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Abstract 

Perfect information games have a particularly simple structure of equilibria in the associated 

normal form. For generic such games each of the finitely many connected components of 

Nash equilibria is contractible. For every perfect information game there is a unique 

connected and contractible component of subgame perfect equilibria. Finally, the graph of 

the subgame perfect equilibrium correspondence, after a very mild deformation, looks like 

the space of perfect information extensive form games. 
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1 Introduction
Perfect information games have played an important role in the development
of game theory. One of the earliest existence proofs for Nash equilibrium was
given for this class of games (Kuhn (1953)). Perfect information games have
guided equilibrium selection in applied models with multiple equilibria well
before the re…nement debate came into swing (Selten (1965)). They have
provided the playground for the idea of backwards induction in its various
forms. Last, but not least, they have been applied to a large number of im-
portant economic problems: bilateral bargaining, Stackelberg duopoly, wage
and employment determination (Leontief (1946)), monetary policy (Barro
and Gordon (1983)), and numerous other models in industrial organization.

The reason for this prominence is because of the simplicity of perfect
information games. Of course, this is also the reason that perfect informa-
tion is considered such a restrictive assumption in modern game theory. Such
games have the highest possible degree of decomposability. Every move is the
root of a subgame that can in principle be analyzed separately. This invites
the application of a backwards induction or “dynamic programming” proce-
dure. (Incidentally, perfect information games have also been used to show
that such procedures do not necessarily yield intuitive results; see Rosenthal
(1981) on the chain-store paradox.)

Recently, a further application for perfect information games has surfaced
at the intersection of equilibrium selection theory and evolutionary game the-
ory. As an alternative to rationality-based re…nements of Nash equilibrium,
evolutionary game theorists argue that equilibria should be selected that have
certain dynamic (or stochastic) stability properties in evolutionary selection
dynamics. (For an overview on evolutionary game theory see Weibull (1995)
or Samuelson (1997).)

Quite a number of results are already available in this …eld. Though most
refer to normal form games, many use the normal forms of perfect information
games as their benchmarks and for illustrations. The spirit of the exercise is
that an evolutionary selection of the subgame perfect equilibrium outcome
in perfect information games provides a justi…cation for backwards induction
independent of issues of rationality. Moreover, perfect information games are
su¢ciently simple to allow for …rst advances in the theory of evolution on
extensive form games. (See Nöldeke and Samuelson (1993) for an interesting
analysis in more general extensive form games.)

Cressman and Schlag (1998) and Hart (1999) identify conditions for when
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evolution will select the backwards induction solution in (the normal forms
of) perfect information games. In other approaches the results on backwards
induction are more implicit. For example, Marx (1999) shows conditions
under which iterated weak dominance is implied by an adaptive dynamic.
Of course, iterated weak dominance selects the backward induction outcome
in games of perfect information.

Frequently, results about backward induction are implied by results on
strategic stability (see Swinkels (1992) and (1993), Ritzberger and Weibull
(1995), and Demichelis and Ritzberger (2000)). But such indirect conclusions
depend heavily on the structure of the equilibrium set. The well-known
uniqueness of subgame perfect equilibrium in generic perfect information
games is helpful here, but often not su¢cient, because in the normal form
the whole component of Nash equilibria that induces the backwards induction
outcome has to be considered.

In this paper, we aim at a complete description of the structure of the
equilibrium set for perfect information games. Three results are presented.
First, for generic perfect information games all components of Nash equilib-
ria are contractible. For such games with only two players they are convex.
Moreover, each component will contain a pure equilibrium, whatever the
number of players. Second, every perfect information games, even if degen-
erate, has only one component of equilibria that contains subgame perfect
ones; and this component is also contractible. This, together with uniqueness
for generic games, already suggests that the subgame perfect equilibrium cor-
respondence on the space of perfect information games is rather simply. Our
third result shows that an arbitrary small deformation of the graph makes it
“look like” (viz. project homeomorphically onto) the space of games.

There are important applications of these insights. In a recent paper
Demichelis and Ritzberger ((2000), Theorem 1) show that for a component
of Nash equilibria to be asymptotically stable in an evolutionary (determin-
istic continuous-time) selection dynamics (acting on the normal form) it is
necessary that its index (Ritzberger (1994)) coincides with its Euler char-
acteristic. (This is a substantial weakening of an analogous condition used
by Swinkels (1993).) They apply this to two-player outside-option games
(as introduced by van Damme (1989)) to show that, if it selects an outcome
at all, evolution will select the forward induction outcome. (This result on
dynamics is analogous to the result obtained by Hauk and Hurkens (forth-
coming) in a static context.) But there are outside-option games where for
no component the index does agree with the Euler characteristic.

2



The present result implies that for generic perfect information games the
situation is better: for the backwards induction component the index will
always agree with the Euler characteristic. This is because for generic perfect
information games we show that all components are contractible and thus
have Euler characteristic +1. The index assignment is very easy for such
games: since every component with nonzero index contains a Mertens-stable
set (Demichelis and Ritzberger (2000), Theorem 2), the backwards induction
component has index +1 and all other components of equilibria have index 0.
To see this, note that if any other than the backwards induction component
had nonzero index, it would contain a Mertens-stable set (for a de…nition
see Mertens (1989) and (1991)). Since any Mertens-stable set contains a
proper equilibrium (Myerson (1978)) and any proper equilibrium induces a
sequential (hence, subgame perfect) equilibrium in any compatible normal
form (van Damme (1984); Kohlberg and Mertens (1986)), such an other
component would contain a subgame perfect equilibrium, in contradiction
to uniqueness of the latter. That the backwards induction component has
index +1 then follows from the property that the sum of the index across all
components is +1.

That components of equilibria are contractible does not extend to degen-
erate perfect information games. A counterexample is given below. But when
attention is restricted to subgame perfect equilibria, the result is resurrected.
Even for degenerate perfect information games the unique component that
consists of subgame perfect equilibria is contractible.

Degenerate perfect information games are of considerable interest in con-
sidering the properties of the subgame perfect equilibrium correspondence.
At generic points, the subgame perfect equilibrium correspondence is a func-
tion. Hence, the behavior of the correspondence at degenerate games deter-
mines its properties. To clarify this issue, we prove a result analogous to
the structure-theorem by Kohlberg and Mertens ((1986), Theorem 1): the
graph of the subgame perfect equilibrium correspondence can be continu-
ously deformed into the space of perfect information games. In particular,
the subgame perfect equilibrium correspondence is upper hemi-continuous.

The rest of the paper is organized as follows. Section 2 gives basic de-
…nitions. In Section 3 it is shown that all components are contractible in
the generic case. Section 4 focuses on subgame perfect equilibria and con-
tains the other two results. Section 5 concludes. An appendix contains a
discussion of the relation between mixed and behavior strategies.
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2 De…nitions and Notation
The following basic de…nitions for extensive form games are used through-
out. A tree T is a …nite connected directed graph without loops and with a
distinguished node, called the root, that comes before all other nodes. Nodes
that have no successors are called terminal, and all other nodes are called
moves. The set of all nodes is denoted by N , the set of moves by X, and the
root by x0 2 X.

On a tree T de…ne the immediate predecessor function P : N n fx0g ! X
by the condition that P (x) 2 X nfxg comes before x 2 N and all nodes that
come before x come before P (x) or coincide with it, for all x 2 N . That is,
the immediate predecessor P (x) of x is the “latest” node that comes before
x. By convention, extend P to N , setting P (x0) = x0. By …niteness, for
every x 2 N there is some t = 1; 2; ::: such that P t (x) = P (P t¡1 (x)) = x0,
where P 0 is the identity. Hence, x 2 N comes before y 2 N if and only if
there is t = 1; 2; ::: such that x = P t (y).

De…nition 1 An n-player extensive form with perfect information is
a triple F = (T;X ; p), where

² T is a tree,

² X = (X0; X1; :::; Xn) is a partition of X into decision points,

² p : P¡1 (X0) ! R++ is a function such that
X

y2P¡1(x)

p (y) = 1 for all x 2 X0 (1)

which assigns probabilities to (immediate successors of ) chance moves
x 2 X0, where P¡1 (x) = fy 2 N jP (y) = xg for all x 2 X and
P¡1 (X0) ´ [x2X0P ¡1(x).

Moves in X++ ´ [ni=1Xi are decision points of personal players, moves
in X0 are chance moves. A choice for player i is a node y 2 P ¡1 (x) for
some move x 2 Xi. A play is a maximal chain (completely ordered subset)
of nodes that starts with the root and ends with a terminal node. Let W
denote the set of plays for the tree T . By …niteness, terminal nodes and plays
are one-to-one.
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An n-player perfect information extensive form game is a pair G = (F; v),
where F is an n-player extensive form with perfect information and v =
(v1; :::; vn) : W ! Rn is the payo¤ function. A subgame Gx of a perfect
information game G is the extensive form game obtained by restricting G to
the tree rising at x 2 X.

A pure strategy for player i = 1; :::; n in an n-player perfect information
extensive form game G is a function si : Xi ! N such that

P (si (x)) = x for all x 2 Xi (2)

That is, a pure strategy assigns a “next” node for each move belonging to
i. The set of all pure strategies of player i is denoted by Si: The product
S = S1 £ :::£ Sn is the set of all pure strategy combinations.

A mixed strategy for player i is a probability distribution ¾i on Si, and
¢i denotes the simplex of all mixed strategies for player i. The product
£ = ¢1 £ :::£ ¢n is the set of all mixed strategy combinations.

A behavior strategy for player i is a function bi : P ¡1 (Xi) ! R+,where
P¡1 (Xi) ´ [x2XiP ¡1 (x), such that

X

y2P¡1(x)
bi (y) = 1 for all x 2 Xi (3)

and Bi denotes the set of all behavior strategies for player i - a product of
jXij simplices. The subvector (bi (y))y2P¡1(x) for some move x 2 Xi will be
referred to as behavior of player i at x. The product B = B1 £ :::£Bn is the
set of all behavior strategy combinations.

Every pure or behavior strategy combination induces (together with p)
a unique transition probability to a node from its immediate predecessor.
Multiplying transition probabilities over all predecessors of a node induces
a nonnegative real-valued function ¼ on nodes that assigns the probability
¼ (x) of node x 2 N being reached (from the root). From this, a unique
probability distribution ¼ : W ! R+ on plays is obtained, by selecting the
corresponding terminal nodes. This distribution on plays is the outcome
associated with the pure or behavior strategy combination.

Due to the structure of a tree, the basic relation between the outcome
¼ = (¼ (w))w2W and the probability ¼ (x) of a node x 2 N being reached is
given by

¼ (x) =
X

x2w
¼ (w) (4)
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for all x 2 N . (Recall that w 2 W refers both to a terminal node and to a
path. So, x 2 w means simply that x is on the path to w.) Likewise, under
a mixed strategy combination ¾ 2 £ the probability ¼¾ (x) of node x 2 N
being reached is given by

¼¾ (x) =
X

s2S

nY

i=1

¾i (si) ¼s (x) (5)

where ¼s (x) denotes the probability of node x being reached under the pure
strategy combination s 2 S . Selecting the corresponding terminal nodes, this
yields the outcome associated with the mixed strategy combination ¾ 2 £.

The outcome is used to extend the payo¤ function v to pure, mixed, or
behavior strategy combinations by taking the expectation of v with respect to
the outcome over all plays. To distinguish, we denote by u = (u1; :::; un) the
payo¤ function on pure strategy combinations s 2 S, and by U = (U1; :::; Un)
the payo¤ functions on behavior (b 2 B) resp. mixed (¾ 2 £) strategy
combinations.

Since for a given behavior strategy combination b 2 B and every move
x 2 X the function ¼b induces a unique probability distribution ¼b ( : jx )
over plays passing through x, the conditional payo¤ Ui (b jx) from strategy
combination b given x is well de…ned for every x 2 X, all b 2 B, and all
i = 1; :::; n. The same, of course, holds for pure strategies.

Associated with each extensive form game G is its normal form (S; u).
Allowing randomized strategies yields two further normal form games asso-
ciated with G: the mixed extension (£; U ) of (S; u), and the normal form
game (B;U) played with behavior strategies. Here, reference to (£; U) will
be expressed by referring to “equilibria in mixed strategies” (or “mixed equi-
libria”); reference to (B;U ) will be expressed by referring to “equilibria in
behavior strategies”.

Furthermore, every extensive form game gives rise to a reduced normal
form. Two pure strategies of the same player are here called strategically
equivalent (in the extensive form) if they induce the same outcomes1 for all
(pure) strategy combinations among the opponents. The pure-strategy re-
duced normal form (or the reduced normal form, for short) is the (mixed

1Sometimes strategic equivalence is de…ned in the normal form, i.e. by payo¤ ties rather
than outcome ties. If two strategies are strategically equivalent in the extensive form, then
they are in the normal form. Yet, in degenerate cases there my be strategically equivalent
strategies in the normal form that are not equivalent in the extensive form. Generically
the two notions coincide.
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extension of the) normal form game that arises when all strategically equiv-
alent strategies are identi…ed.

Here, the analysis will be conducted in behavior strategies. Yet, what we
will have to say about the topological structure of equilibrium components
carries over to the reduced normal form. (This is shown in the appendix at
the end.) That behavior strategies entail no loss of generality with regard to
attainable outcomes follows from Kuhn’s theorem (Kuhn (1953)) and that
every perfect information game automatically satis…es perfect recall.

A Nash equilibrium for an extensive form game is a strategy combination
such that no player can gain by a unilateral deviation. A Nash equilibrium
is subgame perfect (Selten (1965)) if it induces a Nash equilibrium in every
subgame.

It is well known that for every …nite normal form game the set of mixed
Nash equilibria consists of …nitely many (closed) connected components (see
Kohlberg and Mertens (1986)). Applying this to the agent normal form of
an extensive form game shows that the same is true in behavior strategies.
Furthermore, for generic extensive form games there are only …nitely many
Nash equilibrium outcomes (Kreps and Wilson (1982)). Therefore, for almost
all extensive form games the outcome is constant across every component of
equilibria, both in mixed and in behavior strategies. Accordingly, we call a
perfect information extensive form game G = (F; v) generic if the outcome
is constant across every connected component of Nash equilibria.

3 Generic Perfect Information Games
In this section generic perfect information games are considered. First, con-
sider such a game with only two players. Let C be a component of Nash
equilibria, ¼C the associated outcome induced by (all) equilibria in C, and
b1; b2 2 C two Nash equilibria in the same component. Because the outcome
is constant across C, the equilibrium b1 must induce the same choices as b2
at all decision points that are reached, i.e. for which ¼C (x) > 0.

At unreached (i.e. ¼C (x) = 0) decision points b1 may induce other choices
than b2. But, because (by perfect information) every choice at a decision
point leads to the root of a subgame, the fact that b1 is a Nash equilibrium
with the same outcome as b2 implies that the choices induced by b1i at un-
reached decision points of player i cannot make it pro…table for either player
to choose di¤erently at reached decision points than under b2, for i = 1; 2.
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Figure 1: A three-player perfect information game

Hence, the replacing b2i by b1i is irrelevant to the incentives at reached decision
points. In other words, U3¡i

¡
b1i ; b23¡i jx

¢
¸ U3¡i (b1i ; b3¡i jx ) for all reached

decision points x 2 X3¡i and all b3¡i 2 B3¡i, for i = 1; 2. Therefore, b23¡i is
a best reply against b1i for i = 1; 2.

Since b23¡i is a best reply against b2i by hypothesis, under the assumption
that there are only two players, linearity of the payo¤ function implies that
b23¡i is a best reply against ¸b1i + (1 ¡ ¸)b2i for all ¸ 2 [0; 1], for i = 1; 2.

Interchanging the roles of b1 and b2, an analogous argument shows that
b13¡i is a best reply against ¸b1i + (1 ¡ ¸) b2i for all ¸ 2 [0; 1], for i = 1; 2.
But then, under the assumption of only two players, linearity of the payo¤
function implies that ¹b13¡i+(1¡ ¹) b23¡i is a best reply against ¸b1i+(1¡ ¸) b2i
for all ¹ 2 [0; 1] and all ¸ 2 [0; 1], for i = 1; 2. In particular, ¸b1+(1¡ ¸) b2 2
C is a Nash equilibrium with outcome ¼C for all ¸ 2 [0; 1]. Thus, we have
shown:

Proposition 1 For a …nite generic two-player perfect information extensive
form game, every component of Nash equilibria is convex.

Unfortunately, this conclusion is peculiar to two-player perfect informa-
tion games. With more players only a weaker property holds: it will be
shown that, for a generic perfect information game, all components of Nash
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equilibria are contractible.2 But …rst, it is illustrated that convexity may fail
for more than two players.

Example 1 Consider the three-player extensive form game in Figure 1, where
…rst player 1 can either terminate, yielding v (w1) = (5; 0; 0), or give the
move to player 2. If player 2 is reached, she can terminate, yielding v (w2) =
(0; 3; 3), or give the move to player 3. If player 3 is reached, she chooses be-
tween payo¤ vectors v (w3) = (9; 1; 2) and v (w4) = (1; 2; 1). (The …rst entry
in payo¤ vectors is player 1’s, the second player 2’s, and the third player 3’s
payo¤.) This yields the following normal form.

s12 s22

s11

s21

5
0

0

5
0

0
0

3
3

9
1

2
s13

s12 s22

s11

s21

5
0

0

5
0

0
0

3
3

1
2

1
s23

The component ¹C that contains the subgame perfect equilibrium (the “back-
wards induction component”, henceforth) is given by ¾1 (s11) = 1 and

1 ¸ ¾2
¡
s12

¢
¸

¡
8¾3

¡
s13

¢
¡ 4

¢
=
¡
1 + 8¾3

¡
s13

¢¢

In the face ¾1 (s11) = 1 of the cube £ (in which ¹C is contained) this is depicted
by all points to the northwest of the concave curve in Figure 2, where ¾3 (s13)
is on the horizontal and ¾2 (s12) on the vertical axis. (The subgame perfect
equilibrium is located at the point (1; 1) in Figure 2.) Therefore, ¹C fails to
be convex.

The example also illustrates another point. It is tempting to prove that at
least the backwards induction component ¹C is contractible by starting “at the
end” and contracting behavior strategies towards subgame perfect behavior.
But, in the example, consider the equilibrium where player 1 terminates at
the beginning, player 2 continues, and player 3 chooses v (w4) = (1; 2; 1)
(point (0; 0) in Figure 2), rather than v (w3) = (9; 1; 2), as in the subgame

2A subset of a Euclidean space is contractible if the identity is homotopic to a constant.
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0

1

player 2

1player 3

Figure 2: The backwards induction component is not convex

perfect equilibrium. This is an equilibrium in ¹C , because players 2 and 3
are not reached and their behavior does not induce 1 to deviate. Yet, if
player 3’s choice at her (…nal) decision point is switched to subgame perfect
equilibrium behavior (keeping strategies of other players …xed), the resulting
strategy combination is not an equilibrium. (It corresponds to the bottom-
right point (1; 0) in Figure 2.)

Therefore, and because the argument will apply to all components, the
focus cannot be on subgame perfect behavior. Rather, for a component C
with associated outcome ¼ (constant across the component), consider the
strategy combination obtained by working backwards in the tree, and mod-
ifying the behavior of agents at unreached nodes to minimize the payo¤ of
the last player who is reached along the path to this node. (Note that if
x and y are two unreached nodes along the same path, the “last player” is
the same, and so there is no inconsistency in this construction.) Iteratively
modifying all strategies towards this strategy combination preserves equilib-
rium and the outcome ¼ and, thus, remains inside the component C. This
modi…cation results in a homotopy between the identity on C and a constant
function that maps into a particular strategy combination.

In the example, the relevant player at both unreached nodes is player 1,
and the actions that minimize 1’s payo¤ are s23 and s12:Following this order, all

10



strategy combinations in Figure 2 are …rst moved horizontally to the left edge
of the square, and then vertically up to the top left corner. Note that in this
example, even though the component in question was the backward induction
one, the resultant strategy combination is not the backward induction one.
However, it is, of course, the case that if a set can be contracted to one point
in itself, then it can also be contracted to any other, and so for backward
induction components, the contraction toward the non-backward induction
outcome is only for technical convenience.

Theorem 1 For a …nite generic perfect information extensive form game,
every connected component of Nash equilibria in behavior strategies is con-
tractible.

Proof. Fix a generic perfect information extensive form game and order
decision points as follows. De…ne X0

++ as the union of chance moves X0 with
all terminal nodes and for any t = 1; 2; ::: de…ne Xt++ recursively as the set

©
x 2 X t++

¯̄
if x comes before y 2 N n fxg , then y 2 [t¡1¿=0X¿++

ª
(6)

That is, X1
++ contains all decision points which come before terminal nodes

or chance moves only; from moves in X2
++ only terminal nodes, chance moves,

or moves in X1
++ can be reached, and so forth.

Now, consider a particular component C µ B of Nash equilibria and
let ¼C denote the unique outcome associated with equilibria in C. A move
x 2 X is reached if ¼C (x) =

P
x2w ¼C (w) > 0, otherwise it is unreached (see

(4)).
Because the game is …nite, for any unreached decision point x 2 X++

there is a unique smallest t (x) = 1; 2; ::: such that ¼C
¡
P t(x) (x)

¢
> 0: Denote

this by » (x) = P t(x) (x) and let ¶ (x) 2 f1; :::; ng be the player such that
» (x) 2 X¶(x). That is, »(x) is the last node reached on the path to x; and
¶ (x) is the player to whom »(x) belongs. Note that ¶ (x) must be a personal
player, because » (x) 2 X0 would imply ¼C (y) > 0 for all y 2 P ¡1 (» (x))
in contradiction to the construction of » (x). If x 2 X++ is unreached, then
¼C (y) = 0 for all y 2 N that come (properly) after » (x).

We de…ne now a recursive procedure for how to modify a given equilibrium
b 2 C. Consider any b = b0 2 C and an unreached decision point x 2 X t++.
Assume that behavior at all decision points (of personal players) that come
after x has been adjusted to bt¡1 in accordance with the procedure, where
bt¡1 2 C is an equilibrium with outcome ¼C. (If t = 1 this assumption is
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void, providing a starting point for the recursive procedure.) Let i be such
that x 2 Xi and choose a successor y 2 P¡1(x) such that

U¶(x)
¡
bt¡1 jy

¢
· U¶(x)

¡
bt¡1 jz

¢
for all z 2 P¡1 (x)

Then, modify i’s behavior at x such that y 2 P¡1 (x) is chosen with certainty
and denote the resulting behavior strategy combination by bx =

¡
bt¡1¡i ; bxi

¢
2

B. (That is, bxi is identical to bt¡1i , except possibly at x.)
We claim that ¸bt¡1+(1¡ ¸) bx 2 C for all ¸ 2 [0; 1]: First, since behavior

under bx di¤ers from that under bt¡1 only at the unreached move x, both bx
and bt¡1 must induce the same outcome, ¼C . Next, by the construction of bx;
for any unreached move y 2 X++ player ¶ (y) cannot gain more by deviating
at » (y) under bx than she could have gained under bt¡1: Therefore, if bt¡1 is
an equilibrium, so is bx. Moreover, for any unreached move y 2 X++ player
¶ (y)’s conditional payo¤ U¶(y) (¸bt¡1 + (1 ¡ ¸)bx j» (y)) is linearly increasing
(or constant) in ¸, implying that ¸bt¡1 + (1¡ ¸) bx 2 C for all ¸ 2 [0; 1], as
desired.

Repeat this modi…cation for all x 2 Xt++ to obtain bt 2 C. Since each
x 2 X t++ is the root of a separate subgame (by the perfect information
assumption), all these modi…cations can be done independently.

Now, let ¿ 2 f1; 2; :::g be the maximum over unreached decision points
x 2 X++ such that P ¿ (x) = » (x). We de…ne for every t = 1; :::; ¿ recursively
a continuous function ht : C £ [0; 1] ! C such that ht (b; 0) = b for all b 2 C .
For t = ¿ this will yield the desired homotopy.

De…ne h0 : C £ [0; 1] ! C as the identity, h0 (b; ¸) = b for all b 2 C and
all ¸ 2 [0; 1]. For t > 0, enumerate by x1; :::; xk all unreached moves in X t++,
denote by j(m) the player for whom xm 2 Xt++\Xj(m), let b0 (b) = ht¡1 (b; 1),
and de…ne recursively

bm (b) =
³
bm¡1¡j(m) (b) ; b

xm
j(m)

´
for all m = 1; :::; k

where bxmj(m) is constructed as above. Then, de…ne for every t = 1; :::; ¿ re-
cursively the functions ht : C £ [0; 1] ! C by ht (b; ¸) = ht¡1 (b; 2¸) for all
¸ 2 [0; 1=2] and

ht (b; ¸) = (2k¸ ¡ k ¡m+ 1) bm (b) + (k +m¡ 2k¸)bm¡1 (b)

for all ¸ 2 ((k +m¡ 1) =2k; (k +m) =2k] and all m = 1; :::; k.
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Choosing t = ¿ , a continuous piecewise linear function h¿ : C£[0; 1] ! C
is obtained such that h¿(b; 0) = b for all b 2 C and under h¿(b; 1) for any
unreached move x 2 [¿t=1Xt++ the conditional payo¤ of player ¶ (x) given
» (x) is minimized with respect to behavior at x. Since h¿ (b; 1) does not
depend on b, the desired homotopy has been constructed.

Since mixed strategies of the normal form induce behavior at all decision
points (see Appendix), the logic of the proof carries over to mixed strategies
as well.

Corollary 1 For a …nite generic perfect information extensive form game,
every connected component of Nash equilibria in mixed strategies is con-
tractible, both in the normal form and the reduced normal form.

Proof. For the reduced normal form the statement follows from Proposition
2 in the Appendix. For the (unreduced) normal form, the proof is identical
to the one of Theorem 1, except that any given mixed equilibrium ¾ =
¾0 2 C µ £, for an unreached decision point x 2 Xt++ \ Xi and a node
y 2 arg minz2P¡1(x) U¶(x) (¾t¡1 jz ), is modi…ed as follows.

De…ne Si (y) = fsi 2 Si jsi (x) = yg as the set of i’s pure strategies that
choose y at x, the mapping 'x : Si ! Si (y) by 'x (si) (z) = si (z) for all
z 2 Xi n fxg, and let ¾xi 2 ¢i be the unique mixed strategy that satis…es

¾xi (si) =
X

ri2'¡1
x (si)

¾i (ri) for all si 2 Si (y)

Then the behavior induced by ¾xi agrees with the one induced by ¾i at all
reached (according to ¼C) moves of i.3 Therefore, ¾ 2 C and ¾x = (¾¡i; ¾xi ) 2
£ induce the same outcome (¼C). Moreover, player ¶ (x) cannot gain more
by deviating at » (x) under ¾x than she could have gained under ¾, by the
construction of ¾xi . Hence, if ¾ is an equilibrium, so is ¾x. Linearity of the
payo¤ function in ¾i then implies that ¸¾ + (1¡ ¸) ¾x is an equilibrium for
all ¸ 2 [0; 1]. Since C is connected, it follows that ¸¾ + (1¡ ¸) ¾x 2 C for
all ¸ 2 [0; 1].

Consequently, ¾x can play the same role as bx in the proof of Theorem 1,
and the homotopy can be constructed analogously.

3 In fact, the behavior induced by ¾x
i agrees with the one induced by ¾i at all moves of i

that can be reached under both strategies (each combined with some strategy combination
among the opponents), with the possible exception of x.
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As pointed out earlier, this result has important applications in evolu-
tionary game theory. It implies that, if evolution selects any equilibrium
component at all (by asymptotic stability in a selection dynamics), then for
generic perfect information games it will be the backwards induction com-
ponent (Demichelis and Ritzberger (2000), Theorem 1). This is, because the
backwards induction component is the only one for which its index agrees
with its Euler characteristic.

This, of course, does not imply that there is always a sensible selection
dynamics for which the backwards induction component is asymptotically
stable. In fact, Cressman and Schlag (1998) give an example of a perfect
information game for which the backwards induction component cannot be
asymptotically stable in the replicator dynamics. Since this is a game where
each player has only two strategies, it is easy to show that the backwards
induction component cannot be asymptotically stable in any “payo¤ consis-
tent” (for a de…nition see Demichelis and Ritzberger (2000)) selection dy-
namics either.

Still, Theorem 1 shows that for perfect information games the situation is
better than for two-player outside option games (van Damme (1989), Hauk
and Hurkens (forthcoming)). In the latter class there are games which have
no component for which the index agrees with the Euler characteristic. So,
the present insight represents at least some support for backwards induction.

The preceding result has an additional interesting implication. The ho-
motopy from Theorem 1 yields pure choices at unreached moves. Since at
reached moves a backwards induction argument shows that generically all
choices are pure, it follows that the constant strategy combination h¿ ( : ; 1)
is a pure strategy combination s 2 C which is such that the incentives for
agents at the equilibrium path to deviate into unreached subgames are min-
imized. This demonstrates the following.

Corollary 2 For almost all …nite perfect information extensive form games,
every component of Nash equilibria contains a pure strategy combination.

Topologically Theorem 1 says that the equilibrium set of a generic perfect
information game is equivalent to a …nite collection of points, both in mixed
and behavior strategies. Precisely one of these corresponds to the (unique)
subgame perfect equilibrium.

14



4 Subgame Perfect Equilibria
Perfect information games constitute the prime case where subgame perfect
equilibrium appears to be the natural equilibrium re…nement concept. This is
so because such games have the highest possible degree of decomposability.
Ever player, when called upon to move, knows the entire history that led
to her move, there are no simultaneous decisions, and every choice leads
into a subgame. This makes perfect information game the ideal domain for
backwards induction. Accordingly, we now turn to the set of subgame perfect
equilibria for perfect information games.

First, it is well known that in generic perfect information games the sub-
game perfect equilibrium is unique (in behavior strategies). So, the inter-
esting cases are degenerate perfect information games. But for those, the
conclusion from Theorem 1 on Nash equilibrium components fails, as the
following example shows.

Example 2 Consider again the three-player perfect information game from
Figure 1, but now with the degenerate payo¤ function v (w1) = (0; 0; 0),
v (w2) = (0; 0; 0), v (w3) = (2;¡1; 0), and v (w4) = (¡1; 2; 0). (Player 3’s
payo¤s at w1 and w2 do not matter for the argument.) In this game player 3
is always indi¤erent when she is called upon to move. Yet, depending on what
player 3 chooses, the other players will want to either take their outside op-
tions (s1i for i = 1; 2) or to pass the move on (s2i for i = 1; 2). The set of Nash
equilibria consists of a single connected component that is homeomorphic to
a circle with two rectangles glued to it, and hence, is homotopy-equivalent to
a circle. It is given by the union of

the segment ¾1
¡
s21

¢
= 1, 0 · ¾2

¡
s12

¢
· 1, ¾3

¡
s13

¢
= 2=3,

the rectangle 0 · ¾1
¡
s11

¢
· 1, ¾2

¡
s12

¢
= 1, 2=3 · ¾3

¡
s13

¢
· 1,

the segment ¾1
¡
s11

¢
= ¾2

¡
s12

¢
= 1, 1=3 · ¾3

¡
s13

¢ · 2=3,
the rectangle ¾1

¡
s11

¢
= 1, 0 · ¾2

¡
s12

¢
· 1, 0 · ¾3

¡
s13

¢
· 1=3,

the segment 0 · ¾1
¡
s11

¢
· 1, ¾2

¡
s22

¢
= 1, ¾3

¡
s13

¢
= 1=3,

and the segment ¾1
¡
s21

¢
= ¾2

¡
s22

¢
= 1, 1=3 · ¾3

¡
s13

¢
· 2=3.

Hence, the only component of Nash equilibria in this game is not contractible.
Figure 3 illustrates with ¾1 (s11) on the horizontal axis, ¾2 (s12) on the vertical
axis, and ¾3 (s13) on the third axis.
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0

1

player 3
0

1player 1

0

1

player 2

Figure 3: The set of Nash equilibria is homotopy-equivalent to a circle

But not all the Nash equilibria of this game are subgame perfect. More
precisely, all Nash equilibria belonging to the segment (third piece), ¾1 (s11) =
¾2 (s12) = 1, 1=3 · ¾3 (s13) · 2=3, and the rectangle (fourth piece), ¾1 (s11) =
1, 0 · ¾2 (s12) · 1, 0 · ¾3 (s13) · 1=3, (the rightward “vertical” rectangle and
the upper line segment connecting it to the other rectangle, in Figure 3) fail
subgame perfection. (All other equilibria are subgame perfect.) Therefore, if
only those Nash equilibria, whose outcome corresponds to a subgame perfect
equilibrium, are considered, these do form a contractible component.

The example suggests that, for degenerate perfect information games,
the set of Nash equilibria may have a complicated structure. Yet, the set of
subgame perfect equilibria appears to be simpler. Theorem 2 below shows
that this is indeed so. Intuitively, it says that the set of subgame perfect
equilibria “has no holes”, even for degenerate perfect information games.

Theorem 3 extends this observation to a statement about the graph of
the subgame perfect equilibrium correspondence (from perfect information
games with a …xed tree to, say, behavior strategies). It says that an arbitrary
small perturbation makes the graph of this correspondence into the graph of
a (continuous) function. Figure 4 illustrates this: The bold graph depicts
the correspondence mapping perfect information games (on the horizontal
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strat.

games

Figure 4: Perturbing the subgame perfect equilibrium correspondence

axis) into subgame perfect equilibria (i.e. strategies on the vertical axis); the
broken graph depicts an appropriate small perturbation.

Before stating the theorems, however, it has to be clari…ed what “sub-
game perfect” means for mixed strategies. For the (unreduced) normal form,
subgame perfect equilibria are well de…ned, provided an extension of Bayes’
rule is adopted for decision points that are not reached (see Appendix). Such
an extension, however, cannot be continuous.

For the reduced normal form mixed strategies only induce behavior at de-
cision points that can be reached - but they do so continuously. Thus, for the
reduced normal form subgame perfection has to be de…ned more loosely. Ac-
cordingly, de…ne a mixed equilibrium of the (mixed extension of the) reduced
normal form as subgame perfect if its image in behavior strategies contains
a subgame perfect equilibrium (see Appendix). Since behavior strategies
map continuously into mixed strategies (both for the normal form and the
reduced normal form; see Lemma 2 in the Appendix), we continue to work
with behavior strategies.

Fix an extensive form with perfect information F with n players. Let
B = £ni=1Bi be the associated space of behavior strategy combinations and
identify the set of all payo¤ functions v : W ! Rn with a Euclidean space RK
of appropriate dimension, i.e. with K = n jW j. The latter is then the space
of all perfect information games with extensive form F . The subgame perfect
equilibrium correspondence E : RK ! B maps each perfect information game
G = (F; v) into the set E (v) of its subgame perfect equilibria (in behavior
strategies). Denote by G =

©
(v; b) 2 RK £B jb 2 E (v)

ª
the graph of the

subgame perfect equilibrium correspondence.
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For most of the space of perfect information games E is a function. At
degenerate games the structure of E (v) is yet unknown. The next result
clari…es the geometry of E (v) for all perfect information games.

Theorem 2 For every perfect information extensive form game the set E (v)
of subgame perfect equilibria is contractible.

Proof. For a given extensive form F denote by ¿ (F ) ¸ 1 the unique integer
such that X = [¿ (F )t=0 Xt++. We proceed by induction over the “size” ¿ (F ) of
the tree. If ¿ (F ) = 1, then all moves come before terminal nodes or chance
moves only; hence, there is only a single player, who decides once and for all
at the root. The set E (v) is then the convex hull of this player’s choices, that
maximize the single player’s expected payo¤, and, therefore, a contractible
polyhedron.

Now, suppose the statement of the proposition holds true for all ¿ (F ) =
1; :::; k ¡ 1 and consider an extensive form F for which ¿ (F ) = k. Let i
be the player, who decides …rst (at the root). Each of player i’s choices
leads to the root of a subgame Gx = (Fx; vx) with x 2 P¡1 (x0) for which
¿ (Fx) is at most k ¡ 1 (where vx denotes the restriction of v to the plays
passing through x 2 X ). Hence, by the induction hypothesis, the set of
subgame perfect equilibria of each of the subgames Gx with x 2 P¡1 (x0) is
contractible and polyhedral (in fact, a simplex).

Consider the map Á from E (v) into the product £x2P¡1(x0)E (vx) of sub-
game perfect equilibria of subgames starting immediately after the (decision
at the) root that assigns to each subgame perfect equilibrium of G the equi-
libria that it induces in the subgames Gx with x 2 P¡1 (x0). Since the game
is …nite, this map is surjective, because every (subgame perfect) equilibrium
of a subgame Gx is part of a subgame perfect equilibrium of G by Kuhn’s
Lemma (Kuhn (1953)).

Now consider the preimage Á¡1 (b) of a point

b = (bx)x2P¡1(x0) 2 £x2P¡1(x0)E (vx)

where bx denotes an equilibrium of the subgame Gx for all x 2 P¡1 (x0). This
preimage is nonempty, because the map is surjective. Since the behavior
strategy combination b assigns a unique probability distribution to each set
of plays passing through a move x 2 P¡1 (x0), every such move is associated
with a unique expected payo¤ for player i. Therefore, the preimage Á¡1 (b) is
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the face (subsimplex) of player i’s behaviors simplex spanned by the choices
at the root, that assign payo¤ maximizing choices at the root, and behavior
consistent with b in later parts of the tree, together with b. It follows that
Á¡1 (b) is contractible (in fact, convex).

In other words, Á is a surjection for which the preimage of any point is
contractible. Since, by the induction hypothesis, each E (vx) is also polyhe-
dral, Á is a cell-like map (for a de…nition see Lacher (1969), p. 718). For
cell-like maps on polyhedra Corollary 1.3 of Lacher ((1969), p. 720) implies
that the map is a homotopy equivalence.4 It follows that the whole set E (v)
is contractible also for ¿ (F ) = k.

The proof of Theorem 2 could have been stated for mixed strategies of
the normal form without changing the argument. This observation together
with Proposition 2 (in the Appendix) yields the following.

Corollary 3 For every perfect information extensive form game, the set of
subgame perfect equilibria is contractible, both in the normal form and the
reduced normal form.

Furthermore, since every contractible set is connected, a perfect informa-
tion game cannot have two distinct components of Nash equilibria both of
which contain subgame perfect equilibria. Again, this also holds for all types
of strategies.

Corollary 4 Every perfect information extensive form game has precisely
one connected component of subgame perfect equilibria, both in behavior and
mixed strategies.

At this point we know two things: First, on an open dense subset of RK
the correspondence E is a function. Second, at nongeneric points, where
it is not, E (v) is a contractible set. If the branches of E over generic v’s
hang nicely together by contractible pieces, then there is a good chance that
the whole graph G “looks like” the space RK of games, at least after some
mild deformation. And, indeed, a slight modi…cation of the mapping used
by Kohlberg and Mertens (1986) serves to show precisely this.

As a …rst step, we characterize the mapping introduced by Kohlberg and
Mertens (1986) in a geometrically transparent way.

4We are grateful to Steve Ferry for providing the adequate reference.
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Lemma 1 Let ® : Rl ! ¢l¡1 be de…ned by ® (v) = arg mina2¢l¡1 kv ¡ ak,
where ¢l¡1 denotes the (l ¡ 1)-dimensional unit simplex, for some integer
l ¸ 1. Then:

(a) ® is a continuous function such that a = ® (v) is the unique …xed
point of the mapping fv : ¢l¡1 ! ¢l¡1 de…ned by

fv (b) = arg max
a2¢l¡1

a ¢ (v ¡ b) , for all v 2 Rl

(b) if u = v + re 2 Rl for some r 2 R with e = (1; 1; :::; 1) 2 Rl, then
® (u) = ® (v).

Proof. First, note that kv¡ ak is minimized at a 2 ¢l¡1 if and only if
¡kv¡ ak2 is maximized at a 2 ¢l¡1. Since for all a; b 2 ¢l¡1 and all
¸ 2 (0; 1)

kv¡ ¸a ¡ (1¡ ¸) bk2 · ¸ kv ¡ ak2 + (1 ¡ ¸) kv¡ bk2

where equality implies a = b, that ¢l¡1 is convex implies that ® (v) is unique
for all v 2 Rl. Hence, ® is a function that is continuous by the maximum
theorem (that yields upper hemi-continuity).

(a) That fv has a …xed point, follows from Kakutani’s …xed point theorem
by observing that fv (b) is a face of ¢l¡1 (and, therefore, convex) for all b 2
¢l¡1 and applying the maximum theorem (to deduce upper hemi-continuity).

To see that b 2 fv (b) if and only if b = ® (v), let b 2 ¢l¡1 and a = ® (v).
By de…nition,

kv ¡ bk2 ¸ kv ¡ ak2 = kv ¡ bk2+ 2 (b¡ a) ¢ (v¡ b) + kb¡ ak2 (7)
, kb¡ ak2 · 2a ¢ (v¡ b) ¡ 2b ¢ (v¡ b) (8)

Therefore, if b 2 fv (b) and there is some a 2 ¢l¡1 such that kv ¡ ak <
kv¡ bk, then inequality (7) would be strict, so that

b ¢ (v ¡ b) = max
c2¢l¡1

c ¢ (v ¡ b) ¸ a ¢ (v¡ b) (9)

would imply the contradiction kb¡ ak < 0 by (8). Hence, b 2 fv (b) implies
b = ® (v). Conversely, if b 2 fv (b) and a = ® (v), then (9) implies from (8)
that kb¡ ak2 · 0, i.e. b = a. Because ® is a function, the …xed point of fv
is unique for all v 2 Rl.
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(b) Suppose u = v + re for r 2 R and let a = ® (v). Then, using
e ¢ a = 1 = e ¢ b for all b 2 ¢l¡1,

ku ¡ ak2 = kv ¡ ak2 + 2re ¢ v¡ 2r + r2l ·
kv ¡ bk2 +2re ¢ v ¡ 2r + r2l = ku ¡ bk2

for all b 2 ¢l¡1 veri…es that a = ® (u).

With this intermediate step a proof that G is homeomorphic to RK is
straightforward.

Theorem 3 The graph G of the subgame perfect equilibrium correspondence
is homeomorphic to the space RK of perfect information games.

Proof. Let v 2 RK be the payo¤ vector for a perfect information extensive
form game G = (F; v). For any player i and a decision point x 2 Xi denote
by Hi (x) the set of nodes belonging to P¡1 (Xi) ´ [y2XiP¡1 (y) that come
before x or agree with x. Likewise, for any player i and a node y 2 P ¡1 (Xi)
denote by Li (y) the set of nodes belonging to P¡1 (Xi) that come after y ,
but do not agree with y.

Consider a move x 2 Xt++, for some t ¸ 1, and let i be the player,
who decides at x. Assume that to all moves z 2 X++ (of any player) that
come after x (but do not agree with x) probability distributions az (v) =
(az (y jv ))y2P¡1(z) have already been assigned. (If t = 1 this hypothesis is
void, thereby providing a starting point for the recursive construction.) As-
sociate to each play wy 2W passing through some y 2 P¡1 (x) the “payo¤”

qix (wy jv ) = vi (wy)¡
X

z2Li(y)\wy
aP (z) (z jv )

and denote by Qix (v) = (Qix (y jv ))y2P¡1(x) the corresponding vector of ex-
pected “payo¤s”, where the expectation is taken with respect to the prob-
ability distribution induced on plays (passing through x) by the az (v)’s for
z 2 Xk++ with k < t and p (for chance moves). Set ax (v) = ® (Qix (v)), i.e.

ax (v) = (ax (y jv ))y2P¡1(x) = arg min
a2¢l¡1

kQix (v)¡ ak (10)

where l = jP¡1 (x)j. Do this for all moves in Xt++ and repeat this procedure
for all t, until a probability distribution ax (v) = (ax (y jv ))y2P¡1(x) has been
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assigned to all moves of personal players. Finally, set for all players i = 1; :::; n
and all plays w 2W

v0i (w) = vi (w)¡
X

y2P¡1(Xi )\w
aP (y) (y jv ) and

bi =
³
(bi (y))y2P¡1(x)

´
x2Xi

= (ax (v))x2Xi

Then, b = (bi)ni=1 2 B is a behavior strategy combination and v0 2 RK a
payo¤ vector for the extensive form F . This de…nes a continuous mapping Ã
from RK to RK £B by v 7! (v0; b).

We claim that for any v 2 RK one has Ã (v) = (v0; b) 2 G, i.e., b is
a subgame perfect equilibrium for v0. To see this, let x 2 X t++ \ Xi and
assume that b 2 B assigns optimal behavior at all z 2 [t¡1k=1Xk++. (If t = 1,
then the latter hypothesis is void and, thus, provides the starting point for
an induction argument.) For every play wy 2 W passing through some
y 2 P ¡1 (x) the corresponding payo¤ of i can be written as

v0i (wy) = vi (wy) ¡
X

z2Li(y)\wy
aP (z) (z jv) ¡ bi (y) ¡

X

z2Hi(x)\wy
bi (z) =

qix (wy jv )¡
X

z2Hi(x)\wy
bi (z) ¡ bi (y)

Since the set Hi (x) contains only nodes that come before x (or agree with
it), the sum °x =

P
z2Hi (x)\wy bi (z) is a constant with respect to y 2 P¡1 (x)

(i.e. does not depend on y). Taking expectations over plays passing through
all y 2 P¡1 (x) with respect to the probability distribution induced on plays
by b and p, therefore, yields the vector

(Qix (y jv ) ¡ °x¡ bi (y))y2P¡1(x)
Since by (10) (bi (y))y2P¡1(x) = ax (v) = ® (Qix (v)) = ® (Qix (v)¡ °xe) (the
latter by Lemma 1(b)),

ax (v) = (bi (y))y2P¡1(x) 2 arg max
a2¢l¡1

a ¢ (Qix (v)¡ °xe ¡ ax (v))

by Lemma 1(a), where e = (1; 1; :::; 1) 2 Rl and l = jP¡1 (x)j. Because
Qix (v)¡°x¡ax (v) is precisely the vector of expected payo¤s v0i with respect
to the probability distribution induced on plays (passing through any y 2
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Figure 5: Deformation of the equilibrium correspondence for the normal form

P¡1 (x)) by b and p, this shows that bi also induces optimal behavior at x. By
induction it follows that b 2 B is a subgame perfect equilibrium for v0 2 RK.

Hence, Ã is a continuous mapping from RK to G. To construct an inverse,
simply set for any (v 0; b) 2 RK £G

v00i (w) = v
0
i (w) +

X

y2P¡1(Xi)\w
bi (y)

for every player i and all plays w 2 W. Then, if Ã (v) = (v 0; b) it follows that
v00 = v. Because continuity of Ã is evident from the construction and Ã¡1 is
linear, Ã is the desired homeomorphism.

This shows that the subgame perfect equilibrium correspondence over the
space of perfect information extensive form games is topologically trivial. It
is essentially a function (topologically a constant) that occasionally makes a
few steps that add “vertical” pieces to its graph.

Precisely as in Kohlberg and Mertens ((1986), Theorem 1) it can now be
shown that the projection of the homeomorphism onto the space of (perfect
information) games is properly homotopic to the identity. Hence, the global
degree of the subgame perfect equilibrium correspondence is +1.

Corollary 5 There is a homeomorphism Ã : RK ! G and a proper homo-
topy H : RK £ [0; 1] ! RK such that H (½ ± Ã; 0) = ½ ± Ã, H (½ ± Ã; 1) = id,
and H (½ ± Ã; ¸) is a homeomorphism for all ¸ > 0, where ½ : G ! RK
denotes the projection onto the space of games.

The last part of the corollary points out one important di¤erence between
the graph of the subgame perfect equilibrium correspondence and the graph
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of the Nash equilibrium correspondence on the space of normal form games.
The latter has to be deformed quite substantially to project homeomorphi-
cally onto the space of games. Figure 5 illustrates with (normal form) games
on the horizontal and strategies on the vertical axis: The bold graph depicts
the Nash equilibrium correspondence and the broken one its deformation
that projects homeomorphically onto the space of games.

For the subgame perfect equilibrium correspondence there is an arbitrarily
small deformation that makes its graph project homeomorphically (compare
Figures 4 and 5). This is, because almost everywhere E is a continuous
function.

5 Conclusions
This paper contains three results on perfect information extensive form games.
First, for generic such games all components of Nash equilibria are con-
tractible. (With only two players they are even convex.) Second, even de-
generate perfect information games have only one component of subgame
perfect equilibria, and this component is contractible. Third, the graph of
the subgame perfect equilibrium correspondence, mapping perfect informa-
tion games into behavior strategy combinations, “looks like” the space of
games, at least after a very small deformation.

These results give a complete understanding of the geometry of equilibria
for perfect information games. The …rst result has important applications in
evolutionary game theory. It implies that, for this class of games, only the
backwards induction component can be asymptotically stable in a wide class
of (deterministic continuous time) selection dynamics. The second result says
that, even for degenerate cases, the set of subgame perfect equilibria topolog-
ically resembles a point: a single contractible component. The third result
shows that, on all perfect information games, subgame perfect equilibrium
behaves approximately like a continuous function.

6 Appendix
In this appendix the relation between behavior and mixed strategies is stud-
ied. The purpose is to show that what we have said about the topological
structure of equilibrium components in behavior strategies carries over to
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mixed strategies in the reduced normal form. (The discussion, in fact, ap-
plies to all extensive form games. We phrase it in terms of perfect information
games to save on notation for general extensive form games.)

A …rst observation is that behavior strategies map nicely into mixed
strategies.

Lemma 2 For a perfect information extensive form, the mapping from B to
£ de…ned by

bi =
³
(bi (y))y2P¡1(x)

´
x2Xi

7!
Ã Y

x2Xi
bi (si (x))

!

si2Si

2 ¢i for all i = 1; :::; n

is an embedding.5

Proof. Because the mapping (introduced by Kuhn (1953)) under scrutiny
is continuous by construction and both B and £ are compact subsets of
Euclidean spaces, it is enough to show that the mapping ¥ : B ! £ is
one-to-one. (This is, because any continuous injection from a compact space
to a Hausdor¤ space is an embedding.) For any player i = 1; :::; n and
y 2 P¡1 (Xi) ´ [x2XiP¡1 (x) de…ne Si (y) = fsi 2 Si jsi (P (y)) = yg as the
set of strategies of i that choose y. Since for any x 2 Xi and y 2 P¡1 (x)

1 =
X

y2P¡1(x)

X

si2Si(y)

Y

z2Xi
bi (si (z)) =

X

y2P¡1(x)
bi (y)

X

si2Si

Y

z2Xinfxg
bi (si (z)) =

X

si2Si

Y

z2Xinfxg
bi (si (z))

2
4 X

y2P¡1(x)

bi (y)

3
5 =

X

si2Si

Y

z2Xinfxg
bi (si (z))

it follows that
P
si2Si (y)

Q
x2Xi bi (si (x)) = bi (y) for all y 2 P ¡1 (x) and all

x 2 Xi. Therefore, that the images of bi 2 Bi and b0i 2 Bi in £ agree, implies
that bi = b0i, i.e. the mapping is one-to-one (injective).

This implies that the image of behavior strategies in mixed strategies is a
submanifold of the mixed strategy space with the dimension of the behavior
strategy space. Therefore, unless the player moves only once, there are many
mixed strategies that are not images of behavior strategies. Consequently,

5An embedding is an injection between topological spaces that maps homeomorphically
onto its image.
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there can be mixed equilibria that induce subgame perfect behavior strategy
combinations, without being images of behavior strategy combinations.

A mixed strategy ¾i 2 ¢i for player i in the normal form induces a
behavior strategy bi 2 Bi as follows (see Kuhn (1953)). For every decision
point x 2 Xi, let

Ri (x) = fsi 2 Si j9 s¡i 2 S¡i ´ £j 6=iSj : ¼s (x) > 0, when s= (s¡i; si) 2 Sg

be the strategies of i that can reach x, and Si (y) = fsi 2 Si jsi (x) = yg the
strategies that choose y at x, for all y 2 P¡1 (x). Then, for any x 2 Xi and
y 2 P ¡1 (x),

bi (y) =
P
si2Si(y)\Ri(x)¾i (si)P
si2Ri(x) ¾i (si)

(11)

whenever this quantity is de…ned, and bi =
P
si2Si(y) ¾i (si) otherwise. Since

the mapping from (11) is indeterminate, when
P
si2Ri(x) ¾i (si) becomes zero,

it is not a continuous function. Nor is its composition with the embedding
from Lemma 2 continuous.

Example 3 Consider a player i in a perfect information extensive form
game, who has two choices at the root x0, say, T and B, and then after
B another decision point x1, where she again has two choices, say, L and R.
The player has no other decision points. Then, she has four pure strategies,
say, s1i = TL, s2i = TR, s3i = BL, and s4i = BR. Consider the mixed strategy
¾i = ((1¡ "¡ ±) =2; (1¡ "¡ ±) =2; "; ±) with "; ± > 0 small. This induces the
behavior strategy bi (T ) = 1 ¡ "¡ ±, bi (B) = " + ±, bi (L) = "= (" + ±), and
bi (R) = ±= (" + ±). The image of this behavior strategy under the embedding
¥ from Lemma 2 is

¥i (bi) =
µ
(1¡ "¡ ±) "
" + ±

;
(1 ¡ "¡ ±) ±
" + ±

; "; ±
¶

At ± = 0 this evaluates to (1 ¡ "; 0; "; 0); at " = 0 it evaluates to (0; 1¡ ±; 0; ±).
But at " = ± = 0 the mixed strategy ¾0i = (1=2; 1=2; 0; 0) induces the behavior
strategy b0i (T) = 1, b0i (B) = 0, b0i (L) = 1=2, and b0i (R) = 1=2 that maps
into ¥i (b0i ) = (1=2; 1=2; 0; 0) = ¾0i .

Matters are slightly di¤erent for the (pure-strategy) reduced normal form.
Since, there, a pure strategy induces choices only at decision points that can
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be reached under this strategy, the embedding from Lemma 2 has to be
rede…ned. Moreover, for the reduced normal form, the convention, how to
extend (11) to decision points that cannot be reached, does not apply, because
Si (y) = Ri (x)\ Si (y) for all y 2 P¡1 (x) and all x 2 Xi.

For, if two strategies si; s0i 2 Si (of the unreduced normal form) di¤er
only at decision points x 2 Xi that cannot be reached under either, i.e.
si (x) 6= s0i (x) ) fsi; s0ig µ SinRi (x), then they must clearly be strategically
equivalent. Conversely, if there is a decision point x 2 Xi such that si (x) 6=
s0i (x), but, say, si 2 Ri (x), then there is a play w 2W such that si (x) 2 w
and ¼s (w) > 0, where s = (s¡i; si) 2 S for some strategy combination s¡i 2
S¡i among the opponents, but ¼s0 (w) = 0 (because s0i (x) =2 w) whenever
s0 = (s¡i; s0i) 2 S ; hence, si and s0i cannot be strategically equivalent. In
other words, two strategies are strategically equivalent if and only if they
di¤er only at decision points that cannot be reached under either of the two.

Therefore, a pure strategy si of the reduced normal form speci…es choices
precisely at the decision points in R¡1i (si) = fx 2 Xi jsi 2 Ri (x)g that are
relevant for si, i.e. Si (y) µ Ri (x) for all y 2 P¡1 (x) and all x 2 Xi.
Accordingly, the embedding from Lemma 2 has to be rede…ned as

bi =
³
(bi (y))y2P¡1(x)

´
x2Xi

7!

0
@ Y

x2R¡1
i (si)

bi (si (x))

1
A

si2Si

2 ¢i for all i (12)

Since, for the reduced normal form, Si (y) µ Ri (x) for all y 2 P¡1 (x) and
all x 2 Xi, however, the proof of Lemma 2 stays the same.

The advantage of the reduced normal form is that behavior at decision
points that cannot be reached is irrelevant for the embedding. Therefore,
the discontinuity illustrated in Example 3 cannot occur. To make this pre-
cise, let £¤ be the mixed strategy space of the reduced normal form and
de…ne the correspondence ¯ : £¤ ! B by the requirement that ¯ (¾) sat-
is…es (11) whenever

P
si2Ri(x)¾i (si) > 0, and assigns the whole simplexn

bi : P¡1 (x) ! R+

¯̄
¯
P
y2P¡1(x) bi (y) = 1

o
otherwise, for all x 2 Xi and all

i = 1; :::; n.

Proposition 2 For a perfect information extensive form game, let C µ B
be a connected component of equilibria in behavior strategies, C¤ µ £¤ the
set of mixed strategy combinations ¾ 2 £¤ such that ¯ (¾)\C 6= ;, and ¥ (C)
the image of C in £¤ under the embedding from (12). Then, C ¤ deformation
retracts onto ¥ (C).

27



Proof. By de…nition, ¥ (C) µ C¤. We wish to show that there is a mapping
r : C¤ £ [0; 1] ! C¤ such that (a) r (¾; 0) = ¾ for all ¾ 2 C¤, (b) r (¾; 1) 2
¥ (C) for all ¾ 2 C ¤, and (c) r (¾; ¸) = ¾ for all ¾ 2 ¥ (C) and all ¸ 2 [0; 1].
The composition of ¯ with the embedding ¥ from (12) will serve this purpose.

First, ¯ is an upper hemi-continuous correspondence with convex values
(products of simplices with points). Since ¥ is a continuous function, the
composition ¥ ± ¯ : £¤ ! £¤ is also an upper hemi-continuous correspon-
dence. If we can show that ¥ ± ¯ is single-valued, it would follow that it is a
continuous function.

For …xed ¾ 2 £¤ let µ;µ0 2 ¥ (¯ (¾)) and denote by ¯¾ the values of ¯ at
¾. Suppose there is a move x 2 Xi of player i such that

P
si2Ri (x) ¾i (si) = 0.

Then, there must be a move x0 2 Xi and a choice y0 2 P¡1 (x0) that both
come before x such that

P
si2Ri(x0)¾i (si) > 0, but

P
si2Si(y0) ¾i (si) = 0, i.e.

¯¾i (y0) = 0.
To see this, …rst note that if x0 2 Xi comes before x 2 Xi, then Ri (x) µ

Ri (x0) by de…nition. Second, observe that if for some x0 2 Xi the choice
y0 2 P¡1 (x0) comes before x 2 Xi, then Ri (x) µ Si (y0), because a strategy
si 2 Si for which si (x0) 6= y0 cannot reach x. Third, if there is no decision
point x00 2 Xi nfxg that comes before x such that y0 2 P¡1 (x0) comes before
x00 (i.e. x0 is the “latest” move of i, other than x, that comes before x), then
Ri (x) = Si (y0) µ Ri (x0), because then any strategy that can reach x0 and
chooses y0 at x0 can reach x. Now, let xj 2 Xi for j = 1; :::; k be all the
decision points of i that come before x such that x1 comes before x2, :::, and
xk¡1 comes before xk = x. By …niteness there is a largest j = 1; :::; k ¡ 1
such that

P
si2Ri(xj)¾i (si) > 0. If there would be some yj 2 P ¡1 (xj) that

comes before x such that
P
si2Si(yj )¾i (si) > 0, then

P
si2Ri (xj+1) ¾i (si) > 0

(because yj comes “directly” before xj+1) contradicts the de…nition of xj.
It follows that µi (si) =

Q
x2R¡1

i (si) ¯
¾
i (si (x)) = 0 = µ0i (si), because

si (x0) = y0, for all si 2 Ri (x). Hence, both µi (si) > 0 or µ0i (si) > 0 im-
ply that

P
si2Ri(x) ¾i (si) > 0 for all x 2 R¡1i (si), for all pure strategies si

in the reduced normal form. But at such decision points ¯ assigns a single
value. Hence, because ¥ is a continuous function, µ = µ0, as desired.

Thus, the map µ ´ ¥ ± ¯ : £¤ ! £¤ is a continuous function. By
construction, for each ¾ 2 C¤ and every player i, both ¾i and µi (¾) induce
the same behavior at all decision points of i that are reached by ¾, for all
i = 1; :::; n. Therefore, if ¾ is a Nash equilibrium, so is (¾¡i; µi (¾)) 2 £¤;
and (¾¡i; µi (¾)) induces the same outcome as ¾ 2 C ¤, so (¾¡i; µi (¾)) 2 C¤.
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Then, linearity of the payo¤ function in player i’s mixed strategy implies that
(¾¡i; ¸µi (¾) + (1 ¡ ¸) ¾i) 2 C¤ is a Nash equilibrium that, by (5), induces
the same outcome as ¾ 2 C ¤, for all ¸ 2 [0; 1].

De…ne for each player i = 1; :::; n and all ¸ 2 [0; 1] the function ¸i (¸) =
max f0;minf1; 1¡ i + n¸gg which is continuous, piecewise linear, zero for
all ¸ · (i¡ 1)=n, and equal to 1 for all ¸ ¸ i=n. Then, r : C¤ £ [0; 1] ! C ¤
is given by

ri (¾; ¸) = ¸i (¸) µi (¾) + [1¡ ¸i (¸)]¾i for all i = 1; :::; n

Since ¸i (0) = 0 for all i, r (¾; 0) = ¾ for all ¾ 2 C¤, verifying (a). Since
¸i (1) = 1 for all i, r (¾; 1) = µ (¾) 2 ¥ (C) for all ¾ 2 C¤, verifying (b).
Since µ is the identity on ¥ (C), so is r ( : ; ¸) on ¥ (C) for all ¸ 2 [0; 1],
verifying (c), Thus, r is the desired retraction.

Proposition 2 can be applied regardless of whether subgame perfect or
merely Nash equilibria are considered. This is, because the de…nition of
C¤ requires that all behavior strategy combinations b 2 ¯ (C ¤) induce the
same outcome as some equilibrium b0 2 C in behavior strategies. Hence, if a
mixed strategy combination ¾ 2 £¤ for the reduced normal form is declared
a (mixed) subgame perfect equilibrium if ¯ (¾) contains a subgame perfect
equilibrium in behavior strategies, then C¤ is a component of mixed subgame
perfect equilibria.

Proposition 2 does not say that C ¤ and ¥ (C) are homeomorphic. Indeed,
they can have di¤erent dimensions. The simplest example of this is a trivial
one-player game, where …rst chance chooses a state, then the player learns the
state and gets to choose one of two alternatives at each of her decision points;
the payo¤ is constant across all plays. Then, every strategy is a (subgame
perfect) equilibrium. And all mixed strategies induce (continuously) behavior
strategies as conditional probability distributions. Yet, the space of mixed
strategies is three-dimensional, but the space of behavior strategies (and its
image under the embedding from Lemma 2) is only two-dimensional.
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