be applied to various joint testing problems and it will also be applied here.

The di¤erence between the ‘local’ and ‘global’ approach can also be seen
as follows. The local (or traditional) approach conditions the analysis and
all simulations on the generated model, i.e., on the true parameters. This is
helpful for studying theoretical properties but does not provide much help to
the practitioner. The global approach conditions all analysis and simulations
on the observed statistics. The simulation design is varied over virtually ‘all’
possible data-generating processes. A given value of the observed statistic
may have been produced by any value of the parameter space but it may be
connected more frequently to one of the two subspaces (hypotheses). This
then helps the practitioner who also observes a pair of test statistics and
knows that the more probable hypothesis is the preferred decision.

3.1 Prior distributions within the frame
Current statistics operates under the double assumption of, …rstly, a true data
generation mechanism and, secondly, a researcher whose task it is to decode
this true data generation mechanism from a …nite amount of data. In time
series, data come in the form of trajectories of …nite length. Typically, the
available data even form a single trajectory which may have been generated
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by any member of an assumed a priori model frame and may also have
been generated from some non-member. Given this situation, any evidence
on misspeci…cation—meaning that the data have been generated by a non-
member—is unlikely to be trustworthy.

As an alternative aaproach, we suggest proceeding in the following way.
Firstly, the researcher assumes a frame, i.e., a parameterized model class
that is large enough to make it a priori conceivable that the data have been
generated by one of its members and at the same time small enough to keep
the estimation problem tractable. Secondly, …nd the parameter value that
has most likely generated the given data, conditional on restricting one’s
attention to the frame. The implied parameter is usually known as a quasi-
maximum likelihood estimate µ̂ 2 £. This solves the problem of estimation.

In order to determine whether the observed data are more likely to have
been generated by £A or by £B, it does not su¢ce to look whether µ̂ 2 £A
or µ̂ 2 £B, particularly if one of the two hypothesis sets is lower-dimensional.
In many cases, such a decision is inspired by a high a priori probability of
µ being a member of the lower-dimensional part. We express this a priori
probability by assigning a weight of 0.5 to either hypothesis. In the cur-
rent problem, the model frame consists of vector autoregressions with given
cointegrating dimension.

The elicitation will now be highlighted on the basis of an assumed cointe-
grating rank of one. The cases of …rst- and second-order autoregression will
be treated. Generalizations are then straightforward.

3.2 Imposing stationarity as a cointegration restriction
in an AR(1) model

The …rst-order autoregressive model with a cointegrating rank of one can be
written as

¢Xt = ¹+ ®¯0Xt¡1 + "t

with the n–vectors ¹; ®; ¯. If the system is to be stable apart from the
integrating directions, the eigenvalues of ¦ = I+®¯0 are in the range [¡1; 1].
More particularly, n ¡ 1 eigenvalues will be 1 and one eigenvalue is in the
open interval (¡1; 1). The model has 3n free parameters, as f®; ¯g is of
dimension 2n¡ 1 due to arbitrary scaling.

It follows that a simple and good a priori distribution over £ = f(®0; ¯0;
¹0; ¾2" )0 : n¡ 1 roots are 1, 1 root is stableg assumes the following speci…ca-
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tions:
¦ = Z

·
¸ 01£(n¡1)

0(n¡1)£1 I(n¡1)£(n¡1)

¸
Z¡1

with

Zjj = 1; j = 1; : : : ; n;
Zjk » N(0; ¾2z); j 6= k;
¹ » N(0; ¾2¹In)
¸ » U(¡1; 1)

The variance parameters ¾2" ; ¾2z; ¾2¹ cannot be given improper prior distribu-
tions in the Bayesian style, as the model will be simulated and one cannot
draw from an improper distribution. Because the test decision is seen to
be invariant in ¾2" anyway, ¾2" ´ 1 is set and the possible reaction to mod-
i…cations of the hyperparameters ¾2¹ and ¾2z is then studied. In the basic
experiments to be reported in Section 3.2, we set ¾2¹ = 0 and ¾2z = ¾2" . In one
case, variations of relative variance will be studied. The implied distribution
for the matrix¦ is a special case of the Jordan distribution family introduced
in Kunst (1995). The de…nition of £ excludes some lower-dimensional man-
ifolds from R £ Sn£Sn £ Rn £ R+, such as the case of n = 2; ® = (1; 0)0;
¯ = (0;1)0, which would give rise to second-order integration. Sn is the
surface of the n–dimensional unit sphere and has dimension n¡ 1. The pa-
rameter space £ therefore has dimension 3n. The random parameter that is
drawn has dimension n2 + 1 and this may point to some ine¢ciency, as not
all matrix elements of Z are needed to determine ¦. In practice, this feature
is not costly unless n is very large.

The hypotheses of interest £A and £B correspond to ¯ = ³e1 and ¯ 6= ³e1
for ³ 6= 0 or, analogously, to ¯ = ³ej for any speci…c j 2 f1; :::; ng, though
we focus on the …rst variable for simplicity. Here, ej denotes the j–th unit
vector in Rn. Hence, £A has lower dimension 2n+1, whereas £B = £¡£A
has full dimension 3n. Stationarity of X (1) apparently forms a typical null
hypothesis in classical statistics. Within £B, X (1) is …rst-order integrated
and there is cointegration in the system, though not necessarily involving
X (1) for n > 2. Cases of stationary X(j) for j 6= 1 also fall into £B and will
not be treated separately.

Assuming n = 2 for simplicity of exposition, the hypothesis £A implies
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that

¦ = I + ®¯0 =
·
1 + ®1³ 0
®2³ 1

¸

= (1 ¡ z12z21)¡1
·
1 z12
z21 1

¸·
¸ 0
0 1

¸ ·
1 ¡z12
¡z21 1

¸

= (1 ¡ z12z21)¡1
·
¸¡ z12z21 (1 ¡ ¸) z12
(1 ¡ ¸) z21 1 ¡ ¸z12z21

¸
:

Therefore, z12 (1 ¡ ¸) = 0 and ¸ = 1 or z12 = 0. ¸ = 1 is excluded by
assumption, such that z12 = 0. The priors for the hypotheses £A and £B can
be distinguished by restricting the element z12 = 0 for £A, while z12 » N (0; 1)
under £B.

3.3 Imposing stationarity as a cointegration restriction
in an AR(2) model

In order to create prior distributions for higher-order systems, it is necessary
to impose stationarity conditions on the coe¢cient matrices. The case of a
bivariate second-order autoregressions is treated in detail. Further extensions
are straightforward. From the simulations, …rst-order as well as second-order
autoregressions are reported.

The AR(2) system allows the system representation
2
664

xt
yt
xt¡1

yt¡1

3
775 =

·
©1 ©2

I2 0

¸
2
664

xt¡1

yt¡1

xt¡2

yt¡2

3
775 +

·
"t
0

¸

which is written in compact notation as

zt =Azt¡1 + et :

The system is stable if all eigenvalues of A are inside the unit circle. For
simplicity, complex eigenvalues are not considered, all eigenvalues of A are
assumed to be real and lying within the interval (¡1;1), excepting one eigen-
value of unity. In this case, the system is cointegrated with cointegrating
dimension 1. Considering the Jordan representation of A, again assuming a
diagonal non-derogatory form,

A = ZDZ¡1 ;
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the special block form of A must be imposed on the generating elements in
Z. Suppose the 4£ 4–matrices Z and D are split into 2 £ 2–submatrices Zij
for i; j = 1; 2 and Di for i = 1; 2. Because of the identities

Z11D1 = ©1Z11 +©2Z21

Z12D2 = ©1Z12 +©2Z22

it follows that

Z21D1 = Z11

Z22D2 = Z12

yield the necessary restrictions. Therefore, while the three elements in D
that are not 1 can be drawn from a uniform distribution over (¡1; 1), only
one of the two submatrices is …lled with normal elements, while the other
one is obtained from the identities. The standardization from the AR(1)
model can also be retained if the diagonal elements of Z11 and Z22 are set
at 1 and the o¤-diagonal blocks are then obtained from the identities. This
procedure requires only 4 draws from a Gaussian distribution and serves as
our reference prior for the unrestricted model £B.

For £A, the form of ©1+©2 must also be restricted, as the impact matrix
I2 ¡ ©1 ¡ ©2 must yield a column vector of zeros for one of the variables.
This restriction can also be written as

·
©1 ©2

I2 0

¸
2
664

0
1
0
1

3
775 =

2
664

0
1
0
1

3
775 :

This means that (0; 1; 0; 1)0 is an eigenvector for the eigenvalue 1 in A.
However, Z contains eigenvectors for the respective eigenvalues at the po-
sitions de…ned in D. The corresponding column of Z is therefore replaced by
(0; 1;0; 1), whence the identities are easily seen to be ful…lled automatically.
Only three draws from a Gaussian distribution are necessary.

In the simulations, the original D matrix was shu­ed in the beginning in
order to avoid asymmetries. The position of the unit entry was remembered
and it was for this very variable that the univariate unit-root tests were
conducted.
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3.4 Decision boundaries
The aim of the simulations is to establish areas where £A and £B are pre-
ferred, given the observed test statistics, for example the Dickey-Fuller
statistic »1 and the Johansen statistic »2. In line with usual Bayes testing,
a hypothesis is preferred whenever its probability given the data, or rather
the pair (»1; »2), exceeds 1/2. Based on a suggestion by Hatanaka (1996),
the plane (»1; »2) is not drawn directly but both statistics are coded by the
respective fractiles under their null distributions. For the calculation of these
fractiles, two options are available. Firstly, asymptotic distributions can be
used, such as Â2 for the Johansen test, which is particularly attractive if
closed forms of the distribution functions exist, or alternatively simulated
distributions that are drawn for the speci…ed sample size. Secondly, sim-
ulated …nite-sample fractiles can be obtained directly from the part of the
simulated ‘posteriors’ that have been drawn from the respective null model.
As theoretical and asymptotic null distributions may not be valid in …nite
samples and in the presence of a variety of nuisance parameters that are
randomized for both hypothesis priors, the latter option is attractive. We
tentatively used both speci…cations and found the deviations between them
to be acceptably small. Finally, the former option was adopted, as a map for
the sample fractiles would require any potential user of the map to re-run our
speci…c simulation design. On the other hand, fractiles of the Â2 distribution
exist in a closed form and fractiles of the Dickey-Fuller distribution can
easily be simulated.

In detail, a large number of trajectories are randomly drawn, that is, with
randomized nuisance, from £A as well as from £B and the empirical distri-
butions of »1j£A and of »2j£B are seen as the respective null distribution.
Empirical fractiles are stored at a grid of 0.01, which gives 1002 = 10; 000
discretized cases of (»1; »2). If more of these pairs within a ‘bin’ stem from
a certain hypothesis, it follows that the conditional probability of that hy-
pothesis exceeds the conditional probability of the rival hypothesis. The bin
is then marked as ‘belonging to £j’ with j = A;B.

For a large number of replications, the areas are typically connected and
are separated by smooth boundary curves. Denoting the null fractiles for
the statistics »1 and »2 by p1;x and p2;y for 0 · x; y · 1, one observes that
Pf(»1; »2) 2

¡
p1;0:01k ; p1;0:01(k+1)

¢
£

¡
p2;0:01l; p2;0:01(l+1)

¢
j£jg may be small for

both j = A;B for some k; l. In other words, for relatively small numbers
of replications, some bins are poorly populated. Then, no reliable evalu-

14



ation of the posteriors of interest P f£jj (»1; »2) 2
¡
p1;0:01k; p1;0:01(k+1)

¢
£¡

p2;0:01l; p2;0:01(l+1)
¢
g will be possible. In particular, there will be little in-

formation on whether the posterior probability of £A or £B is larger. Con-
sequently, the simulated boundaries may look blurred and unreliable in the
areas where the marginal density of (»1; »2) is low. The problem is similar to
the one of density estimation and hence calls for solutions known from the
related literature, in particular for kernel smoothing.

With kernel smoothing, the value in the bin (k0; l0) is replaced by a
weighted average over an area of neighboring bins that are centered at (k0; l0).
Formally, the function value f (k0; l0) for a function de…ned on f1; : : : ; ngg £
f1; : : : ; ngg is replaced by its smoothed version

fs (k0; l0) =
k0+nwX

k=k0¡nw

l0+nwX

l=l0¡nw
w(k; l)f (k; l) :

Here, ng denotes the number of grid values, in this case ng = 100. Some
modi…cations have to be conducted for indices outside the range f1; : : : ;ngg.
After some experimentation with kernel functions and areas, it was decided
to use the kernel function

w (k; l) =
W

1 + jk ¡ k0j + jl ¡ l0j
; k0¡nw · k · k0+nw; l0¡nw · l · l0+nw

with the area size parameter nw, which was set at the minimum value that
achieved smooth boundaries. The valueW is set according to the requirement

1 =
k0+nwX

k=k0¡nw

l0+nwX

l=l0¡nw
w(k; l):

Note that it is not binding in this case, as the fs values from both hypotheses
are used for a bilateral comparison only. Whenever the indices violate the
range, the weights of non-existing observations are set to zero and hence an
asymmetric version of the kernel is used, with W properly de…ned.

Kernel smoothing can be applied to the original counts of entries in the
bins or to the empirical posterior probabilities of hypotheses. In benchmark
cases with known outcome, it was found that smoothing the probabilities
created less distortions than smoothing the entry numbers, hence this op-
tion was chosen. As an indicator of such distortions, the unsmoothed maps
were compared to the smoothed maps. While the smoothed versions should
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show connected and plausible boundaries, these boundaries should be lo-
cated close to the boundaries that are approximately recognizable from the
unsmoothed versions. In other words, there should not be systematic shifts
from ‘free-hand’ boundaries to smoothed boundaries. Unfortunately, such
shifts are likely whenever there are locally large increases in the function
values. Smoothing the probability ratios implied only a tolerable tendency
toward such shifts.

In the presented charts, which were generated using the GAUSS software
package, the two preference areas for hypothesis £A and £B are separated
by the decision boundary. The preference areas are indicated by di¤erent
colors. Furthermore, we chose to divide the decision area for £A by a further
boundary at the location where the posterior probability for £A is 0.75. In
the region to the southwest of this secondary boundary, support for £A can
be regarded as ‘strong’. This area is marked in the darkest shade. In some
cases, we also show the analogous boundary for the probability for £B of 0.75.
Then the area to the northeast with strong preference for £B is marked in
pure white.

4 Results of the simulations
For the …rst experiment, »2 is speci…ed as the Johansen statistic as described
above, without augmentation and assuming a bivariate …rst-order vector au-
toregression, just as the one that actually generates the data. The unit-root
statistic »1 is speci…ed as the Dickey-Fuller statistic with a constant term
included (Dickey-Fuller’s ‘¹–test statistic’), with p¡ 1 augmenting lags.
The actual value of p was found by an AIC search with the upper bound of 5
on the lag order. Due to the bivariate generating model, univariate autore-
gressions are imperfect speci…cations, hence augmentation was considered to
make up for this defect. It was found that the DF statistic without aug-
mentation is a very bad statistic and that its implied null distribution in the
experiment is very di¤erent from the one tabulated in the literature. With
an augmentation determined from the sample, the correspondence improves.
It was also found that the trend-augmented Dickey-Fuller statistic yields a
relatively poor performance that cannot keep pace with the Johansen test.
This is probably due to the fact that the Johansen statistic uses information
on the deterministic part of the generating model while the ‘¿–test statistic’
would not. The implied Johansen null distribution comes quite close to the
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theoretical Â21, with a small negative size bias. Sample size was varied over
T = 50, 100, 200. The number of replications was always 2 £ 106, i.e., 106

for each of the hypotheses £A and £B.
For …rst-order autoregressions (see Section 3.2), Figures 1–4 show the sim-

ulated contour maps. The interpretation of the fractiles is slightly di¤erent
for the two statistics. The Dickey-Fuller statistic »1 rejects for large neg-
ative values (the lower tail), which therefore conform to hypothesis A where
the unit vector cointegrates. The Johansen statistic »2 rejects for large pos-
itive values (the upper tail), which therefore rather conform to hypothesis B
where the cointegrating vector di¤ers from the unit vector. Therefore, one
would predict a preference for hypothesis A in a south-west vertical band
and a preference for hypothesis B in a north-east horizontal band.

The maps reveal that the principal information for the decision is provided
by the Johansen statistic »2 that becomes critical if it falls into the upper
decile of the assumed Â21 null distribution. The main contour is sloping only
gently toward the east until the Dickey-Fuller statistic »1 reaches some
upper fractile. The position of this fractile point varies with the sample size
and may be at 0.8 for T = 100. To the east of this value, hypothesis B is
generally preferred. Notice that such large values of »1 are usually taken as
evidence on instability, locally ‘explosive’ behavior, or mis-speci…cation. A
traditional application of the Dickey-Fuller test would locate the critical
values in the lower fractiles.

The approximate visual impression from decision-bound curves as shown
in Figures 1–4 can serve a useful purpose in evaluating the relative strength
of tests. If in the largest part of the diagram the boundary curve runs parallel
to an axis, the statistic displayed on that axis is of little value as compared
to the rival statistic. If the boundary curve runs in a di¤erent direction, both
statistics should be combined in order to improve upon the overall decision.
Particularly if the contour runs at a 45 degree slope, a common rule of thumb
should be followed by directly comparing the p–values of both tests. If the
‘corners of con‡ict’, in this case the north-west and the south-east corner,
are intersected by the boundary curve, usage of a joint test is supported. If
these corners are allotted clearly on the basis of one of the two statistics,
usage of just one test statistic su¢ces. Traditional hypothesis testing can be
represented by two straight lines: a horizontal line at 0.9 or 0.95 separates
the preference area for hypothesis A beneath the line from an area above
the line where ‘the test rejects £A’; a vertical line at 0.05 or 0.1 separates
the preference for hypothesis B to its right from the left area where ‘the test
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rejects £B’. The practitioner is not o¤ered a decision for the large south-east
and the small north-west corners where the rejections are in con‡ict.

As a kind of sensitivity analysis, the prior distribution was modi…ed in
Figure 3 such that the o¤-diagonal elements in T were set to Cauchy random
numbers instead of normal random numbers, as in the other experiments.
The larger variation of behavior caused by the Cauchy distribution requires
stronger smoothing. The vertical boundary seen in Figure 2 disappears, so
that the suggested decision now relies only on the Johansen statistic. Oth-
erwise, the structure of the decision map is very similar to the basic exper-
iment. From this and other unreported sensitivity experiments, it has been
concluded that the choice of the prior distribution does not a¤ect the main
results too much, as long as the modi…cation hits both hypotheses symmet-
rically. In further unreported experiments, similar e¤ects were encountered
by increasing ¾2z=¾

2
" while maintaining normality.

For the important design of Figure 2, i.e., the Dickey-Fuller ¹ test
and T = 100, the e¤ect of deterministic termes was also studied. Figure 5
shows the e¤ects of a randomized added drift with ¾2¹ = 1. This modi…cation
is apparently bene…cial for the discriminatory power of the Dickey-Fuller
statistic »1, as the boundary now runs vertically at the upper decile of its
null distribution, unless »2 reaches large values. It should be noted , however,
that the eastern part of the diagram is still sparsely populated and that the
suggested critical value is in the upper tails and not in the lower tails, which
would be the traditional approach of unit-root testers. The variant con…rms
that the decision should be based on assigning a much larger weight to the
statistic »2 and to re-consider this decision only when the statistic »1 points
to a data-generating process in the explosive region. We also note that the
north-east corner now yields a high posterior probability for hypothesis B.
Recalling that such pairs correspond to rejection of the self-cointegration null
jointly with large and positive Dickey-Fuller statistics. Relative to the
maps without drift, there are increased areas where preference for one of
the two hypotheses exceeds 0.75. The added trends permit more accurate
decisions, therefore decreasing global risk.

For second-order autoregressions (see Section 3.3), the Figures 6-8 are
obtained. These are generally similar to the …rst-order cases. The area
with strong preference for hypothesis A increases, which points to a steeper
reaction along the decision contour and therefore a decrease in risk. With
increased sample size, the evidence provided by Dickey-Fuller statistics
in the upper tails of their null distribution becomes more reliable, hence
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the hypothesis B area stretches southward from its north-eastern habitat.
Notwithstanding these minor di¤erences between …rst-order and second-order
autoregressions, the main message is the same. The optimal decision should
rely mainly on the Johansen test statistic. Large »2 values indicate the
validity of hypothesis B, with ‘large’ de…ned as the upper decile of the Â2 null
distribution. For conspicuously low or high values of »1, this decision should
be adapted. These basic simulations are contrasted with a variant with
randomized drift in Figure 9. The e¤ect of the added trends are similar to
those for the …rst-order autoregression. Global risk decreases and preference
for hypothesis B is restricted to the north-east corner.

Figures 10–12 are based on the CADF test that was investigated by
Hansen, though in a slightly di¤erent model frame. Because this test uses
multivariate information such as the Johansen test, one may expect a rela-
tive improvement of performance relative to the ADF test. For T = 50, the
diagram shown in Figure 10 was obtained. The separating contour is almost
horizontal and again gives preference to the Johansen statistic. However,
the secondary contour with a posterior probability of 0.75 for hypothesis A
is now vertical at a p–value that comes close to those used in traditional
statistical analysis. In other words, basing the decision on the Johansen
statistic only implies a substantial risk of an incorrect choice of hypothesis A,
although the data actually stem from hypothesis B. Nevertheless, the risk of
an incorrect decision for hypothesis B in the large south-east region is larger,
hence the ‘non-rejection’ according to the CADF test should be ignored. For
T = 100, Figure 11 is obtained, which is similar and just shows a slight
gain of the preference area for hypothesis B in the east, i.e., for uncommonly
large CADF statistics. The expansion of the preference area for hypothesis
B continues as the sample is increased to T = 200. This experiment is shown
as Figure 12. Note that the increase in sample information has only small
bene…ts for the targeted decision, as the 0.75 support area for hypothesis A
hardly changes. Apparently, most of the additional information is exploited
by the CADF statistic that now helps in discriminating among the ‘pseudo-
explosive’ trajectories that yield a large DF statistic. A similar feature was
observed for the univariate DF statistic (see Figures 1, 2, and 4), hence the
e¤ect of incorporating multivariate information in the CADF test fails to
convince.
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5 Summary and conclusion
In a series of simulation experiments, the optimum decision that can be
based on a joint application of two di¤erent unit-root tests was evaluated.
The method is innovative and is based on the principle of Bayes testing. In
order to randomize the nuisance parameters, i.e., those parameters that are
neither characteristic nor distinctive in de…ning a hypothesis, these are given
a regular prior distribution. This prior distribution is designed to exhaust
all possible models under any of the two hypotheses under investigation.
Then, the same number of stochastic simulations are conducted under either
hypothesis. Finally, the null fractiles are evaluated and the actual outcomes
are compared to these null fractiles for both tests.

Some unreported decision contour plots have shown that the Dickey-
Fuller test with a trend regressor is not useful for joint testing with a
Johansen restriction test in the given model frame where a cointegrating
rank of one has been established or assumed. For the Dickey-Fuller
speci…cation without a trend regressor and for the modi…ed test that was
suggested by Hansen, the situation is di¤erent. The main features are
summarized below:

1. In most contour plots, the main or 0.5 decision contour suggests bas-
ing the principal decision on the Johansen statistic. Signi…cant Jo-
hansen statistics should usually be taken as evidence against self-
cointegration or stationarity of the investigated component.

2. The contour shows a gentle downward slope, however, and the princi-
pal decision should therefore be re-considered in the presence of very
negative unit-root statistics. The tested variable is likely to be station-
ary if, for example, the Johansen statistic is in its upper decile but
the unit-root statistic is in its lower decile. The exact position of the
decision contour varies with the sample size, the intensity of short-run
memory, and the deterministic part. The second e¤ect was investigated
by varying the lag order of the generating model. Adding determinis-
tic parts usually admits a sharper decision and thus decreases decision
risk.

3. The ADF or CADF statistic becomes conspicuous when it indicates
stationarity (‘rejects’) and when it indicates explosiveness, i.e., is in its
upper decile. Explosive values of unit-root statistics imply a high risk
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of mis-classi…cation. In smaller samples, such values suggest lowering
the critical values for the Johansen test, e.g., from 0.9 to 0.8. In larger
samples, they indicate a unit root in the tested component variable.

The decision problem is of importance to practitioners who analyze eco-
nomic data sets on the basis of widely available software that enables them
to conduct the popular Johansen procedure as well as traditional unit-root
tests. In many cases, they …nd con‡icting evidence and often reach a …nal
conclusion on the basis of conjectures and ad hoc decisions, which may seem
unsatisfactory. This motivates further work that is particularly directed at
helping practitioners who face such empirical puzzles. The method can be
re…ned in several directions, such as higher system dimension, varying the
search method for the correct lag speci…cation, or more sophisticated deter-
ministic structures. In all such extensions, the outlined ‘global’ Bayes-test
method will be able to reveal features that remain unnoticed in the tradi-
tional ‘local’ frequentist framework with its …xed designs of data-generating
processes. Of course, this observation should not discourage traditional power
studies that focus on local or large-sample (asymptotic) features that nec-
essarily remain out of the focus of the global approach. Hence, the two
approaches should rather be seen as complementary and not as substitutes.
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Figure 1: Boundary of optimum decision areas for T = 50. Dickey-Fuller ¹ on
the x–axis, Johansen on the y–axis. First-order autoregression. Smoothing
constant is 31.
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Figure 2: Boundary of optimum decision areas for T = 100. Dickey-Fuller ¹
on the x–axis, Johansen on the y–axis. First-order autoregression. Smooth-
ing constant is 33.
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Figure 3: Boundary of optimum decision areas for T = 100. Dickey-Fuller
¹ on the x–axis, Johansen on the y–axis. First-order autoregression with
Cauchy-Jordan priors. Smoothing constant is 43.
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Figure 4: Boundary of optimum decision areas for T = 200. Dickey-Fuller ¹
on the x–axis, Johansen on the y–axis. First-order autoregression. Smooth-
ing constant is 39.
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Figure 5: Boundary of optimum decision areas for T = 100. Dickey-Fuller
¹ on the x–axis, Johansen on the y–axis. First-order autoregression with
random drift. Smoothing constant is 25.
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Figure 6: Boundary of optimum decision areas for T = 50. Dickey-Fuller ¹ on
the x–axis, Johansen on the y–axis. Second-order autoregression. Smoothing
constant is 15.
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Figure 7: Boundary of optimum decision areas for T = 100. Dickey-Fuller
¹ on the x–axis, Johansen on the y–axis. Second-order autoregression.
Smoothing constant is 13.
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Figure 8: Boundary of optimum decision areas for T = 200. Dickey-Fuller
¹ on the x–axis, Johansen on the y–axis. Second-order autoregression.
Smoothing constant is 25.
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Figure 9: Boundary of optimum decision areas for T = 100. Dickey-Fuller
¹ on the x–axis, Johansen on the y–axis. Second-order autoregression with
random drift. Smoothing constant is 25.
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Figure 10: Boundary of optimum decision areas for T = 50. Hansen’s
covariate-augmented Dickey-Fuller ¹ on the x–axis, Johansen on the y–axis.
First-order autoregression. Smoothing constant is 19.
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Figure 11: Boundary of optimum decision areas for T = 100. Hansen’s
covariate-augmented Dickey-Fuller ¹ on the x–axis, Johansen on the y–axis.
First-order autoregression. Smoothing constant is 35.
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Figure 12: Boundary of optimum decision areas for T = 200. Hansen’s
covariate-augmented Dickey-Fuller ¹ on the x–axis, Johansen on the y–axis.
First-order autoregression. Smoothing constant is 35.
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