[

D

[

~

ALGORITHMS AND COMPUTER PROGRAMS
IN DETERMINISTIC NETWORK OPTIMI-
ZATION APPLIED TO PUBLIC SYSTEMS

by
Christoph E. MANDL

Research Memorandum No,126
February 1978

Die in diesem Forschungsbericht getroffenen Aussagen
liegen im Verantwortungsbereich des Autors und sollen
daher nicht als Aussagen des Instituts fiir HShere

Studien wiedergegeben werden.

D

N

s

i

Abstract

This book reports on the state of the art in application
of deterministic network optimization to public systems,

After general remarks on problems of applying mathematical

“methods to decision problems in public systems in Chapter

1, the fundamental definitions for graphs and networks are
presented in Chapter 2. In Chapter 3 the network flow

problems are discussed: After presenting algorithms for

the well known shortest path and maximum flow problem, the
trafficassignment problem is discussed. In case of constant
arc costs a minimum cost flow algorithm is presented. For

the general case of arc costs,depending on the arc flow to-
gether with multiple origin-destination flow,a new algorithmic
approach is presented that is based on Klein's minimum cost
flow algorithm. The relationships between descriptive and
normative assignment are shown. Chapter 4 deals with algorithms
to find optimal subnetworks on a given network for the follow-
ing problems:

Optimal waste water canal system and optimal filter plant
location to minimize construction and operating costs; optimal
location of emergency service facilities to minimize number

of locations; optimal routes for airplanes to maximize number
of people who fly non-stop from their origin to their desti-
nation; optimal spanning tree for an offshore oil-pipeline
system to minimize cénstruction and operating costs; optimal
investment into a rail network to maximize transportation time
reduction and optimal investment into a road network. Knowing
the optimal network, it might also be of interest how this net-
work should be constructed sequentially. In Chapter 5, an
algorithm for finding the optimal construction sequence of a
waste water canal network is presented, which maximizes the
amount of purified water during construction period. The similar

problem in case of a railway network is treated too.

-IT-

Chapter 6 deals with the problem of finding routes with
minimum length that either pass through all arcs (Chinese
postman problem) or pass through all vertices (travelling
salesman problem). In case the routes may not exceed a
given length different heuristic algorithms are proposed.
The applications to street cleaning, garbage collection

as well as school bus routing are discussed. In the final
Chapter 7 the problem of computing optimal routes for an
urban public transportation system is discussed in detail,
stating a new algorithm for solving it. To most of the presented
algorithms computer programs are listed which are able to

solve small up to medium sized problems.

-III-

Zusammenfassung

In diesem Buch wird der aktuelle Stand der Forschung bei

der Anwendung deterministischer Netzwerk=-Optimierung in
Gffentlichen Systemen dargestellt. Nach einleitenden Be-
merkungen Uber die Probleme, welche bei der Anwendung
mathematischer Methoden auf Entscheidungsfragen auftreten,
werden in Kapitel 2 die notwendigen graphentheoretischen
Begriffe eingeflihrt. Kapitel 3 befaRt sich mit Netzwerk-
fluR-Problemen: Nach der Darstellung der bekannten Algo-
rithmen fir klirzeste Wege und maximale FluR-Probleme wird
das Verkehrszuordnungs (traffic assignment) problem disku=. -~
tiert, Im Fall konstanter Kantenkosten wird ein minimaler
Kosten-Fluf (minimal cost flow) Algorithmus prédsentiert. Fir
den allgemeinen Fall mit Kantenkosten, welche vom Kantenfluf
abhdngen, und mehrfachen Ursprungs-Ziel Fllissen wird ein neuer
Algorithmus dargelegt, welcher eine Verallgemeinerung des
minimalen Kosten-FluB Algorithmus von Klein darstellt. Die
Zusammenhdnge zwischen deskriptiven und normativen Verkehrs-
zuordnungen werden dargestellt, Kapitel 4 behandelt das
Auffinden optimaler Subnetzwerke von gegebenen Netzwerken fiir
die folgenden Fragestellungen: Optimales Abwasserkanalsystem
und optimale Standorte von Kldranlagen zur Minimierung der
Bau- und Betriebskosten; optimale Standorte von Rettungsautos
zur Minimierung der Anzahl Standorte; optimale Flugzeugrouten
zur Maximierung der Anzahl Fluggdste, welche non-stop reisen
kénnen; optimales Ulleitungsnetz im Meer zur Minimierung der
Bau-~ und Betriebskosten; optimaler Ausbau von Schienen- und
Stralfennetzen zur Minimierung der Transportzeiten. Kennt man
das optimale Netzwerk so stellt sich die Frage, in welcher
Reihenfolge die einzelnen Kanten im Netz gebaut werden sollen.
In Kapitel § wird dieses Problem im Falle des Abwasserkanal-
systems (zur Maximierung des geklirten Wassers) und im Falle
eines Schienennetzes (zur Minimierung der Transportzeiten) be-~

handelt. Kapitel 6 beschdftigt sich mit der Frage optimaler

Routen mit minimaler Li&nge, welche entweder jede Kante passieren

(chinesisches Brieftrdgerproblem) oder jeden Knoten passieren

-IV-

(Handelsreisendenproblem). Ist die Routenldnge indes be-
schridnkt, so miissen heuristische Algorithmen verwendet
werden. Die Anwendungen in der Strafenreinigung, Millabfuhr
und Schulbus=-Routenplanung werden aufgezeigt, Im letzten
Kapitel 7 geht es um die Frage, wie optimale Linienfiihrung
in Bus- oder StraRenbahnnetzen gefunden werden kdnnen. Ein

neuer Algorithmus wird erliutert und seine Anwendung dis-

kutiert,

Zu den meisten Algorithmen sind auch Computerprogramme bei=-
gefligt, welche kleine bis mittel groBfe Probleme zu ldsen

imstande sind.

o

™

™

~

Acknowledgements

The origin of this work goes back to 12872, when my colleagues
H.-J.Liithi, A.Polyméris and myself, all working at the Denart-
ment of Operations Research at the Swiss Federal Institute

of Technology, Zirich, started to try to apply OR-methods

to public systems: Therefore I want to thank especially
H.-J.Lithi and A.Polyméris for the many fruitful discussions
on problemsof OR=-applications to public systems,as well as
Prof.F.Weinberg, chairman of the department, for his strong
suppert of our work. The final motivation to write this book
was an invitation for giving a lecture on network optimization
at the Universidade Catolica in Rio de Janeiro in 1977. There-
fore,I also like to thank Prof.Paulo Dalcol, chairman of the
Department of Industrial Engineering at Universidade Catolica,
for his invitation,and all students attending my class for
being such an interested audience. Also I have to thank the
city of Rio de Janeiro itself,not only for the lovely beaches
for recovering,but also for the stimulating atmosphere for

working.

" K.Plasser, Department of Mathematical Methods and Computer

Science at the Institute for Advanced Studies, Vienna, gave

me strong support when implementing the programs at the Institute
for Advanced Studies. Without him,the programming phase would
have taken more time trying to find Fortran-errors. Finally

I want to thank Mrs.I.Hafner for carefully typing the manus-
cript and Mrs.E.Reischl for reading the draft and improving my

English style substantially.

Vienna, February 1978

Fan
£

an

M

o

-V~

Contents

1. OR for public systems: an overview

2. Graphs, networks and combinatorial problems

3. Network flow problems

3.1. Shortest path

3.2 Maximum flow

3.3 Traffic assignment
3.3.1 Network with constant arc costs
3.3.2 Network with variable arc costs

3.4% Exercises

4, Choosing an optimal subnetwork

4,1. Regional waste water management system
4,2 Location of emergency service facilities
4,3 Optimal network for an airline

4,4 Optimal network of a pipeline system

4.5 Optimal expansion of a rail network

4,6 Optimal expansion of a road network

4,7 Exercises

5. Sequential construction of networks under
investment constraints

5.1 Sequential construction of a waste water
management

5.2 Sequential construction of a railway-
network

page

14

14
22
34
35
51

71

75

75
ay
98
108
115
126

137

138

138

154

N

0

™

—

-VII-

6. Selection of routes within a given network

6.1

Street cleaning routes

6.1.1 Street cleaning without limited route
length - the Chinese postman problem

6.1.2 Street cleaning with limited route length
Municipal waste collection

6.2.1 Refuse collection with unlimited route
length - the travelling salesman problem

6.2.2 Refuse collection with limited route
length

School bus routing

Exercisges

7. Route planning for urban public transportation

systems

7.1 The problem and the need for solving it

7.2 Shortest paths in public trénsportation
networks

7.3 Traffic assignment

7.4 Route planning

7.5 Exercises

8. References

page
156

156

157

168

171

171

178
182
196

197

197

199

212

218

240

242

™™

)

1. OR for public systems: an overview

Compared to the applications of OR to military problems and

to industries,the applications of OR in governmental decision
making are rather new and few. It was not until 1965 when an

OR consulting firm was founded in Great Britain- the "Local
Government OR Unit". From 1969 to 1875 the "New York

City Rand Institute" operated also mainly on this purpose.

A lot of articles and some books, e.g. Byrd (1875),Beltrami (1978),
Drake (1972), Gass (1975), Greenberger (1876) and Weinberg et.al.
(1976) appeared. However, the usefulness of an OR approach to
sroblems in public systems has not been shown in all fields

of public services so far. Following Byrd (1975), public

decision making can be categorized into decisions on the

- operational level
- strategic level and
- political level.

Although there are differences between the public administration
of different countries, it seems that in all hierarchies of
public administration the people who hold a higher position are
more interested in political decisions, less in strategic
decisions and least of all in operational decision, However, it
happens that OR applications have proved to be very successful
on the operational level and little on the two other levels.
It's probably partly because of this reason that people in
public administration are not too enthusiastic about OR and
that OR has not been really established in this field.

As OR techniques are a tool for making "better" decisions,
quite naturally the costs of an OR study should be less than
its benefits. Although cost-benefit analysis can be a difficult
job in industries, it has been done for OR studies and for
standard applications,it showed quite good results. Cost-
benefit analysis for public systems is sometimes impossible.
Although‘the costs of an OR study can be easily evaluated in
terms of money, its benefits cannot for many applications be

measured in terms of money. Or, how should one measure the

savings for an improved transportation system that reduces
transportation time, or an improved ambulance system that reduces
the number of people killed by accidents or an improved waste
water management system that results in cleaner water? Therefore
the cost-benefit of OR applications in public systems in many
cases depends on an individual and not always very rational
trade-off between the costs in terms of money and the benefits
measured in some other quantity. Thus, for the successful
application of OR in government,it is necessary to find a person
within public administration that somehow believes in quantitative
methods like OR.

Still, besides all thesedifficulties, the number of OR applications
in public systems is growing. One methodological area has proved
especially useful for planning and decisions at the operational
level, namely network optimization. In the last decade one has
realised that transportation flows, road- and rail-systems,
pipeline systems and other public systems can be modelled as
networks and if such systems are to be planned or improved quite
naturally lead to optimization prcblems on networks. It is the
aim of this book to present results in this field, which were
published in many different journals, in a compact and ordered
form and to explore new application areas to which less attention

has been given so far.

Therefore the approach chosen in this book will be problem oriented
presenting the "easier" problems first and finally leading to the more
complex problems. As a matter of fact transportation problems are
slightly dominating, reflecting the great efforts currently

undertaken in this area. It is the hope that this book will stimulate
applications of network optimization in public systems,as well as
research in this field as there are still enough unsolved urgent

questions.

£
L

N

rmy
[

™

I

i

Besides presenting algorithms, including some research
results of my own, and their applications to computer
programs, - nearly all algorithms are listed as well,

This is done to enable the reader to solve smaller problems

on his own and to give precise descriptions of the algorithms.

I'm quite aware of the fact that the programs are not
optimal as far as necessary storage and computing time are
concerned. Therefore all programs are only applicable

to problems on networks with about 5o vertices, some,like
the traffic assignment program,only apply to networks with
14 vertices. All programs have been tested on a UNIVAC 1106
using the ASCII-Fortran Compiler. No Input-Output Routines
are presented in this book as-they are of no importance and
no computational results are given in general, because they
depend too much on the structure of the problem. Tor any
reports on the performance of the programs I.shall be grate-
ful,

2. Graphs, networks and combinatorial prcblems

In this section we want to introduce the basic definitions
of graphs and networks, namely following Christofides (1875)
and Steenbrink (1974), Besides we will be introducing the
ideas of computational complexity of problems on graphs,
which was presented in a paper by Karp (1975).

A graph is a collection of points or vertices XgsXpsees sX

(denoted by the set X), and a collection of lines ay58n5 00053y
(denoted by the set A) joining all or some of these points.
The graph is then fully described and denoted by the doublet
(X,A), If the lines in A have a direction - which is usually
shown by an arrow - they are called arcs and the resulting
graph is called a directed graph. If the lines have no
orientation they are called links and the graph is non-
directed. In Fig.2.1. an example of a directed and a non-

directed graph is given.

An alternative way to describe a directed graph G y 1s
by specifying the set X of vertices and a correspondence T
which shows how the vertices are related to each other.

I is called a mapping of the set X in X and the graph

is denoted by the doublet G = (X, T),

In the example of Fig.2.1.(a) we have

1]

F(xi) {x3,x7}

rix,) = {xz,x3,x6}

r(xs) {xs}

P(xs) {x3,xu,x5}

and of Fig.2.1.(b)

s

(b) Directed graph

Fig, 2.1.

r(xl) = {x5,%,}
rix,) = {xg}
F(xg) = {xg}
r{xg) = {0} .

A path in a directed graph is any sequence of arcs. where
the final vertex of one is the initial vertex of the next

one, Thus in Fig. 2.1.(b) the sequence of arcs

87189985985
2393,985

41123
are all paths.

Arcs a=(xi,xj) ’ xi#xj which have a common terminal vertex
are called adjacent. Also, two vertices X and x: are called
adjacent if either arc (xi,xj) or arc (xj,xi) or both exist
in the graph. Thus in Fig.2.1.,(b) arcs a,,a, and a, are

adjacent and so are the vertices Xy and x,.

A simple path is a path,which does not use the same arc
more than once. Thus all paths in Fig.2.1.(b) are simple,

An elementary path is a path,which does not use the same
vertex more than once., Thus all paths in Fig.2.1.(b) are
elementary. Obviously an elementary path is also simple

but the reverse is not necessarily true,

A chain is the nondirected counterpart of the path and
applies to nondirected graphs like the one in Fig.2.1.(a).
The definitions for simple and elementary chains are analogical

to the definitions for paths.

o

D

r

A number cij may sometimes be assiocated with an arc
(xi,xj). These numbers can be weights, lengths, costs,
capacities or flows. Also a weight v, may sometimes be
associated with a vertex Xs o Following Steenbrink (1874),

such weighted graphs are called networks,

Considering a path u represented by the sequence of arcs
(al,az,...,ag), the length (or cost) of the path 1(u) is taken
to be the sum of the weights of the arcs appearing in u, i.e,

1(u) =) cig

(xi,xj)ln i

The cardinality of the path u is the number of arcs appearing

in the path.

A loop is an arc whose initial and final vertices are the same.

9
XS a8 Xq.
6
ag
a7 ay
X3
as a3
X 7 x
1 a1 2
Fig.2.2.

In Fig.2.2.,for example,arc ag is a loop. A circuit is a path
in which the initial vertex of the path coincides with the final

vertex, Thus in Fig.2.2. the sequences

are circuits,

An elementary circuit does not use the same vertex more than once.

In Fig.2.2. all circuits are elementary.

An elementary circuit which passes through all vertices of a
given graph is called a Hamiltonian circuit. In Fig. 2.2.

no Hamiltonian circuit exists.
A cycle 1is the counterpart of a circuit in a nondirect graph.

The number of arcs which have a vertex x; as their initial
vertex is called the outdegree of vertex X and similarly
the number of arcs which have X, as their final vertex is

called the indegree of vertex Xs o

It is quite obvious that the sum of the outdegrees or indegrees
of all the vertices in a graph is equal to the total number

of arcs.

For a nondirected graph the degree of a vertex is similarly
defined.

Given a graph G = (X, A),a partial-graph Gp of G is the graph |
(X,Ap) with Apc A. Thus,a partial graph is a graph with the same
number of vertices but with only a subset of the arcs of the
original graph.

Given a graph G = &,I') a subgraph GS is the graph (XS,FS) with

XS ¢ X and for every xieXS, FS(xi) = P(xi)n X Thus, a subgraph

S.
has only a subset XS of the set of vertices of the original

graph but contains all the arcs,whose initial and final vertices
are both within this subset. The two definitions can be combined

to define the partial subgraph. As an example see Fig.2.3.

If a graph represents a railway system with the vertices
representing railway stations and the arcs representing the
rails, then the graph representing only the main connections
is a partial graph, the graph which represents only the
railway system of a special region is a subgraph; and the
graph which represents the main connections of the special

region is a partial subgraph.

qu Xg Xy X
,J
*3
X1 x) X4 X,
(a) Graph (b) Partial graph
Xy Xg Xy X5
¥
Xa c
X1
(c) Subgraph (d) Partial subgraph

Fig.2.3,

A graph is said to be complete if all pairs of vertices are
connected by at least one arc. A graph (X,A) is said to be
symmetric if, whenever an arc (xi,ijis in the set A of arcs,

the opposite arc (xj,xi) also belongs to the set A.

An antisymmetric graph is one in which whenever an arc

(xi,xj)eA, the opposite arc (xj,xi)éA . Obviously an antisymmetric
graph cannot contain loops.

-1o0=-

A nondirected graph is bipartite, if the set %f vertices
. a :

X can be partitioned into ¥wo subsets X~ and X7, so that

all arcs have one terminal vertex in X2 and the other

in Xb.

A graph is called connected (or strong) if for any two
distinct vertices x; and X3 there is at least one path
going from x; to xj. This definition implies that any

two vertices of a strong graph are mutually reachable.

A graph is unilateral if for any two distinct vertices

Xs and xj, there is at least one path going either from
x; to xj or from xj to x..
A graph is called weak, if there is at least one chain
joining every pair of distinct vertices. A graph that
is not weak is called disconnected,

After this rather tiring number of definitions we come

to the problem cf specifying a graph. So far, we have

been describing a graph in form of a picture, The other
possibility, which is especially useful with graphs that have
many vertices and few arcs,is by defining I', such that

a graph G=(X,T). This representation usually is the most
compact form for handling a graph in a computer., Still,
there are two other possibilities left:

Given a graph G, its adjacency matrix is denoted by A=[aij]
and is given by
1 if arc (xi,xj) exists in G
a..
] 0 if arc (xi,xj) does not exist in G

Thus the adjacency matrix. of .the graph shown in Fig.2.3.(a)

is

(N

o

m

e

~

-11=~

Xy X, X3 X, Xe
Xy 0 1 1 0 0
X, 0 0 0 0 1
A = X4 0 1 0 0 0]
X, 1 0 1 1 1
Xe 0 o] 1 0] 0

If one computes from a given adjaceney matrix A its square

Az,this gives all connec

tions between pairs of vertices

that exist via paths of cardinality 2 i.e. paths consisting

of 2 arcs.

Given a graph G of n vertices and m arcs, the incidence

matrix of G is denoted by B= [bij] which is an n x m matrix

and is defined by

0 if x. is
1] if

the initial vertex of arc aj

not a terminal vertex of arc aj or

aj is a loop

the final vertex of arc aj

Therefore, the incidence matrix of the graph shown in

Figur.2.3.(a),is

a; 8, a3 3, 3g 3 a; &g ag

x, /]t 1 0o -1 0 0 0 0 o
x,)1 0 -1 0 0 0 1 0 O
B=x3|0 -1 1 0-1 -1 0 0 0
x,/[0 0 o 1.1 0 0 1 0
xc{0 0 0 0 0 1 -1 -1 0

-12-

Since each arc is adjacent to exactly two vertices, each
column of the incidence matrix contains one 1 and one -1
entry, except when the arc forms a loop. In that case it

contains only zero entries,

If G is a nondirected graph, the incidence matrix is
defined as above, except that all entries of -1 are changed
to +1.

Now many combinatorial problems that are defined on graphs
can with the help of the adjacency matrix be formulated as

a linear integer optimization problem. Therefore,graph and
network.problems are strongly connected with integer
programming. As is well known such problems tend to be
difficult compared to say linear programming., Karp (1975)
analyzed in detail the difficulty or computational complexity
of combinatorial problems. He claims that in general such
problems can be divided into two classes. In the first class
are those problems which can be solved in polynomial time.
That means that if a graph has n vertices,the computational
time to solve the problem defined on this graph is in the
worst case growing with O(nk) where k is some fixed integer
number 1,2,... depending on the problem., Such problems, which
are rather easy, are said to belong to the P-class. Problems
of that kind are the matching problem,shortest paths and

some network-flow problems.

. I the second class, the so-called NP-class,are those problems
which generally can only be solved in exponential time, i.e.
the computational time is in the worst case growing with
O(kn), where n is the number of vertices in the graph and

k is some fixed integer. Clearly, NP-problems cause lot of
troubles in trying to solve them, but as we shall see in

this book many practical problems like general integer
programming, travelling salesman, setcovering and others

arc of the NP-type.

-

-13=-

Thus, for large but difficult problems, approximation
techniques and especially heuristic algorithms are of

great importance and often run with great success. although
the reason for this is still unknown and as Karp (1975)
believes: "The ultimate explanation of this phenomenon will
undoubtedly have to be probabilistic".

Besides, branch-and-bound methods and dynamic programming have
to be recognized as useful tools for solving combinatorial
problems.

An informative bibliography of recent literature on,
combinatorial problems in connection with network optimization
can be found in Golden and Magnanti (1977),

-1l4-

3. Network flow problems

In this somehow preliminary chapter we will discuss
problems that arise within a given network in which
there are flows from vertex to vertex, Such flows can
be cars within a road network, where the roads are
represented by the arcs and the vertices represent
cities. The same model applies to public tranportation
systems, like railway systems or bus systems. But
one can also think of flows in connection with a
waste water canal system or an oil pipeline system.
But the following questions are really important in
transportation systems ,especially on road systems.

3.1, Shortest path

Given a road network ,each driver is confronted with

the problem of finding the best way from his present
location to the one he wishes to go. As an intuitively
quite obvious objective he wishes to reach this

point in the shortest time possible. Of course, other
objéctives might influence him as well, like travelling
rather through beautiful countryside than through

dirty industrial zones. Thus, the stated objective

of minimizing travel time is a simplification, but one
which in fact has proved to model driversbehaviour
pretty well. Therefore,the first step of modelling
drivers behaviour within a given road network is to find

the shortest path between
(1) a given vertex s and another vertex t in the graph

(ii) a given vertex s and all other vertices X € X,
where X is the set of vertices

and

(iii) all pairs of vertices.

-15-

The weight or length of an arc represents in this case the
travel time needed to ‘travel along this specific arc.

Naturally we can assume the length of all arcs c..

lj» 0, as no

negative travel time is possible.
The most efficient algorithm for the solution of the

under (i) and (ii) stated shortest path problems was given
initially by E.Dijkstra.

Dijkstra's Algorithm:

Let l(xi) be the label on vertex X
Step_1 (Initialization):

Set 1(s) = 0 and mark the label as permanent. Set l(xi) T
for all X # s and mark these labels temporarily, Set p-=s.

Step_2 Updating of labels):

For all X; € r(p) and which have temporary labels, update
the labels according to

1(x;) = min [l(xi), 1(p) + c(p,xi)] , (3.1)

. where c(p,xi) is the travel time on the arc (p,xi).

Step_3 (Fixing a label as permanent):

0f all temporarily labelled vertices find x? for which
l(x?) = min fl(xi)] .
Mark the label of x? permanent and set p=x§ .

Step_4 (Termination):

(i) (If only the path from s to t is desired)
~If p=t, 1{p) is the required shortest path length. STOP,
If p # t, go to Step 2.

@i) (If the path from s to every other vertex is required)
If all the vertices are permanently labelled, then the
labels are the lengths of the shortest paths. STOP.

\ If some labels are temporary, go to Step 2.

~-1b=-

Once- the shortest path lengths from s are obtained as the
final values of the vertex labels, the paths themselves
can be obtained by a recursive application of (3.2) below.
Thus if xi is the vertex just before X in the shortest
path from s to Xs then for any given vertex xi,xi can be

found as the one of the remaining vertices for which

l(xi) + c(xi, Xi) = l(xi)

The proof that the above algorithm indeed produces the
shortest paths is quite simple and well known. Thus we
do not state the proof here; one may read it for example
in Christofides (1875),

For the case of a n-vertex completely connected graph,
where the shortest paths between s and all other vertices
are required, the algorithm involves n(n-1¥2 additions and
comparisons at Step 2 and another n(n-1)/2 comparisons

at Step 3. Additionally, at Steps 2 and 3, it is necessary
to determine which vertices are temporarily labelled, which
requires an extra n(n-1)/2 comparison . These figures are
also upper bounds on the number of operations necessary

to find the shortest path from s to a specified t, and can
in fact be realizedif t happens to be the last vertex

to be permanently labelled.

~

i

™

QOO0 0O00O00000000an

aaon

C

LIS

LA]

s 00

¢ s e

s 00

> o0

LI]

s 00

s

e o0

» o0

-17=

##% DIJKSTRA’S ALGORITHM FOR SHORTEST PATH(S)
%%

INPUT

N NUMBER OF VERTICES

IG VECTOR DENOTING THE LENGTHS CF THE ARCS.
THE VECTOR HAS LENGTH N*N.

B B = TRUE MEANS THAT SHORTEST PATH FROM S
TO T IS WANTED ONLY. B = FALSE DENOTES THAT
SHORTEST PATH FROM S TO ALL OTHER VERTICES
IS WANTED

S ORIGIN VERTEX

T DESTINATION VERTEX (ONLY NEEDED IF B = FALSE)

OUTPUT
L(I) LENGTH OF SHORTEST PATH FRGM S TO I

SUBROUTINE SPI(N,IG,L.B,S,T)
INTEGER N,IG(1),L(1),S,T,P
LOGICAL B

STEP 1

L(1)==2%%15
DO 5 I=2,N
J=I=1
L(I)=L(J)
L(S)=0

P=S

STEP 2

1 DO 10 I=1,N

10

L]
e v e

LR)

15

IF(L(I) .GE. 0) GO TO 10
J=IND(P,I,N)

IF(IG(J) .LE. 0) GO TO 10
M==L(P)-IG(J)
L{I)=MAXO(L(I),M)
CONTINUE

STEP 3

M=_2%%15

DO 15 I=1,N

IF(L(I) .GE. Q) GO TO 15
IF(L(I) .LE. M) GO TO 15
M=L(I)

pP=I

CONTINUE

L(P)==-M

IF(.NOT.B) GO TO 30

C ... STEP 4 (I)

C

v e

aaon

IF(P .NE. T) GO TO 1
GO TO &5

_. STEP 4 (II)

30

~
[

=
25

DO 20 I=1,N

IF(L(I) .LT. 0) GO TO 1
CONTINUE

CONTINUE

RETURN

END

FUNCTION IND(I,J,N)
INTEGER I,J,N
IND=(I-1)*N+J
RETURN

END

]88 =

C ~19=

When the shortest paths between all pairs of vertices of

< a graph are required, an obvious way for obtaining the
answer is to apply Dijkstra's algorithm n times, each
time with a different starting vertex s. INn the case
of a complete graph,the resulting calculation time would

& be proportional to n3. We now describe a different approach
to the problem. The following method requires computation

time proportional to n3

, but is in general about 50 % faster
than the application of Dijkstra's algorithm n times. This

£ algorithm was first described by R.W.Floyd.

Floyd's Algorithm:

It is assumed that the matrix of the arc lengths Cy3 has been

e J
initialized so that ¢;; = 0 for all i=1,2,...,n, and Ciy=@
whenever arc (xi,xj) is not in the graph G.
- Step_1 (Initialization):
Set k = O
Step_2 (Iteration):
f Set k = ktl,
| For all i#k such that cik¢ «» and all j#k such that ckjiw,
perform
c;j = min Ecij’ (cik+ckj)] (3.3)

]

Step_3 (Termination):

(a) If k=n, the solution has been reached and [bij]gives the
lengths of all shortest paths. Stop.

(b) If k< n, return to Step 2.
The shortest paths themselves can once more be cbtained from

the shortest path lengths using a recursive relation similar
- to (3.2) .

-20=-

Alternatively, a bookkeeping mechanism can be used to recard
(concurrently with the shortest path lengths) information
about the paths themselves. The technique involves the storage
and updating of a second n x n - matrix D=€dij) in addition

to the cost matrix C, The entry dij implies that dij is the
vertex just before vertex Xj on the shortest path from x; to
x.. The matrix D is initialized so that dij = Xs for all X4

B
and X-.

]
Following (3.3) in Step 2 of the algorithm one would then
introduce the updating of matrix D as follows

. e .
d if (cik + c,.) <Cij in (3.3)

k3’ k3
d..

ij
)

unchanged, if c.. ¢ (c., + cC

i] ik k3

At the end of the algorithm the shortest path can be obtained
immediately from the final D matrix. Thus, if the shortest
path between any two vertices Xy and X3 is required; this path

is given in the vertex sequence

=d, , x_ = di etc. until flnally,xi = div‘

It should perhaps be pointed out here that had all ST been
initialized to = (instead of at 0), at the start of the algorithm,
then the final values of sy would be the cost of the shortest

circuit through vertex X4

0000000000000 00a0

QOO0

OO0

. .

-21-

. ¥#% F{OYD’S ALGORITHM FOR SHORTEST PATHS
ET L

. INPUT

.« N NUMBER OF VERTICES
. IG(L) LENGTH OF ARC FROM I TO J, WHERE L=(I-1)#*N+J

IF IG(L)=0 THEN ARC(I,J) DOES NOT EXIST

. OUTPUT

.. IG LENGTH OF SHORTEST PATHS
. D VECTOR FOR FINDING THE VERTICES BELONGING

TO THE SHORTEST PATHS

. C IF C = TRUE A CIRCUIT WITH NEGATIVE LENGTH

15
10

30
35

EXISTS

SUBROUTINE SPII(N,IG,D,C)
INTEGER N,IG(1),D(1)
LOGICAL C

C=.FALSE.

. STEP 1

DO 20 I=1,N

DO 25 J=1,N

K=IND(I,J,N)

D(K)=I

CONTINUE

M=N#*N

Do 22 I=1,M

IF(IG(I) .EQ. 0) IG(I)=2%#34
CONTINUE

. STEP 2 AND 3

DO 5 K=1,N

DO 10 I=1,N

L=IND(I,K,N)

IF(I.EQ.K .OR. IG(L).EQ.2%¥¥34) GO TO 10
DO 15 J=1,N

L1=IND(K, J N)

IF(J.EQ. K .OR. IG(L1).EQ. ”**34) GO TO 15
M=IG(L)+IG(L1)

L2=IND(I,J,N)

IF(M .LT. IG(L2)) D(L2)=D(L1)
IG(L2)=MINO(IG(L2),M)

IF(IG(L2) .LT. O .AND. I.EQ.J) GO TO 30
CONTINUE

CONTINUE

CONTINUE

GO TO 35

C=.TRUE.

CONTINUE

RETURN

END

3.2, Maximum flow:

In designing a future road network, the traffic engineer
has to determine the capacities of streets and intersections
as a function of rocad widths, number of lanes, shoulder
widths, gradients, traffic signalization, etc. Depending

on the level of service provided, capacities are chosen

and the future network tested by checking whether the
estimated traffic exceeds any capacities. If so, more
capacity can be provided by designing improved facilities.

In this context a capacity qij is associated with ewery

arc (xi,xj) of a given network G, and this capacity
represents the largest amount of flow that can be transmitted
along the arc, where flow here means the number of vehicles
per hour. It then raises the major question how many vehicles
per hour can travel from a vertex s to a different vertex t,
which is the so called maximal flow problem. A solution to
this problem also indicates the parts of the rocad network,
which are saturated and form a bottleneck as far as the

flow between two given locations is concerned,

An interesting point worth noting is that it is the
intersections rather than the streets,which are potential
bottlenecks in a city street network. The emphasis on link
capacities in flow theory is more appropriate to a main

road network where the vertices are not of direct traffic
significance., But it is not difficult to include vertex
capacities - they are easily reduced by representing a
capacitated vertex by two vertices joined by one capacitated

dummy arc in the following way:

Let the maximum flow between vertices s and t of a network
G be required, Define a network GQ,so that every vertex
xj of network G corresponds to two vertices xg and xg in
the network GO, in such a way that for every arc (xi,xj)
of G incident to X3 corresponds an arc (x;, xg) of Go in-

cident'max; and for every arc (xj,xk) of G emanating from

&

m

[

n

23

xj corresponds an arc (xg,x;) of Go emanating
from xg . Moreover, an arc between x; and xg of capacity
w. (the capacity of vertex xj) is introduced. As an

J
example see Fig.3.1,.

(w3) (wu)
x3‘ 23 Xy,
a al

31 azu auz
X 249 X
(wl) (w2)

(a) Graph with vertex and arc capacities

(b) Equivalent graph with arc capacities only

Fig. 3.1,

Sometimes it is of interest not only to know the maximum
flow between vertex s and t but between nS source vertices

to n_. sink vertices where flow can go from any source to

t

-4

any $ink. This problem can be converted to the simple
(s to t) maximum flow problem by adding a new artificial
source vertex s and sink vertex t with added arcs leading
from s to all ng source vertices and from every sink

to t as given in Fig.3.2.

//’Sl O{\
s t2
s network G t3 t
—0 °3 q—
| i -~
| ;/
\ |
» \/
NG .
_/
Fig.3.2.

We shall now state the maximum flow problem mathematically.

Consider the network G=(X,A) with integer arc capacities qij’
a source vertex s and a terminal vertex t (called sink):

(s and teX) . A set of numbers fijdefined on the arcs
(xi,x.)eA are called flows in the arcs if they satisfy the

following conditions:

f.. = f,.. = -v if x. = t (3.4

-

m

~

m

-25~

and

O¢f.. ¢ q..

ij i3 for all (xi, xj) e A (3.5)

Equation (3.4) is an equation of conservation of flow
(also known as Kirchhoff's law) and states that the flow
into a vertex X is equal to the flow out of the same
vertex ,except for the source and sink vertices s and tsfor
which there is a net out flow and inflow of value v
respectively., Equation (3.5 simply states the capacity
constraint for each arc of the network G. The objective

is to find a set of arc flows, so that

v = z f

xjsP(S)

, £ (3.6)
xker'l(t) Kkt

s]
is maximized ,where fsj and fkt are written for the flows
from vertex s to xj and from X, to t respectively.

Before now presenting the algorithm,Weé have first to introduce
the definition of a cut=-set, which we shall need for a theorem
stating the similarity between maximum flow and minimum cut.
This theorem will be the basis of the algorithm.

If the set of vertices X of a graph G=(X,A) is partiticned
into two complementary sets XO, Xo, then the subset of A
defined by

(X 4, X)) = {(xi,xj)l(xi,xj)s A, x;eX_, x:eX)}

o? "o]

is called a cut-set, We emphasize the fact that a cut-set is
a subset of directed links. For the graph illustrated in
Fig.3.3.

(XO,XO) = {a2, agy g a8}

-25=

and
(XO,XO) = {a3}

are cut-sets with X = {xl,xu} and X = {xz,xa} .

a
x“r >8 :3
as
al\/ a7
a
X = 2
1
a3 a&
Fig‘ 3. 3 L]

Maximum=flow minimum=-cut theorem:

The value of the maximum flow from s to t is equal to the
value of the minimum cut-set (Xm,Xm) separating s from t.

A cut-set (XO,XO) separates s from t if se Xo and teX,.
The value of such a cut-set is the sum of the capacities

of all arcs belonging to the cut-set; i.e.

VX _,X) = - Q.-
o*o 1]
(xi,xj)e(Xo,Xo)

The minimum cut-~-set (Xm,Xm) is then the cut-set with the

smallest such value,

[

o

-27-

Proof:

A constructive proof of the theorem is given and the
method of construction immediately suggests the labelling
algorithm which follows.

Obviocusly, the maximum flow from s to t cannot be greater
than v(Xm,imL since all paths leading from s to t use

one of the arcs of this cut-set. The aim of the proof is

therefore, to show that a flow exists which attains this

value. Let us now assume a flow given by the m-dimensional
vector f with the elements all nonnegative integers and

define a cut set (Xo,io) by recursively applying step (b)
below:

(a) Start by setting Xo = {s}

(b) If xieXo, and either fij <qij’ or %j_> 0 place
xj in the set XO and repeat the step until XO

cannot be increased further

Then two cases.can occur, either teXo or téXo.

Case 1 (teXo):

According to step (b) above ton implies that a chain of
arcs from vertex s to vertex t exists, so that for every
arc (xi,xj) used by the chain in the forward direction
13 © 943
by the chain in the backward direction i.e. in the

(forward arcs), £ 3 and for every arc (xk,xl) used

direction from Xy to %, (backward arcs), fkl’ 0. (This
chain of arcs will be called a flow-augmenting chain).

Let
de = min (qi.-fij), (xi,xj) forward
(X, 4%X.)
i*73
dy = min (fkl), (xk,xl) backward
(xk,xl)

d = min (df,db) = positive integer

-28=-

If now d is added to the flow in all forward arcs and
subtracted from the flow in all backward arcs of the
chain, the net result is a new feasible flow with a value
d units greater than the previous one. This is apparent,
since the addition of d to the flow in the forward arcs
cannot violate any of the arc capacities of these arcs
(since d sdf) and the substraction of 4 from the flow

in the backward arcs cannot make the flow in these arcs

negative (since d $db).

Using the new improved flow,one can then reapply steps.
(a) and (b) above to define a new cut set (XO,XO) and

repeat the argument,

Case 2 (t¢Xo):

If tfxo then according to step (b) fij:qij for all (xi,xj)e

(XO,XO) and f, ,=0 for all (xk,xl)e(XO,XO).

kl
Hence
. fig ot) . 954
(xi,xj)e(XO,Xo) (xi,xj)e(Xo,Xo)
and
I _fx1 =0
(xk,xl)e(Xo,Xo)

Therefore the value of the flow which is

- £

. f.. 7.
k1l
(xi,xj;e(XO,Xo) 1] (%, %) e (X, X))

is equal to the value of the cut (Xo,io).

Since in case 1 the flow is continuously increased by at least
one unit, then assuming all qij are finite integers, the

maximum flow must be obtained in a finite number of steps

-29-

when case 2 occurs, That flow then equals the value of the
current cut (XO,XO) which must therefore be the
minimium cut. As a result of this proof the following

algorithm can now be stated.

Labelling algorithm for the (s to t) maximum flow problem:

The algorithm starts with an arbitrary feasible flow (zero
flow may be used) and then tries to increase the flow value
systematically, searching all possible flow=-augmenting chains
from s to t. The search for a flow=-augmenting chain is
carried out by attaching labels to vertices indicating

the arc along which the flow may be increased and by how
much. Once such a chain is found, the flow along it is
increased to its maximum value, all vertex labels are
erased and the new flow is used as a basis for relabelling.
When no flow-augmenting chain can be found the algorithm
terminates with the maximal flow.

A, The labelling process:

A vertex can only be in one of three possible states;
labelled and scanned (i.e. it has a label and all adjacent
vertices have been processed), labelled and unscanned

(i.e. it has a label but not all its adjacent vertices

have been processed) and unlabelled. A label on a vertex

Xs is composed of two parts and takes one of the two

forms (+xj,d) or (rxj,d). The part +xj of the first

type of label implies that thglflow along arc (xj,xi)

can be increased., The part -xj of the alternative type

of label implies that the flow along arc (xi,xj) can be
decreased. d represents in both cases the maximum amount of
extra flow that can be sent from s to Xs along the
augmenting chain being constructed. The labelling of vertex
X corresponds to finding a flow-augmenting chain from s

to Xy '

-30-

Initially all vertices are unlabelled.

Step_1: Label s by (+s, d = »), s is now labelled

and unscanned and all other vertices are unlabelled,

Step_2: Choose any labelled unscanned vertex X and

suppose its label is e xk,di).

(1) To all vertices xjer(xi) that are unlabelled

for which f.,. < q.. attach the label (+x,,d.) where
1] 1] 173

dj = min (di,qij-fij)

and

(ii) To all vertices xjer-l(xi) that are unlabelled
and for which fjifo attach the label (-xi,dj)
where '

dj = mln(di,fji).

(The vertex'xi is now labelled and scanned and the

vertices Xj labelled by (i) and (ii) are labelled

and unscanned). Indicate that X3 is now scanned by

marking it in some way.

Step_3: Repeat Step 2 until either t is labelled,in
which case proceed to Step 4,or t is unlabelled and
no more labels can be placed,in which case the
algorithm terminates with f as the maximum flow
vector, It should be noted hese that if Xo is the

set of labelled vertices and Xo,the set of unlabelled

ones then (Xo,io) is the minimum cut.

B, Flow augmenting process:

Step_u4: Let x=t and got to Step 5.
Step_5: 4 .
(i) If the label on x is of the form (+z,dx), change the

flow along the arc (z,x) from fzx to £, +d,.

o

D

™

M

-31-

(ii) If the label on x is of the form (-z,dx) change

the flow along the arc (x,z) from fxz to
fxz - dt'
Step_6:
If z=s, erase all labels and go to Step 1 to repeat the
labelling process starting from the new improved
flow calculated in Step 5.
If z#s set x=z and go to Step 5.

Qa0

aaao

aan

QOO0 O00O00O00000

aaQa

-30 =

. ¥EE MAXTMUM FLOW ALGORITHM

, EEX

... INPUT

. N NUMBER OF VERTICES
. Q(L) CAPACITY OF ARC(I,J), WHERE L=(I-1)*N+J
. S ORIGIN VERTEX OF FLOW

.o T DESTINATION VERTEX OF FLOW
.V IF V>0, FLOW OF VALUE V IS FOUND

. OUTPUT

F(L) FLOW ON ARC(I,J), WHERE L=(I-1)%*N+J

SUBROUTINE MAXFLO(N,Q,F,S,T,V)
INTEGER Q(1),F(1),S,T,N,L1(52),La(52),X,V,VV

. STEP 1

10
15

Vv=0
M=N#*N

DO 10 I=1,M
F(I)=0

D0 5 I=1,N
L1(I)=0
L2(I)==1
L1(S)=S
L2(S)=-2%%18

. STEP 2

20

25
30

35

DO 25 J=1,N

IF(L1(J).EQ.0 .OR. L2(J).GT.0) GO TO 25
I=J

GO TO 30

CONTINUE

RETURN

L2(I)=-L2(I)

STEP 2 (I)

DO 35 J=1,N

IF(I.EQ.J) GO TO 35

L=IND(I,J,N)

IF(Q(L).LE.,F(L) .OR. L1(J).NE.O) GO TO 35
L1(J)=I

K=Q(L)-F(L)

L2(J)==-MINO(L2(I),K)

CONTINUE

. STEP 2 (II)

DO 40 J=1,N
IF(I.EQ.J) GO TO 40
L=IND(J,I,N)

QOO OO0 OO0 aaa

JnaOan

40

IF(F(L).EQ.0 .OR. (Q(L).EQ.0 .OR.L1(J).NE.0)) GO TO 40

L1(Jd)=-I
L2(J)==-MINO(L2(1),F(L))
CONTINUE

. STEP 3

45

IF(L1(T).EQ.0) GO TO 20
STEP 4

X=T

IF(V ,LE. 0) GO TO 45
VV=VV+IABS(L2(T))
IF(VV .LE. V) GO TO 45
VV=VV-IABS(L2(T))
L2(T)=V-VV

V=V

IF(L1(X).LT.0) GO TO 50

STEP 5 (I)

M=L1(X)

L=IND(M, X,N)
F(L)=F(L)+IABS(L2(T))
GO TC 55

. STEP 5 (II)

50

M=-L1(X)
L=IND(X,M,N)
F(L)=F(L)-IABS(L2(T))

STEP 6

IF(V.GT.0 .AND. (VV.EQ.V .AND. M.EQ.S)) RETURN

IF(M.EQ.S) GO TO 15
X=M

GO TO 45

END

=33~

-3lUa

3.3, Traffic assignment

Given a road network with many souree and sink vertices,
the problem of finding out how much flow to assign to
each arc of the network, such that the conservation
equations of (3.4,) are satisfied,is called traffic
assignment. It is obvious that there are many solutions
to this general assignment or, to put it another way,
that it is possible to apply further criteria to the
assignment. Two approaches seem particularly interesting
for practical problems, namely the descriptive and the
normative assignment. Descriptive assignment tries to
model the flows,the way car drivers would behave in
real road networks. Normative assignment tries to model
the flows,such that it would be best for all drivers.

In this sense descriptive also means optimal to the
individual driver and nermative means optimal to the
drivers as a society. These two approaches are stated

in the Wardrop principles, which give the following

criteria for determining the distribution of traffic

(i) Descriptive assignment:
The journey time on all routes actually used are
equal and less than those which would be
experienced by a single vehicle on any unused

route,

(ii) Normative assignment:
The average journey time is a minimum, Of course,
as we already discussed earlier, travel time will
not be the only decision variable to be considered.
But if we interpret the weights on arcs not just
as journey time but more general as journey costS,
these parameters could be not only a measure for
time but also implicitely include other important

factors, like quality of the road, scenery, noise

{

£

™

(’“\

=35=

and others. Thus we shall rather talk about travel

costs than time.

In the next chapters we shall first discuss the
application of Wardrop's principles (or extremal
principles as they are called too) to a single
source-sink network with capacity constraints on all
arcs and constant arc costs. This will also lead to
some insight on the relation between descriptive

and normative assignment and result in the presentation
of an algorithm to solve this problem. As a more
realistic model we shall then discuss a multiple source-
sink network with arc costs increasing with the flow,
but no capacity constraints. This model can also be
generalized to a model where the created flow in the
souprce vertices depends on the travel costs, i.e., if
travel costs are highsless people will travel to such
a destination than if travel costs are 1low. Such
models, also called trip distribution models, have
the disadvantage that only heuristic algorithms are
known which are not very satisfying, thus real world
applications seem to be very limited. A presentation
of such models can be found in Oliver & Potts (1972)
and also in Florian et,al., (1975) and Florian (1976),

Network with constant arc costs

We shall first discuss the normative assignment., On
this purpose we formulate our problem as a linear
program in the following way:

In (3.4) we defined Kirchhoff's law in terms of
flows through arcs. Another equivalent approach is ta
define the conservation equations in terms of flows
through elementary paths,connecting the source with
the terminal vertex. In this formulation of network

-36=-

flow, it is convenient to denote the arcs by i=1,2,...,1;
the arc flows by fi’ the source-sink elementary paths
by m., 3j=1,2,...,m and the path flows by hj. Then the

]
flow value v is given by the conservation equation

v =] h (3.7
The arc flows fj resulting from the path flows hj can

be obtained by letting

1, if arc i is on path m. ,
] (3.8)
a..

13 0, otherwise

so that
£; = ; aj3hy- (3,9

We now can state the normative assignment as the

linear program

hj)o j:1,...’m
(3.1
Z h:. = v
] J
i, < -
fl - zaij ql l 1,...,1
]
min § hic. = C (3.1

3 J 3

where q; is the capacity constraint on arc i

and cj is the travel cost on path j (which is the sum

of all costs of arcs belonging to J).

o

£

-37=

The objective (3.11) is exactly the formulation of Wardrop's
second principle, if cj represents the journey time on the
jth path. In this case C is the total journey time.

From theory of linear programming it is well known that
the dual program of (3.,10) and (3.11) (with dual variables
v and -ni) can be written as

vV - Z aij ui\< Cj j=1’2’oo-,m (3'12)
i
v unrestricted in sign (3.13)
uy ¥ 0 1= 1,2,.0..,1 (3.18)
max: vv - z w;q; =V (3.19)
1

For optimal solutions h? of the primal problem (with
corresponding optimal arc flows fz) and the optimal
solutions v*, u; of the dual, the duality theory implies

that is

1 hg‘ c. = vi:v - 1% q. (3.16)

as well as the complementary slackness inferences:

if h’JF>o, then v* - E a; “}it = o (3.17)
if vE - E aiju’i‘ <c;y then h’; = 0 (3.18)
if £} = § a h;;(qi, then u} = O (3.19)
if uz >0, then f? = § aijh§ = q; (3.20)

-38=-

It is now possible to analyse the relation between
normative assignement (as above stated) and descriptive
assignment. On this purpose we introduce the following
terminology. An arc is called saturated if fi = q.
and unsatured if fi< q; - Fora given network flow, some
or all of the flow on a particular (s to t) path can be
diverted to another path, provided that all those arcs
on the second path that do not belong to the first one
are unsaturated. Any such path is said to be available
for flow from the first pathj; otherwise, the path is
said to be unavailable. A path may be available for
flow from one path but unavailable for flow from

another.

If we reformulate Wardrop's first principle in the

following way

(i') The journey time (route cost) on all paths is less
than or equal to the journey time on any path available
for flow from it

We shall show now that a normative assignment,as stated

in (3,10) and (3.11), also is a descriptive assignment

in its extended form of the first principle,as stated in

(i'), but that there exist descriptive assignments that

are not normative,

Suppose that path j has positive flow at the optimal
solution of the normative assignment (i.e, h?) 0). Then
(3.17) implies

x *x
- . . = ‘e 3,21
) E al] My c] ()

If k is a path available for flow from j, then the
arcs of k,that do not belong to j,are unsaturated and hence

by (3.19) , the corresponding values of u? are zero, giving

x *
z Q.. W z A,y He (3.22)
2 iJ "1] ik "1

s

-39

From (3.12) , (3.21) and (3.22) , it therefore follows
that

I

. WX _ 152_ *®
c. = v Zaiju. v Eaiku £ c

J i i< Tk

as required for a descriptive assignment.

o

That the contrary (i.e. descriptive assignment is also

normative) need not be true can be proven by a simple

€ counterexample:
Example 1:
Given the network of Fig.3.4., with a flow value v=9
= from vertex s to vertex t-and arc capacities and costs
given in Fig.3.5.
4
1 ' 9
€
s 3 ¢ 8 t
y
6 \
2 lo
. 7
¢ . 7
Fig.3 4.
C arc number arc capacity arc cost
i q; o
1 B 1
[2 4 5
3) 1
4 6 3
5 1 7
. 6 3 1
7 L 6
8 6 3
9 4)
5 1o 6 3

Fig.3.5.

b=

From Fig.3.% it is clear that there exist 9 elementary
paths mj for which the route costs cj can be computed

as the sum of the arc costs o, over those arcs which
belong to ms . The problem can then be formulated like
(3.10) and (3.11) and solved with, for example, the
simplex-method (we shall present a more efficient
algorithm for this special linear program later). The
optimal solution is given in Fig.3.6 Therefore the
minimal total ‘

route path arc arc
path arcs cost flow flow number
. % * .
. c. h’ £
m i 3 3 5 i
m, 1,3,6,8,10 9 0 6 1
my, | 1,3,6,9 9 0 3 2
0 3
m, 1,3,7,10 11 0 5 4
m, 1,4,8,10 1o 4 0 5
m 1,4,9 p¥e 2 3 6
5
0 7
me 1,5,10 11 0 6 8
m, 2,6,8,10 12 2 3 3
mg | 2,6,9 12 1 6 10
mg 2,7410 14 0
Fig.3.6

journey cost is c*=98,

In Fig.3.7 a descriptive assignment is given that 'has a
total cost of C'=99 and therefore is not a normative

assignment,

™

o

D

e

arc

number

i

path path arc
flow flow
. h! £!
3 j i
my 2 6
m2 1 3
3
rn3 0 3
my, 1 0]
m5 2 3
3
mg 0 3
m- 0 3
m8 0 6
mg 3
Fig.3.7.

To show that the path flow of Fig.3.7

© W ~3 O Fow N

[
(@]

is

optimal to

the individual drivers,we shall look at the available

paths for those paths which have a nonzero flow.

paths m. with flow

available paths m

k

5

O U FE N

3,5,6,9

2,3,4,5,6,7,8,9

It can now easily be checked in Fig.3.6. that all paths

with flow do not have greater costs than the available

paths for the particular flows. This completes the

42

counter-example. Note however, that chains Mo sMgsMy s My
with costs less than the cost of chain Mg, have no

flow (and m,. has).

9
We will now consider the problem of finding a flow

for a given value v from s to t so that the total cost

of the flow is minimized. Although this problem could

be solved with linear programming,as shown in (3,10)

and (3.11), this is not a very efficient way and the
linear program formulation was given only for the
theoretical considerations. Obviously, the minimum

cost flow problem is only meaningful if the given

flow value v is not greater than the maximum flow from

s to t. The best known method for the minimum cost

flow problem is the so=-called "out=-of=-kilter" algorithm
of Ford and Fulkerson. Hére we will describe a method,
due to M.Klein, which is conceptually simpler than the
out-of-kilter method and use techniques already presented
in this book. Computationally the methods are comparable.
A more detailed description of the following can be

found in Christofides (1975),

Let us suppose that a feasible flow f of value v exists
in the graph and that this flow pattern is known. Such
a flow pattern can be obtained by applying the (s to t)
maximum flow algorithm and performing Steps 4 to 6 of
this algorithm not until the maximum flow is reached,
but until the flow fst

flow value v, With this feasible flow define a so=-called

from s to t reaches the given

incremental network GY(f)=(X",A") on the given network
G=(X,A) in the following way:

X" = X

H M U
A A1 uA2

ey

-43-

where

Bo_r M M
A -{(xi,xj)/fij <q..}

1 ij

and the capacity of an arc (x;,xg)sA; being

i3 = i3

and
uo_ UM
Al = {(xj,xi)/fij> 0}

with the capacity of an arc (xg,xg)e A; being
u =
qij -fij .

The arc costs are specified as

1T uou u
cij = cij for all arcs (xi,xj)eA1

v uo u
cji = cij for all arcs (xj,xi)eA2 .

The graph GM(£f) now represents incremental capacities
and costs (relative to the flow pattern f) of any extra
flow pattern to be introduced into G. The algorithm is
then based on the following theorem:

Theorem 1:
f is a minimum cost flow value v if-and only if-there is
no circuit @ in G¥(£),such that the sum of the costs of the

arcs in @ is negative,

We shall not be presenting the proof =~the interested

reader is referred to Christofides (1975). As a result

of Theorem 1, the algorithm for the minimum cost flow
problem reduces to building GY(f) and then finding out

if there exists a circuit @ in GM(f) with negative costs.
This can be done with Floyd's algorithm to find the shortest

paths between all pairs of vertices in a given graph.

-Ll=

Although we introduced this algorithm by assuming that
all arc lengths (costs) cijzo, this algorithm also

works for 44 unrestricted in sign. Going back to Step 3
of Floyd's algorithm, one has only to check if there
exists an cii<0 (where cij represents the minimum costs
to reach vertex xj from X using exaktly k arcs), and

if there is, then a negative cost circuit has been
detected and its arcs can be found by using a recursive

relation similar to (3.2.).

Minimum cost flow algorithm:

Step_1: Use the (s to t) maximum flow algorithm to
find a feasible flow f of value v in the network G.

Step_2: Relative to filow f from the incremental network
cM(£).

Step_3: Find a negative cost circuit @ in G¥(£) with
Floyd's algorithm.

If such a circuit exists, identify its arcs and go to
Step 4.

If no such circuit can be found, Stop.

Step_u4: Calculate d according to

d = min (qg

(xg,xg)em

j)

Send the maximum possible flow around the circuit such
that the new flow pattern is still feasible in G (this
is exactly d). The overall flow from s to t then remains
unchanged at the value v,although its cost is reduced

by d.c(@), where c(@) is the cost of the circuit 0.

(i) For all (xg, xg) in @ with cgj< 0 change the flow
fji in the corresponding arc (xj,xi) of G from £, .

to fji-'d.

45

(ii) For all (xz,xg) in @ with cgj > 0 change the flow
fij in the corresponding arc (xi,xj) of G from fij
to f.. + d.
1]

With this new flow pattern return to Step 2.

Example 2:
Using the data of Example 1 of this chapter, we shall
now verify the optimal solution given in Fig.3.6 for
the arc flows., For simplicity we shall perform Step 1
and 3 of the algorithm rather intuitively than with an
algorithm.

Step 1:

Let us start with the following feasible flow pattern
with flow value v=9 (the numbers of the arcs give the
flow) and total flow costs C=102,

x1 6 x3
>
6 i
s 2 t
¥ v
3
x:2 3 xu

Step 2:
Compute the network G"(f) for the given flow pattern of
Step 1. This resultsin the following network (first label

is arc capacity, second label is arc cost):

-4f-

X4 (6)-3) X
(6,-1 (1,7) (4,=6)
s (4,1) (u,s)' 2y t
(255 (3,1 -
3,00\ (1,8 (5,-3)
*2 (3,-6) *u

One possible circuit is then defined by the arcs (xz,x3),
(x3,xu),(xu,x2)with total costs of c(@)=1+3-6==2.

Step 4: We calculate

d = min (3,4,3)=3

The new flow pattern is then

’

Xy o) S x3
6 4
5 % N2 t
3 5
3 5
\
rd
x2 Xy

with flow costs C=96. Actually,from the optimal solution

of Example 1 we know that C=96 already is the minimal total
cost. Yet we have found another solution. but by detecting
a circuit with zero costs,we can construct the optimal

solution of Fig.3.6, Therefore we go back to

N
1

[

™
g

™

47

Step 2:

Now there exists no negative cost circle, Thus,an optimal
solution has been found. But we can detect another optimal
solution with the zero cost circle defined by the arcs
(x3,xu), (xu,t),(t,x3).

Step Uu:

d = min (1,1,4) = 1

The new flow pattern is then

which is exactly the solution given in Fig.3.6,

-48=

C ... #%% PROGRAM FOR FINDING MINIMUM COST FLOW
C » 2 ***
C
C ... INPUT
C
C... N NUMBER OF VERTICES
C...C FLOW COST (ARC LENGTH)
C...0 CAPACITY ON ARCS
C oo V WANTED FLOW
C...S ORIGIN VERTEX OF FLOW V
C... 7T DESTINATION VERTEX OF FLOW V
C
C ... OUTPUT
C
C...F MINIMUM COST FLOW
C...Cl VALUE OF MINIMUM COST FLOW
C
SUBROUTINE MINCOS(N,C,Q,V,S,T,F,C1)
INTEGER N ,C(1),Q(1),V,S,T,F(1),C1,CU(2704),QU(2704)
INTEGER D(2704),IG(2704)
LOGICAL LOG
C
C ... STEP 1
C
CALL MAXFLO(N,Q,F,S,T,V)
c
C ... STEP 2
c
5 CALL INCR(N,F,Q,C,QU,CU)
C
C ... STEP 3
C
M=N#*N
DO 10 I=1,M

10 IG(I)=CUu(I)
CALL SPII(N,IG,D,LOG)
IF(.NOT. LOG) GO TO 15
C
C... STEP 4
C

CALL NEWFLO(N,IG,D,QU,CU,F)
GO TO 5

C
C ... PREPARATION OF OUTPUT
C
1

5 C1=0
DO 20 I=1,M

20 C1=C1+F(I)*C(I)
RETURN

END

M

o

-49-

. %#¥% TNCREMENTAL NETWORK CONSTRUCTION RELATIVE TO FLOW F
%%

.
.

.. INPUT

. N NUMBER OF VERTICES

. F(L) FLOW ON ARC(I,J), WHERE L=(I-1)*N+J
. Q(L) CAPACITY ON ARC(I,J)

C(L) FLOW COST (ARC LENGTH) ON ARC(I,J)

. . .

. OUTPUT

. QU(L) INCREMENTAL CAPACITY ON ARC(I,J)
. CU(L) INCREMENTAL FLOW COST ON ARC(I,J)

QOO0 000n
L]

SUBROUTINE INCR(N,F,Q,C,QU,CU)
INTEGER N,F(1),0(1),C(1),Qu(1),CU(1)

M=N#*N
DO 5 L=1,M
QU(L)=0

5 Cu(L)=0
DO 15 L=1,M
IF(F(L) .EQ. Q(L)) GO TO 10
I=MINO(0,C(L))
IF(CU(L) .LT. I) GO TO 10
QU(L)=Q(L)-F(L)
CU(L)=C(L)

10 IF(F(L) .EQ. 0) GO TO 15
I=(L=-1)/N+1
J=L-((I-1)*N)
K=IND(J,I,N)
I=MINO(0,-C(L))
IF(CU(K) .LT. I) GO TO 15
QU(K)=F(L)
CU(X)==C(L)

15 CONTINUE
RETURN
END

10
15

20

30

OO0 0O000000

e o9

LI)

=50=

*%% FINDING NEW FLOW WITH LESS COSTS
#3%

. INPUT
N NUMBER CF VERTICES
IG LENGTH OF SHORTEST PATHS IN INCREMENTAL NETWORK
D VECTOR FOR FINDING THE VERTICES BELONGING

TO THE SHORTEST PATHS
QU CAPACITIES IN INCREMENTAL NETWORK
Cu COSTS IN INCREMENTAL NETWORK

F ACTUAL FLOW IN ORIGINAL NETWORK
QUTPUT
. F NEW IMPROVED FLOW IN ORIGINAL NETWORK

SUBROUTINE NEWFLO(N,IG,D,QU,CU,F)
INTEGER N,IG(1),D(1),QU(1),CU(1),F(1)

M=2%%18

DO 5 I=1,N
L=IND(I,I,N)

IF(IG(L) .GE. 0) GO TC 5
J=I :

GO TO 10

CONTINUE

I=J

K=J

J=IND(I,K,N)

J=D(J)

L=IND(J,K,N)
M=MINO(M,QU(L))

IF(J .NE. I) GO TO 15
K=J

J=IND(I,K,N)

J=D(J)

L=IND(J,K,N)

IF(CU(L) .LT. 0) GO TO 25
F(L)=F(L)+M

GO TO 30
L1=IND(K,J,N)
F(L1)=F(L1)-M

IF(J .NE. I) GO TO 20
RETURN

END

™

=51=

3.3.2. Network with variable arc costs:

As this model represents so far a realistic and computable
approach to descriptive and normative assignment, a lot

of research work is going on in this field. A rather
complete overview of the state of the art in the year

1974 is given in Florian (1976). A variety of algorithms
already exists and one of the latest published is by Nguyen
(1974). Some of them have been compared - see the paper

by S.Nguyen in Florian (1976).

We shall generalize the model of chapter 3,3.1. in the sense
that flows of a given quantitiy between all pairs of verticer
are possible, the so called multicommodity flows, which

is realistic, as there will be traffic flow not only
between two cities but between all cities that are
represented by vertices in the network. The trip matrix
(gij) shall denote the flow density between vertex i

(the source or origin) and vertex j (the sink or
destination). Let us again number the vertices‘from

1 to n and the arcs from 1 to m3; the first 1,2;...,n0
vertices are the origins. Let hl denote the flow on

the elementary path 1 (connecting an origin-destination
pair i,j), and fz the flow on arc a coming from origin s.

The total flow on arc a is therefore defined as

D - (3.23)
fa T os=1 £a
or as
£, 1) §,1 Dy (3.24)
i,j 1leQ

-52a

where Qij denotes the set of paths connecting the origin-
destination (OD) pair ij, and Gal equals 1 if arc a belongs
to path 1, and O otherwise., On the network, the relationships
between the different flow variables are expressed by the

flow conservation equations

i3 for all OD-pairs ij (3.25)

hlb o, for all 18S4Qij
1]

Note that (3.24) and (3.25) are very similar to the equations

(3.9.) and (3.7.),respectively in case of only one OD-pair.

(3.25) represents the vertex-path formulation of the problem.

Similar to (3.4.,) it can also be formulated as a vertex-

arc problem

-9 if i is a destination
z £8 - z £ = vertex
a a
aewi aevi 0] otherwise
fOI‘ i#S;, i=1’2’no.’n; S=1’2’..|'no (3026)
f:7'0 for a=1,2’...,m; S=1,2,ooo’no

where Wi is the set of arcs beginning at i, and Vi the
set of arcs ending at i. Naturally, in both formulations
it is assumed that

g..50 for all pairs ij.

1]

-53=

As mentioned earlier, we are not considering arc capacity
constraints. But it is worth mentioning that the model of
chapter 3.3.1. can be extended in the above described way

to a minimum cost-multicommodity flow problem. Unfortunately,
such a model cannot be solved with any special network
algorithm, rather the normal simplex-algorithm with some
special features,as described in Hu (1970), has to be used,

Let now denote < the travel cost on an arc a. Then we

are assuming that the travel costs depend on the flow in

the sense that travel costs increase when the flow increases,
i.e. we are considering traffic congestion with this model.

That means
c, = Ca(fa)

where Ca is an increasing function of fa‘ Then the
objective function of the normative assignment problem
can be stated as

min: C =) £,C (f) (3.27)

for all a=1,2,...,m

The problem is therefore to minimize (3.27) under the
constraints (3.26). Because Cy is increasing, it

can be shown that the objective function is convex, thus
a unique global optimal solution exists.

Let now uij be the minimum travel cost to the user for the
trip from vertex i to j. These costs are formed by the
summation of the costs on the arcs of the path from i to j
with minimum cost. Then Wardrop's first principle can be

formulated as follows:

-5L=

If hy? 0 then g §,1C, (£ = us g (3.28)
If g 8,1C, (£,) 7 us s then h,=0,

for all OD=-pairs ij,
where summation is over all arcs a=1,2,...,m.

The meaning of (3.28) is,that if there is a positive
flow hl on a pafh leQij, then this must be a shortest
path between OD-pair ij. On the other hand, if a path
leQij exists, such that travel cost on it is higher than
on a shortest path, this path will not be used. Thus

(3.,28) gives Wardop's first principle.

Let us now define the minimization problem

fa
min F = [f C_(x)dx (3.29)
2 0

under the constraints (3.26). Again, (3,29) is a convex
objective functiog as Ca is increasing, resulting

in a unique global optimum. Then the Kuhn-Tucker conditions
lead to a system of equations that are both necessary and
sufficient for the optimum of the original problem (3.29)
under the constraints (3.26). Without giving the proof here,
it can be shown that the Kuhn-Tucker conditions of (3.29)

and (3.26) lead to Wardrop's first principle, formulated in
(3.28), as a necessary and sufficient condition of the
optimum. This important result was first stated by M.Beckmann,
C.McGuire and C.Winsten in 1956, A proof of this theorem is
given in Steenbrink (1974), This result enables us to give
the relations between descriptive and normative assignment.
If we define travel costs on arcs as

- - 1 fa

c,z G (£) = ?;_é C,(x)dx (3,30)

.

S

=55

then problem (3.29) can formally be written as
min F =} £ C (f) (3.31)
5 a a’a

which is exactly the objective of a normative assignment
like the one stated in (3,27). Thus both assignments have

the same solution, if

_ _ 1 a
Ca(fa) = Ca(f) = ?;

a Ca(x)dx (3.32)

O ~—~~tHh

which is true iff Ca(x) z C, & const. Therefore,in the case
of constant travel costs, descriptive and normative

assignments are equivalent,

Because of (3.31)the same solution methods apply to the
descriptive and the normative assignment, both of them
being complex nonlinear optimization problems. Besides
heuristic methods (a reference to them can be found in
Florian (1976)),only very recently effcient exact algorithms
were developed, which can be found in Florian (1976) and
Nguyen (1974),

For the simpler case of only one origin-destination pair
of vertices,the algorithm,presented in chapter 3.3.1. for
the minimum cost flow problem,can be used in a slightly
adapted form. The solution then results in a normative

assignment of the flow.

Step 1 of the algorithm remains unchanged. In Step 2 the
incremental graph is built without computing the capacity
constraints qg. of an arc (x%, xg), and the arc costs

J u o u U
are now for an arc (xi,xj)eA1

-56=

vz -

and

oM u
for an arc (xj,xi)eA2

u = - - - -

where c*j(fij) represents the cost
on arc (xi,xj), when the flow is fij‘
Step 3 of the algorithm of chapter 3.3.1. remains

unchanged and in Step 4 the additional flow 4, to be

sent around the circle is always sét to

d=s1,.

This algorithm works in both cases, namely arcs with
capacity constraints and arcs without capacity constraints.
In the latter case, q; 5 is set to the total flow v from

the origin to the destination vertex. In the following
program it is assumed that capacity-constraints do not
exist, but it is easy to include them.

m

Y

o

™

-57=

.. ¥¥% DPROGRAM FOR FINDING MINIMUM COST FLOW

.. ¥¥% WITH COSTS DEPENDING ON THE FLOW
#¥ %

. INPUT
. N NUMBER OF VERTICES
. C FLOW COST (ARC LENGTH)
. A NUMBER OF ARCS
. MA MAXIMUM NUMBER OF COEFFICIENTS PER COST FLCW
Y WANTED FLOW
. S ORIGIN VERTEX OF FLOW V
. T DESTINATION VERTEX OF FLOW V
... OUTPUT

.o F MINIMUM COST FLOW
. C1 VALUE OF MINIMUM COST FLOW

QOO0 0O00O00O0000000000

SUBROUTINE VARCOS(N.C,A,MA,V,S,T,.F,C1)
INTEGER N ,A,MA,V,S,T.F(1),C1,CU(400)
INTEGER D(400),IG(400),Q(400)

REAL C(1)

LOGICAL LOG

. STEP 1

QOO
L]

M=N#N
DO 25 I=1,M
25 Q(I)=0
DO 30 I=1,A
J=(I=-1)¥(MA+1)+1
J=C(J)
Q(J)=v
CALL MAXFLO(N,Q,F,S,T,V)

w
o

. 00 STEP 2
CALL INCRVC(N,F,A,MA,C,CU,V)

... STEP 3

QOOUVOOO

M=N*N

DO 10 I=1,M
IG(I)=CU(I)

CALL SPII(N,IG,D.LOG)
IF(.NOT. LOG) GO TO 15

—
o

. STEP 4

a0
L)

CALL NEFLVC(N,IG.D.CU.F)
GO TO 5

. PREPARATION OF OUTPUT

- Q0

5 C1=0

10

15

OOOOO0O0000O00O000000O000000

-58=

DO 20 I=1.M
CL=CCC(N,A,MA,C.F.I)
C1=C1+F(I)%*CL
RETURN

END

#%% TNCREMENTAL NETWORK CCNSTRUCTICON RELATIVE TO FLCW F

#%#% FOR MINIMUM COST FLOW ALGORITHM WITH VARIABLE

.. *#% ARC COSTS
, RER

INPUT

. N NUMBER OF VERTICES

F(L) FLOW CN ARC(I,J), WHERE L=(I-1)*N+J

A NUMBER OF ARCS

MA MAXTMUM NUMBER OF COEFFICIENTS PER ARC COST
C FLOW COST COEFFICIENTS

v TOTAL FLOW VALUE

. OQUTPUT

. CU(L) INCREMENTAL FLOW COST ON ARC(I,J)

SUBROUTINE INCRVC(N,F,A,MA,C,CU,V)
INTEGER N,F(1),A,MA,CUC1),V
REAL C(1)

M=N*N

DO 5 L=1,M

CU(L)=0

DO 15 L=1,M

IF(F(L) .EQ. V) GO TO 10
IF(CU(L) .LT. 0) GO TO 10
CL=CCC(N,A,MA,C,F,L)
CU(L)=~CL*F(L)
F(L)=F(L)+1
CL=CCC(N,A,MA,C,F,L)
CU(L)=CU(L)+CL*F(L)
F(L)=F(L)-1

IF(F(L) .EQ. 0) GO TO 15
I=(L-1)/N+1
J=L-((I-1)*N)
K=IND(J,I,N)
CL=CCC(N,A,MA,C,F,L)
CU(K)=-CL*F(L)
F(L)=F(L)=1
CL=CCC(N,A,MA,C,F,L)
CU(K)=CU(K)+CL*F(L)
F(L)=F(L)+1

CONTINUE

RETURN

END

oy
¢
ot

Faa)

10
20

25
30

OO0 00000a00

-59-

., *%% PTINDING NEW FLOW WITH LESS COSTS

*%% WHEN ARC COSTS DEPEND ON FLOW
#3k%

. INPUT

see N NUMBER OF VERTICES
. IG LENGTH OF SHORTEST PATHS IN INCREMENTAL NETWORK

D VECTOR FOR FINDING THE VERTICES BELONGING
TO THE SHORTEST PATHS
CU COSTS IN INCREMENTAL NETWORK

". F ACTUAL FLOW IN ORIGINAL NETWORK
. OUTPUT
. F NEW IMPROVED FLOW IN ORIGINAL NETWORK

SUBROUTINE NEFLVC(N,IG,D,CU,F)
INTEGER N,IG(1),D(1),CU(1),F(1)

DO 5 I=1,N

L=IND(I,I,N)

IF(IG(L) .GE. 0) GO TO 5
J=1

GO TO 10

CONTINUE

I=J

Kz=d

J=IND(I,K,N)

J=D(J)

L=IND(J,K,N)

IF(CU(L) .LT. 0) GO TO 25
F(L)=F(L)+1

GO TO 30

L1=IND(K,dJ,N)
F(L1)=F(L1)-1

IF(J .NE. I) GO TO 20
RETURN

END

10

ol
<
-~
[

15

OOOO0O0000O00O00O00000000000
MmO X e

-50=

¥%¥ COMPUTATION OF VARIABLE COST

, xR

. INPUT

NUMBER CF VERTICES

NUMBER OF ARCS

NUMBER OF CCEFFICIENTS PER ARC COST

COEFFICIENTS OF ARC COSTS

FLOWS ON ARCS

INDEX OF ARC FOR WHICH THE FLOW COSTS ARE COMPUTED
CUTPUT

. CCC FLOW COST ON ARC L WITH FLOW F(L)

FUNCTION CCC(N,A,M,C,F,L)
INTEGER N,A,M,F(1),L
REAL C(1)

CCC=0

DO 5 I=1,A
J=(I-1)%(M+1)+1

J1=C(J)

IF(L .NE. J1) GO TO 5

GO TO 10

CONTINUE

RETURN

PO 15 I=1,M

J=d+1

IF(F(L).EQ.0 .AND., I.EQ.1) GO TO &5
CCC=CCC+C(J)*F(L)**¥(I-1.)
GO TO 20

CCC=CCC+C(J)

CONTINUE

CONTINUE

RETURN

END

6]

m

o

M

For the general case of multiple origin-destination pairs
of vertices, analytical methods are mostly based on non-
linear optimization methods (i.e. feasible direction
methods). As we do not want to go into this theory,we
present a different approach for solving the normative
assignment problem which is based on an extension of the
above presented algorithm for convex costs and only one
origin-destination pair of vertices. Of course, also

the descriptive assignment problem can be solved by this
algorithm if the costs are transformed according to (3.,30).

The idea of the following algorithm is to improve the

flow between one origin-destination pair,while the other
flows remain unchanged. This is performed for all origin-
destination pairs until no improvement can be found for

any pair. In order to reduce computation-time,a different
approach than before is used to find a feasible initial

flow. This is done by assigning a suitable fraction of the
total flow to the shortest paths, then recomputing the

arc costs and,again,assigning flow to the now shortest

paths. This procedure is repeated until all flow is assigned.

Algorithm for the normative traffic assignment problem:

Step_1:

Find the cheapest routes between all 0-D pairs with costs
cij(O) with Floyd's algorithm.

§tgp_2:

- Take some suitable fraction of the total flow and assign it

all to these shortest routes. The suitable fraction (perhaps
10%) should be chosen,so that this assignment will not
already create congestion on certain links and, hopefully,

will not cause very large changes in the costs cij(hij)‘

-62-~

Step_3:

Recalculate the cij(hij) using the flows assigned in the
last step. Recalculate the shortest routes., One may find

now that the optimal routes have changed because congestion
on the old routes has made new routes cheaper. Now take a

new fraction of the total flow and assign it to these optimal

routes.

Step_k:

Repeat Step 3 until all the flow has been assigned to some

routes.

Step_5:

For each 0-D pair improve the flow while leaving the other
flows unchanged, until no more improvement can be found.
Use the above mentioned algorithm for convex arc costs but

with the following incremental graph:

Let fi; be the flow on arc (i,j) going from origin vertex
s to destination vertex +. Let hi' be the total flow on arc
(1,3) thus
st
h,. =] f£I:
13 gex ’
teX

where G = (X,A) is the given network. Let (gst) be the
trip matrix. The incremental graph G" = (X", A") relative
to flow fi; from s to t and to the total flow hij,is given

as

¥ =X

™
=
I
o
=
C
o
=

where

[

7

£y
v 3

5

oy

-63~

and

T st
Az-ux“j s x| £3s > 0} .

The arc costs are specified as

u - - ’

H H H
for all arcs (xi,xj)e A4

Use G" for finding a flow fi; from s to t with less cost.

QOO0 0O00O00O000000Q0

20
15
10

[eEeN®! aOOaowm

PO

45
40
35

-Bl4-

.., ¥¥% TRAFFIC ASSIGNMENT PROGRAM

E 3 2

.+« INPUT
NUMBER

LI

ves A NUMBER

OF VERTICES

N
eeo C CCEFFICIENTS OF ARC COST POLYNOMIAL

CF ARCS

... OD ORIGIN-DESTINATION MATRIX
.es MA MAXIMUM NUMBER CF COEFFICIENTS PER COST FLOW

... OUTPUT
LR I) F(I.J‘K’L)

... C1
ee. FL

AMOUNT OF FLOW FROM VERTEX K TO L

ON ARC(I,J)

TOTAL FLOW COST (TRANSPORTATION TIME)
TOTAL FLOW ON AN ARC

SUBROUTINE TRAFAS(N.C,A,CD,MA,C1,F,FL)
INTEGER OD(1).,N,A,MA,C1,F(14,14, 14,14)

REAL C(1)

INTEGER E(400),D(400),S,T,FL(1)

LOGICAL LOG,

DO 5 I=t,N
DO 10 J= 1,
DO 15 K=1,}
DO 20 L=t1,!
F(I,J.K.L)
CONTINUE
CONTINUZ
CONTINUE

LR IR J STEP 3

ICA

DO 25 I=1,10

.+» STEP 1

CALL COST(N,
CALL SPII(N,

voo STEP 2

A,MA,C,F.E,FL)
E,D,LOG)

CALL ASS(N,D,F,0D,I)

KK=0
NN 0
DO 30 I=1,N
DO 35 J=1.N
DO 40 KX=1,N
DO 45 L=1,N
IF(F(I.J
KK =KK+F (
NN=NN+1
CONTINUE
CONTINUE
CONTINUE

T,
1.
1
T'
K
I,

L
J,

) .EQ. 0) GO TO 45
K,L)

M

AN

T

o)

™

i

~

30

50

55

60

70

75

B 5=

CONTINUE

KK =KK/NN

KK=MAX0(2,KK)

KK=KK/2.

ICA=.TRUE.

KK=MAXC(KK,1)

MM=2¥¥17 .

M=N#N

MN=0

DO 60 L=1,M

IF(OD(L) .GE. MM .CR. MN .GE. OD(L)) GO TO 60
MN=0D(L)

ML=L

CONTINUE

IF(MN .EQ., 0 .AND. KK .GT. 1) GO TO 50
IF(MN.EQ.O .AND.(XKK.EQ.1 .AND. ICA)) GO TO 70
IF(MN .EQ. 0) GO TO %0

MM=MN

S=(ML=-1)/N+1

T=ML~((S=1)#*N)

CALL NETRAF(N,C,A,MA,MM,S,T,F,KX,FL,ICA)
GO TC 55

CALL COST(N.,A,MA,.C,F,E,FL)

C1=0

DO 75 I=1,M

C1=C1+E(I)*FL(I)

RETURN

END

25
20
15
10

35

QOO0 00O00O000O000a000

v o

o0

o

.
. .

~66-

¥%% COMPUTING ARC COSTS FOR GIVEN FLOW
233

INPUT

N NUMBER CF VERTICES

A NUMBER OF ARCS

MA NUMBER COF COEFFICIENTS PER ARC COST
C COEFFICIENTS OF ARC COST POLYNGCMIAL
F FLOW

OUTPUT

E ARC COSTS

FL TOTAL FLOW ON AN ARC

SUBROUTINE COST(N,A,MA,C,F,E,FL)

INTEGER N,A,MA,F(14,14,14,14),E(1),FL(1)
REAL C(1)

M=N#*N

DO 5 I=1,M

FL(I)=0

DO 25 K1=1,N
FL(L)=FL(L)+F(I,J,K,K1)
CONTINUE

CONTINUE

CONTINUE

D0 30 I=1,N

DO 35 J=1,N
L=IND(I,J,N)
E(L)=CCC(N,A,MA,C,FL,L)
CONTINUE

RETURN

END

N

o

™

™

m

o

-§7=

C ... **% ASSTGNING 10% OF THE O-D FLOWS TO THE SHORTEST PATHS
C ... *¥%

C

C ... INPUT

c ~

C...N NUMBER OF VERTICES

c...D VECTOR DENOTING THE SHORTEST PATHS
c...F OLD FLOW

cC... 0D ORIGIN-DESTINATION MATRIX

C... IA NUMBER OF CALL

C

C ... OUTPUT

c

C... F NEW FLOW

C

SUBROUTINE ASS(N,D,F,0D,IA)
INTEGER N,D(1),F(14,14,14,14),0D(1),IA
DO 5 I=1,N
DO 10 J=1,N
K=J
K1=IND(I,J,N)
IF(IA .LT.10) GO TO 30
K2=0
DO 25 L=1,N
Ke=Ke+F(I,L,I,J)

25 CONTINUE
K2=0D(K1)-K2
GOTO 15

30 K2=0D(K1)/10.

15 L=K
K=IND(I,L,N)
K=D(K)
F(K,L,I,J)=F(X,L,I,J)+K2
IF(X .NE. I) GO TO 15

10 CONTINUE

5 CONTINUE
RETURN
END

OO0 000000000O0000a00aa0

10

-68-

#*¥% FINDING NORMATIVE IMPROVED FLOW
%%

INPUT

NUMBER OF VERTICES

ARC COST COEFFICIENTS

NUMBER OF ARCS

NUMBER CF COEFFICIENTS PER ARC
AMOUNT OF FLOW FROM S TO T
FLCOW ORIGIN VERTEX

FLOW DESTINATION VERTEX

OLD FLOW

ALLOWED CHANGE COF FLOW

TOTAL FLOW ON AN ARC

OLD FLOW BETWEEN S AND T ON AN ARC

Mgﬁ'ﬁﬂ(ﬂ%%bﬁz

o
2
3

NEW NORMATIVE IMPROVED FLOW BETWEEN S AND T
OF VALUE MM
ICA IF ICA=.FALSE. THEN NEW AND OLD FLOW DIFFER

1}

SUBROUTINE NETRAF(N,C,A,MA,MM,S,T,F,KK,FL,ICA)
INTEGER N,A,MA,MM,S,T,F(14, 14,14, 14)
INTEGER FL(1),CU(400),D(400),IG(400),KK
LOGICAL ICA

REAL C(1)

LCGICAL LOG

CALL INCRTA(N,F,A,MA,C,CU,MM,FL,S,T,KK)
M=N*N

DO 10 I=1,M

IG(I)=CU(T)

CALL SPII(N,IG,D,LOG)

IF(.NOT. LOG) RETURN

CALL NEFLTA(N,IG,D,CU,F,S,T,KK)
ICA=.FALSE,

GO TO 5

END

m

15

N

OO0 0O00O00O000000000n

. - o« o « =

-§9=

. *¥%¥% TNCREMENTAL NETWORK CONSTRUCTION RELATIVE TO FLOW F

. e s

¥%% AND FL FOR TRAFFIC ASSIGNMENT ALGORITHM
L2 1]

INPUT

N NUMBER CF VERTICES
F(L) FLOW ON ARC(I,J) OF FLOW FROM K TO L

A NUMBER OF ARCS

MA MAXIMUM NUMBER OF COEFFICIENTS PER ARC COST
C FLOW COST COEFFICIENTS

v TOTAL FLOW VALUE FROM S TO T

FL TOTAL FLOW ON ARC(I,J)

S FLOW ORIGIN VERTEX

T FLOW DESTINATION VERTEX

KK ALLOWED FLOW CHANGE ON ONE ARC

OUTPUT

CU(L) INCREMENTAL FLOW COST ON ARC(I,J)

SUBROUTINE INCRTA(N,F,A,MA,C,CU,V,FL,S,T,KK)
INTEGER N,FL(T),A,MA,CU(?),V,S,T,KK,F(TM,TQ,TQ,14)
INTEGER VV
REAL C(1)
CALL COST(N,A,MA,C,F,CU,FL)
VV=V-KK
M=N*N
DO 5 L=1,M
Cu(L)=0
DO 15 L=1,M

I:(L—T)/N+7
J=L-((I-1)*N)
IF(F(I1,J,S,T) .GT.VV) GO TO 10
IF(CU(L) .LT. 0) GO TO 10
CL=CCC(N,A,MA,C,FL,L)
CU(L)==CL*FL(L)
FL(L)=FL(L)+KK
CL=CCC(N,A,MA,C,FL,L)
CU(L)=CU(L)+CL¥FL(L)
FL(L)=FL(L)-KK

IF(F(1,J,S,T) .LT. KK) GO TO 15
K=IND(J,I,N)
CL=CCC(N,A,MA,C,FL,L)
CU(K)==-CL*FL(L)

FL(L)=FL(L)-KK
CL=CCC(N,A,MA,C,FL,L)
CU(K)=CU(K)+CL¥*FL(L)
FL(L)=FL(L)+KK

CONTINUE

RETURN

END

25
30

OO0 o00an

s 00

-7T0=

*¥%% FINDING NEW FLCW WITH LESS COSTS

%¥%¥% FOR TRAFFIC ASSIGNMENT
#%*

INPUT

K NUMBER OF VERTICES

IG LENGTH OF SHORTEST PATHS IN INCREMENTAL NETWORK
D VECTOR FOR FINDING THE VERTICES BELONGING

TO THE SHORTEST PATHS
CU COSTS IN INCREMENTAL NETWORK

F ACTUAL FLOW IN ORIGINAL NETWORK
S FLOW ORIGIN VERTEX
T FLOW DESTINATION VERTEX
KK FLOW CHANGE PER ARC
. OUTPUT
F NEW IMPROVED FLOW IN ORIGINAL NETWORK

SUBROUTINE NEFLTA(N,IG,D,CU,F,S,T,KK)
INTEGER N,IG(1),D(1),CU(1),F(14,14,14,14)
INTEGER S,T,KK

DO 5 I=1,N

L=IND(I,I,N)

IF(IG(L) .GE. 0) GO TO 5
J=I

GO TO 10

CONTINUE

I=J

K=J

J=IND(I,K,N)

J=D(J)

L=IND(J,K,N)

IF(CU(L) .LT. 0) GO TC 25
F(J,K,S,T)=F(J,K,S,T)+KK
GO TO 30
F(X,J,s,T)=F(K,J,S,T)-KK
IF(J .NE, I) GO TO 20
RETURN

END

1‘_”\

h

!

_—

)

-71-

If G=(X,A) consists of n vertices,the minimum cost flow
algorithm must be applied at least n2 times (if there is

a nonzero flow between all pairs of vertices), but usually
will take knz, where k is some integer number. But as in
each n2 applications of the minimum cost flow algorithm,the
total costs either decrease or remain the same (in this
case the algorithm stops), the optimum will be found after
a finite number k of iterations.

Exercises:

1) Find the shortest path from vertex A to vertex B with
Dijkstra's algorithm for the following directed network

given in matrix formulation:

A %1‘ Xy X3 Xy, X B
A 0 3 0 2 5 0 0
X4 0 0 3 1.3 4 0
X, 0 0 0 0 0 0 3
Xq 0 0 4 0 2 5 0
Xy 0 0 1 0 0 0 5
Xg 0 0 0 0 0 0 2
B 0 0 o. .0 0 0 0

If the number in the matrix is zero,then no arc exists
between xj and Xs o If the number is positive, then an

arc exists and the number denotes the length (cost, travel
time) of the arc. |

2) Find the shortest path between all pairs of vertices
with Floyd's algorithm for the following network (the
numbersdenote the length of the arcs).

=72 =

7
3
7
) 5
oot M 6
g AY1 N
Y 5
2 1 3
f 2
6
>
5

3) Given the following network (the numbers on the arcs

denote the capacity):

Let the existing flow be (the numbers on the arcs denote
the flow, note that the sum of all flows going into
vertices a,b,c, and d equals the sum of all flows going

out of these vertices):

(0

0

o

T

=7 3=

Find the maximum flow between s and t with the maximum

flow algorithm.

4) Given the following road network (the numbers on the arcs
denote the capacity "thousand cars per hour" and, the numbers
in brackets on the arcs denote the travel time on this

arc) s

-T4-

Let the flow from s to t be v=6 (thousand cars per hour).
Formulate the normative traffic assignment problem as a

linear programming problem and solve it.

Is the following traffic flow descriptive, normative or

neitherof both (the numbers on arcs denotes the flow)?:

b 73 d

with arc costs Ci depending on the arc flow fi such that

C1 = 15 + 2f1 Cu = 5 4 3fu
C2 = 5 + 9f2 C5 = 10 + f5
C3 = 1 + 1Of3 CB = 4 + 20f6

Let the flow value from a to e be 6 units. Find the descriptive

and the normative assignments:

¢

™y

—

L,

-75-

Choosing an optimal subnetwork

In the preceding chapter 3 we have been discussing
real world planning problems that can arise on given
networks, assuming special "behaviour" of the flow

on such a network. Although the special problems

we discussed were devoted to traffic theory, there

are great simiilarities between,say, traffic flow in

a road network and waste water flow in a canal system
or information flow in a telephone network. Chapter 3
was preliminary in the sense that we are less interested
in optimization on networks, but in optimization of
networks. But, as we shall see later, in order to
optimize a network, the way such a network is used

(by flows) is part of the problem. In this chapter we
will therefore be dealing with finding optimal sub-
networks in various fields of public planning, i.e.
waste water canal system, emergency service facilities,
airline network planning as well as rail - and road -

network planning.

Regional waste water management system

In the last decade the development of waste water
management systems has become an important part of the
efforts undertaken in industrialized countries, to keep
the ecological damages under control. There seems to

be a great tendency to build such waste water management
systems rather on a regional level than by individual
villages. The reasons for this are on the one side that
the topographical situation and riverscan be better
included and used within the system, resulting in
reduced costs, on the other side,the marginal costs for
building and running:a waste water filter plant are
decreasing for larger plants. For example, in the paper
of Ahrens (1973) these costs c,depending on the amount

-7h=

of water x that could be purified, were measured by

c=4 Soo-xo'uf6

units of money. In a paper by Polymeris (1977) it is
mentioned that the cost of a filter-plant for loo.coo

people is only six times the one for lo.oco people.

A regional waste water management system can be
characterized by its villages, each of them producing

an amount of hs > O waste water, say per year, where i

stands for some village represented by vertex iof a network.
The number of villages plus the number of additional
possible locations for filter plants plus the number of
intersections of waste water canals give the total

.

number of vertices in the network.

To each filter plant there is assigned a number Xss
representing the amount of water purified by the filter
plant. Of course, X is not known but has to be computed
for an optimal solution. Filter plants and villages are
now connected by topographical possible canals, which are
represented by arcs and to each arc (i,j),connecting
vertex i and j,there is assigned a number fij indicating
the amount of waste water that flows through this canal.
To each fij and X; costs bij(fij) and ai(xi) are assigned
that represent the costs of running a canal or a filter
Plant over a year, where the building costs are included
(this can only be done if a certain planning horizon is
defined). Then the optimization problem on a network
G=(X,A) is given as

£ fki + hi = % fij + x:.L for all ieX
(kyideA (i,3)eA

(4.1)

(conservation equation)

o

-7
fij 20 for all (i,j)e A
X4 » 0 for all ieX
min C =) a.(x,) + Cb..(f..) (4,2)
iex 1 (i,3)eA 1313

(4.1) simply is Kirchhoff's law,as given in (3.4), but
where each vertex can be a source or a sink vertex or
both. Fortunately it is not a multicommodity flow problem
as it does not matter to which filter plant the waste
water flows. In (4.1) fij gives the capacity with which
canal (ij) must be built (fij=0 means that the canal is
not built at all) and Xy gives the size of the filter
plant located at vertex i (xi=0 indicates that this filter
plant need not be built). As the marginal costs of canals
as well as of filter plants are decreasing for growing
size,this means the objective function (4.2)is concave,
like the function in Fig.u4.1.

F(x)

A 4

/

Fig.4,1, Concave function

Note the difference to the traffic assignment problem
which either led to a linear or a convex objective
function.

-78=~

From the concavety of (4.2) follows that it is always better
to assign all the flow going out from one vertex to one
single arc (or filter-plant) than to split it up into
different smaller flows. This intuitively obvious result

can be formally proven by taking into account that the
optimum of a concave programming problem, like (4,1)

and (4,2), always must be in one of the extreme points

of the given convex polyeder of (4.1) . But such a basic
solution , as extreme points are called too, is characterized
by having-in the maximum as many non zero variables X4 and
fij as there are conservation equations, i.e. as there are
vertices in the network, thus to each vertex i only x, or

one fi' may be positive. Going back to the definitions of

chapteg 2 this means that the optimal network only has
vertices with outdgree 0 or 1 (outdegree of a vertex 1 is
the number of arcs which have vertex i as their initial
vertex), if only those arcs (i,j)eA are to be considered,
for which fij’ 0. A graph is called a tree if it has

no circuit and if the outdegree of every vertex, except
one (say vertex 1), is unity: the outdegree of vertex 1
(called the basis of the tree) being zero. In other words:
the optimal network of our problem consists of a set of
trees that are not connected with each other., Of course
an optimal solution with only one tree is possible too.

In each basis of a tree a filter plant is

located, therefore the number of trees is equal to the
number of filter plants. In Fig.4.2. a waste water network

and a possible optimal solution is given as an example,

™

)

-79-

(a) waste water network

(b) Optimal solution

Fig.u4,2,

~-80-

As already stated in (4.1) we assume that each wertex can be
the location of a filter plant, but some locations can be
forbidden by assigning very large costs ai(xi) to this
location. The main question is then in which vertices to
place filter plants, Of course, this question must be
simultaneously solved with finding out which canals(arcs)
to build. So far, only two algorithms seem to exist
which solve problem (4,1)-(4,2). One is given by Ahrens
(1974), who uses the fact that if all waste water sources
g; are integer, then the solution will also only have
integer values for fij and X4 because the flow will not
split up into smaller flows. Therefore he transforms the

variables fi' and X5 into weighted sums of boolean variables

and then solges the problem with the additive algorithm

of Balas, a well known enumerative algorithm. Yet, this
approach does not seem very promising for larger networks.
We rather follow the way suggested by Polyméris (1977),

To use his algorithm we have to assume that the netwopk
originally given already is a tree, i.e, has no circuits
and outdegree of all but one vertex is 1. This assumption
seems to be rather restrictive. But in reality,most of the
original networks seem to be trees or nearly trees (with
very few circuits), because of the topographical situations
(remember that rivers nearly always have tree-structure).
If now the original network,in fact,has few circuits,one
can solve the problem on all spanning trees (i.e. tree on a
given graph that includes all vertices of the given graph)
of the given network and then choose the best (cheapest)
solution. If the number of spanning trees on a given graph
G=(X,A) is low, then the following algorithm can be used

to find all spanning trees. It should be noted that not
everydirected graph has a spanning tree. In this case the
original problem is divided into smaller ones finding
optimal solutions on a set of nonconnected trees. A detailed
discussion of algorithms for the spanning tree problem is
given in Christofides (1975).

&

o

™

-81-

Algorithm to find all spanning trees

Step_1: Start with an arbitrary spanning tree To=(X,SO)
on G=(X,A). Set k=0.

Step_2: Set k=k+l
Find another spanning tree Tk by removing such an
arc (xi,xj)eSk_1 for which an arc (xi,xl)sA exists
and for which no path from X, to x; exists and
set Sk={8k_1-(xi,xj)}ca(xi,xl).
If no spanning tree Tk can be found,then Stop.

Step_3: Check, if this tree Tk has already been created,
If so, delete this tree, mark the exchange of
(xi,xj) to (xi,xl) as not being valid and go to
Step 2. If tree Tk is new then store Tk and go
- to Step 2.

The proof that this algorithm works lies simply in the fact
that Step 2 never creates a graph Tk with a circuit Dbecause
a path X, to x4 is not allowed and the outdegree of X
remains 1, while all other outdegrees are unchanged.

We can now discuss the algorithm for finding the solution
to (4,1) - (4,2), assuming that the given network already
is a tree. The method used will be dynamic programming. We
shall not give the theorems and proofs on which this
algorithm is based and explained in detail by

Polyméris (1977).

Let the given tree be T = (X,S). Then we call J1 the class
of all nonempty subsets of X for which a subset of S can
be found, such that these vertices and arcs together form

a partial subtree of T.

-87 =

Let r: L — X be a function, which states for each
partial subtree Ae L. . its basis, which is the vertex

with outdegree zero,

Let H: L —»set of subsets of X be a function, which gives
for a set Ae L all vertices H(A) which do not belong to A,
but for which an arc of S exists that connects each vertex
from H(A) with a vertex of A,

Let K: X-=Ldenote a function, where K(i) for all ieX is
the subset of all vertices of X for which a path to i

exists (also ieK(1)).

The meaning of the above definitions is illustrated in
Fig.4.3,.

Fig. 4.3

i

(e

™

-83=~

Let G: {L—@ (the class of all nonempty subsets of arcs
S which together with a subset Ae {1l define a partial sub-
tree of T), be a function that denotes all .arcs which,
together with a set of vertices of (L ,form'a partial
subtree of T which is then defined by (A,G(A)).

After these definitions,which are necessary to simplify
the following notations,we look closer to the objective

function (4,2).

Let us define q: J1-9R+ as a function

q(A) =.2 h; for all Aen (4,3)
ieA
Now we want to find the total costs which arise if all
waste water,created within a set of vertices AeJ L » is puri-
fied in a filter plant located at the basis of A,
namely r(A). On this purpose we define a function f:

N—-R, which is given by

£CA) = a_ay(a(A)) + 1 bij(q(Aer(l)))

(1,3)eG(A) (4.4)
5,icA for all Ae)
where a. and bij are the costs defined in (4.2).
f(A) as defined in (4.4) gives the costs for cleaning
all waste water of A in r(A).

As we already discussed earlier,an optimal solution will

be one where in some vertices all the water flowing to
these vertices will be purified. Thus an optimal solution
can be characterized by a set of partial subtrees of

T, which are not connected and where the set of all vertices
of these partial subtrees is the set of vertices of T,

-gy4-

namely X 1tself. .

Let now Ac L1 denote such a class of sets of vertices
of partial subtrees. If A describes the set of partial
subtrees which minimize (4,2) then it must also be true
that

} £(A) is minimum ,
AeA

compared with all other possible A'.

Let now g: X—R be a function defined by

g(i) = min {£fA)+) g(k)} for all ieX (4.5)
Ace keH(A)
r(A)=1

This function can now be computed recursively, starting
at the "top" of the tree, which contains the wertices
with indegree zero (that means H(,)=0 for these vertices)
and then continuing with the vertices that are connected

by an arc and so on until the basis r(X) is reached.

Let L: X—fL denote the largest set Aefl for which
g(i) is minimum, L(i) thus denoting the largest optimal
set of vertices which send all their waste water to the

filter-plant located in vertex ieX.

Polyméris (1977) now proves that g(r(X)) gives the minimum
costs of (4,2),

The optimal sets of vertices L(i) can then be found as
follows.,

Start with L(r(X)). Find all vertices keH(L(r(X))). For

all these vertices k, L(k) gives the next optimal sets.

[

0

-85~

Then find vertices JeH(L(r(X))u L(k); keH(L(r(x))) leading
to L(j). This recursive search process must be performed
until H(L(r(X)) «es) =0, Then the optimal partial
subtrees of T have been found.

15

OO0 000000000000000000a0000

. LY

-

=80 =

. #¥% DPROGRAM FOR COMPUTING AN OPTIMAL WASTE

*¥%% WATER MANAGMENT SYSTEM

. INPUT

.. N

.

L Y

SU

H(J)
A

. NA

NB
OUTPUT

C1

. SFP(I)

SCA(I)

MUMBER OF VERTICES

SUCCESSOR FUNCTION, I.E. SU(J) DENOTES THE

SUCCESSOR OF VeRTEX J IN THE GIVEN TREE

IT HOLDS THAT I<KSU(I)

AMOUNT CF WASTE WATER PRODUCED IN VERTEX J
COEFFICIENTS FOR COST POLYNCHMIAL GIVING THE

COSTS FOR BUILDING A FILTER PLANT AT

VERTEX I WITH SIZE X. THE PCLYNCM IS THEN

GIVEN AS

AC(I-1)*NA+T)¥X¥%04 .., +A((I-1)*¥NALNA)RX**(1/(NA-1))
MUMBER OF COEFFICIENTS A FOR EACH VERTEX
COEFFICIENTS FOR COST POLYNCMIAL GIVING THE

COSTS FOR BUILDING A CANAL FROM VERTEX I TO

VERTEX SU(I) WITH SIZE X. THE POLYNOM IS THEN

GIVEN AS

B((I-1)*NB+1)¥X**%0+ ... +B((I=1)*NB+B)*¥X**¥(1/(NB-1))
NUMBER OF COEFFICIENTS B FOR EACH CANAL COST

MINTMUM COSTS FOR WASTE WATER MANAGMYENT SYSTEM
DENOTES THE SIZE OF FILTER PLANT AT VERTEX I
(SFP(I)=0 MEANS THAT NO FILTER PLANT SHOULD
BE BUILT AT I) ,

DENOTES THE SIZE CF THE CANAL FRGH I TO SU(I)

SUBROUTINE WAWA(N,.SU,H.A,NA,B,NB,C1,SFP,SCA)
INTEGER N,SU(1),NA,NB,MM(30)

REAL H(1),A(1),B(1),C1,SFP(1).SCA(1)

INTEGER SET(930),LM,LOP,0P(30)

DO 5 I=1,N

SFP(I)
DO 10
LMM=1

MM(1)=

=D, %%18,

- .

JJ=1,!

JJ

CONTINUE

DO 20
DO 30
IF(I .

I=1,N
J=1,L+M
EQ. MM(J)) GO TO 20

CONTINUE

DO 25
IF (SU(

J=1.1MM
I) .NE. MM(J)) GO TO 25

LMM=LMM+1
MM(LMM) =1

GO TO

15

CONTINUE
CONTINUE

Do 35

I=1,IMM

K1=2%%17

DO 40
IF (X1

J=1,LM
LLE, MM(J)) GO TO 40

i

)

o

)

(T
I

40

35

45
10

55
50

60

65

70

75

80

-87~

K1=MM(J)

K2=J

CONTINUE

MM(K2)=MM(T)

MM(I)=K1

CONTINUE

CALL MINT(LMM,MM,SU,H,A,NA,.B,NB,SFP,LOP,0P.JJ,N)
I=(JJ=-1)#(N+1)+1
SET(I)=LOP

I=I+1

I1=I+L0OP-1

DO 45 J=I,I1

J1=2J-I+1

SET(J)=0P(J1)

CONTINUE

C1=SFP(N)

DO 50 I=1,N

J=N+1-I

IF(SFP(J) .LE. 0.) GO TO 50
J1=(J-1)#(N+1)+1
J2=SET(J1)+J1

J1=J1+1

DO 55 I1=J1.J2

I2=SET(I1)

IF(I2 .EQ. J) GO TO %5
SFP(12)=0

CONTINUE

CCONTINUE

DO 60 I=1,N

SCA(I)=0

DO 65 I=1,N

IF(SFP(I) .GT. 0) GO TO 65
SCA(I)=H(TI)

CONTINUE

N1=N-1

DO 70 I=1,N1

J=SU(T)

IF(SFP(J) .GT. 0) GO TO 70
SCA(J)=SCA(J)+SCA(I)
CONTINUE

DO 75 I=1,N

IF(SFP(I) .GT. 0) SFP(I)=H(I)
CONTINUE

DO 80 I=1,N1

J=SU(I1)

IF(SFP(J) .LE.0) GO TO 80
SFP(J)=SFP(J)+SCA(T)
CONTINUE

RETURN

END

-88-

... *#% PROGRAM FOR COMPUTING AN OPTIMAL WASTE
... %% WATER PARTIAL SUBTREE ON A GIVEN SUBTREE

. INPUT
evs L NUMBER CF VERTICES
. SU SUCCESSOR FUNCTION, I.E. SU(J) DENOTES THE

SUCCESSOR OF VERTEX J IN THE GIVEN TREE

IT HOLDS THAT I<KSU(I)

... H(J) AMOUNT OF WASTE WATER PRODUCED IN VERTEX J
ees A COEFFICIENTS FOR COST POLYNOMIAL GIVING THE
COSTS FOR BUILDING A FILTER PLANT AT

VERTEX I WITH SIZE X. THE POLYNOM IS THEN

GIVEN AS
AC(I=1)*NA+1)*¥X*¥*¥04 ., +A((I=1)¥NA+NA)*X*X(1/(NA-1))
... NA NUMBER OF COEFFICIENTS A FOR EACH VERTEX
. B COEFFICIENTS FCR COST POLYNOMIAL GIVING THE

COSTS FOR BUILDING A CANAL FRCM VERTEX I TO
VERTEX SU(I) WITH SIZE X, THE POLYNCM IS THEN

GIVEN AS
B((I=1)%NB+1)*X*¥*¥0+ .., +B((I-1)*NB+NB)*X*¥*(1/(NB-1))
... NB NUMBER CF COEFFICIENTS B FOR EACH CANAL COST

... N(I) VERTICES IN THE GIVEN SUBTREE. IT HOLDS
THAT N(I)<N(I+1)

ees Jd ROOT OF THE VERTICES IN N

... G(I) MINIMUM COSTS FOR CONSTRUCTING A WASTE
WATER NETWORK WITH ROOT I. IF G(I)=2¥*18
THESE COSTS ARE NOT YET COMPUTED

.o LEN TOTAL LENGTH OF THE ORIGINAL TREE

... CUTPUT
.. G(JJ) SEE ABOVE
... LOP NUMBER OF VERTICES IN OP
.. OP(I) VERTICES BELONGING TO THE CPTIMAL TREE

WITH ROOT JJ. IT HOLDS THAT OP(I)<OP(I+1)

QAOOOO00O0000O00O0O0O00000 000000000000 0000000a0a0an

SUBROUTINE MINI(L,N,SU,H,A,NA,B,NB,G,LOP,0P,JJ,LEN)
INTEGER N(1),SU(1),0P(1),L,NA,NB,LOP,JJ,M(30),1II,KK,LL
REAL H(1),A(1),B(1),G(1)

LOGICAL LOG

XK=L-1

LL=1

CALL KOMB(L,N,LL,M,KX,II,SU,LOG,JJ)

IF(LOG) RETURN

R2=0,.

DO 10 1=t,LL

J=M(I)

QQ=QQ+H(J)

FF=COMP(NA,A,QQ,JdJ)

DO 15 I=1,LL

I1=M(I)

IF(IY .EQ. JJ) GO TO 15

QQ=H(I1)

I13=I-1

DO 20 J=1,1I3

e
.

15

45
50

35
30

40

J1=M(J)

IF(Jt .EQ. JJ) GO TO 20
NN=J1

NN=SU(NN)

IF(NN .EQ. JJ) GO TO 20
IF(NN .NE.I1) GO TO 25
QQ=QQ+H(J1)

CONTINUE
FF=FF+COMP(NB,B,QQ,I1)
CONTINUE

DO 30 I=1,LEN

DO 45 J=1,LL

IF(I .LT. M(J)) GO TO 50
IF(I .EQ. M(J)) GO TO 30
CONTINUE

DO 35 J=1,LL
IF(SU(I) .GT. M(J)
IF(SU(I) .LT. M(J)
FF=FF+G(I)

GO TO 30

CONTINUE

CONTINUE

IF(FF .GT. G(JJ)) GO TO 5
G(JJ)=FF

LOP=LL

DO 40 I=1,LL

OP(I)=M(I)

GO TO 5

END

GO TO
GO TO

=8C=

¥#% FINDING ANOTHER PARTIAL SUBTREE FOR A GIVEN
., ¥%% ROOT

LI ¥
+ =

. INPUT

ses L TOTAL NUMBER OF VERTICES IN GIVEN SUBTREE
.o N(I) I=1,2,...,L. DENOTES THE VERTICES IN THE
SUBTREE. IT HOLDS THAT N(I)<N(I+1).

.os LL NUMBER OF ACTUAL CHOSEN VERTICES OUT OF
VERTICES N(1),...,N(L)

.o M(J) J=1,...,LL. VERTICES IN THE PARTIAL SUBTREE
IT HOLDS THAT M(J)<M(J+1)

co. KK POINTER ON VECTOR N
.. II POINTER ON VECTOR M
... SU(I) DENOTES THE SUCCESSOR VERTEX IN THE GIVEN
TREE, IT HOLDS THAT I<SU(I).
ve JJ ROOT VERTEX
... OUTPUT
... LL SEE ABOVE
co. KK SEE ABOVE
oo II SEE ABOVE

.o M(J) SEE ABOVE
... LOG IF LOG=.TRUE., THEN NO MORE PARTIAL SUB-
TREES EXIST

OO0

SUBROUTINE KOMB(L,N,LL,M,KX,II,SU,LOG,Jd)
INTEGER L,SU(1),N(1),M(1),LL,KX,IT
LOGICAL LOG
LOG=.FALSE,
20 II=LL
25 IF(XX .EQ. L) GO TO 30
KK=KK+1
M(LL)=N(KK)
GO TO 5
30 IF(II .EQ. 1) GO TO 3%
II=IT-1
DO 40 J=1,L
IF(M(II) .GT. N(J)) GO TO 40
KX=J
GO TO u5
40 CONTINUE
45 L1=XK+LL-II+1
IF(L1 .GT. L) GO TO 30
DO 50 J=II,LL
KK=KK+1
50 M(J)=N(KK)
KK=L
M(LL)=N(L)
GO TO 5
35 IF(LL .,EQ. L) GC TO 55
LL=LL+1
DO 60 J=1,LL
60 M(J)=N(J)
KK=L

.

&

I
P

(" ™y

15
10

55

M(LL)=N(L)
LL1=LL-1
IF(LL .EQ.
DO 10 I=1
L1=M(I)

-91-

1) RETURN
,LL1

Do 15 J=I,LL

IF(SU(LY)
IF(SU(LT)
GO TO 20
CONTINUE
GO TO 20
CONTINUE
RETURN
LOG=.TRUE.
RETURN
END

.GT. M(J)) GO TO 15
.EQ. M(J)) GO TO 10

25
15

QOO0 0O000O000O00O0a0000n

LI

O X

END

-92a-

.. *%% COMPUTATION CF VARIABLE COST
R#%

. INPUT
NUMBER OF COEFFICIENTS PER VERTEX COST
COEFFICIENTS OF VERTEX COSTS
QUANTITY
INDEX OF VERTEX FOR WHICH THE COSTS ARE COMPUTED
. OUTPUT

COMP COST ON VERTEX L WITH QUANTITY F

FUNCTION COMP(M,C,F,L)

INTEGER M,L

REAL C(1)

COMP=0

IF(F .LE. 0) RETURN

J=(L-1)%M

0O 15 I=1,M

J=J+1 ‘

IF(I.EQ.1) GO TC &5

COMP=COMP+C(J)*F*%(1,/(I-1.))

G0 TO 15

CCMP=COMP+C(J)

CONTINUE

RETURN

=y

™~

-93-

Let us finally do some computational considerations. As
each Aefl. defines one vertex r(A) as its basis, the

value of f(A) +] g(k) has to be computed for all
keH(A)
Ae n. to finmally find g(r(X)). Therefore the computing

time will be proportional to the number of sets in {1 .
For a general tree T,this number can hardly be forecasted,
However, for simple tree structures we can derive this

number.

In the case where the tree has only one top vertex (with
indegree zero) as given in Fig., 4.4 (a), the number of sets
in fL , if the number of vertices in tree T is n, is
given by

nin+l) (4.6)

(a)

(b)

Fig. 4.4

In the case where the tree with n vertices has n=-1 top
vertices as shown in Fig. 4.4 (b), the number of sets
in L is

-94 =

n-1 -1 -1
n+] (57 =277 - 14n (4.7)
iz1

In this case Polyméris (1977) suggests a better usage
of the concavity of the objective (4.2), which results
in a much lower computation time than the one given

in (4,7) but we will not go into this.

Location of emergency service facilities

Organisation of emergency services has received

considerable interest in the last years. Like ambulance
systems and fire prevention systems,all such emergency
services have in common that they have to reach as quickly
as possible the place where an emergency situation occurs.
Therefore,the time between a telephone call announcing

such an emergency and the arrival at the emergency place

has to be minimized - the so called response time.
Considering an area in which such an emergency system is

to be built ,the problem of where to locate the emergency
service facilities is a crucial one for determining

the response time. As such emergency service

facilities are usually cars using the road network of the
area and as the vertices of such a road network can be

road intersections as well as subareas of the given area,
the location problem can be viewed as finding optimal
locations at vertices in a given network. Now two ways of
stating the problem are possible. We can either fix the
costs for such an emergency service and optimize the service
level or we can fix the service level and minimize its costs.
Here we shall use the latter approach. The service level

as defined by the response time can be measured, for example,
by the average response time,as the response time depends

on the location of the emergency,which is, of course,
stochastic in nature, thus leading to a stochastic response

time. But in many emergency cases,like accidents or a fire,

™

fas}

("\

-95-

not the average response time is the crucial parameter,
but the maximum response time that can occur . We shall
therefore fix the maximum response time, i.e. the

maximum distance from a vertex where a service facility
is located to any vertex which has to be served by this
facility. As we assume that enough facilities are used,
such that any emergency call can be answered immediatly
and no delay can occur because all facilities are
occupied, the number of locationsof such emergency service
facilities mainly determinesthe costs, if one thinks about
the costs to build up a house or garage serving as a
location and also to keep this house in good working
conditions. Thus we see that costs are minimized if the

number of such locations is minimized.

We can now formulate the problem completely: Given a directed
or nondirected road network with travel costs on each arc.
Then for a given maximum allowed travel cost (time) T, find
the minimum number of vertices such that all other vertices
can be reached from any one of those vertices in less than

the maximum travel time T.

This problem can now be stated mathematically. If the
maximum response time T has been decided upon, then, for
any vertex 1, only the set of vertices within T of i can
provide acceptable emergency service to i; this set will

be denoted as Ni . If dji is the minimum travel time (along
the shortest path) from any vertex j to vertex i, the set
Ni can be defined as

N;= {j] dy; € T;; a vertex possible for facility

location}
(4.8)
If there are n vertices which have to be served by emergency
facilities, there will be n sets Ni’ and each set will have
at least one number, if one takes dii=0. Note that these

n vertices need not be all the vertices of the given network.

-96=

It can well be that some vertices only serve for facility
location and also that some vertices may not serve for
facility location., All these cases can be included into
the definition of Ni'

To structure the mathematical formulation, the following

decision variables are now defined:

0, if no facility is established at vertex j
X. = (4.9)
1, if a facility is established at vertex j
for all possible facility location vertices j.

As already discussed,any vertex i1 that has to be served
by an emergency facility must have at least one facility
location within T. Recalling that the set of potential
facility locations within T of i is Ni and using (4.9),

we can write this requirement as
I ox. oy 1 for i = 1,2,...,n (4.10)

and the objective z that is to be minimized is the
total number of facility locations used

m
min: z =)} x. (4,11)

where m is the total number of possible facility
locations, Note that n ¢H, m ¢ H, where H is the number
of vertices of the given network. (4,9),(4,10) and (4.,11)
together give the complete description of the emergency
service facilities - location problem. If the costs for
locating the facilities are not the same at different

vertices, we can also use the objective

m
min: 2 = §J c. x. (4,12)

M

m

[

-97-

where cj denotes the cost for location at vertex j.

Hakimi (1964 and 1965) was the first to consider such
problems., Also in Christofides (1975) scme algorithms
for solving such location problems are discussed. We
shall follow here the approach given by Toregas et.al.
(1971), who suggested an heuristic algorithm based on
the simplex-algorithm that seems to give good results
and has the advantage of solving large problems, which is
not the case for the exact algorithm developed by

Hakimi (1964 and 1965).

Algorithm to find the optimal location vertices

Step_1:

Fora given maximum response time T compute the member

vertices of each set Ni for all vertices 1 to be served.

Step_2:

Solve (4.,10) and (4.11) or (4,12) as a linear programming
problem with

X5 » O for j = 1,2,...,m (4.13)

If the solution is integer (i.e. all X5 = 0 or 1), then

the optimal solution has been found. Stop.

If a fractional solution has been found with z° being the
value of the objective for this solution,then solve (4.,11)
or (4.,12) under the restriction (4.10) and (4.13) with the
additional constraint

_ |
'21 x; oy [2°] + 1 (4,14)
]:

where z° is the integer part of z°, Stop.

~-98=~

Toregas et al. (1971) report that, although fractional
solutions could occur if (4.14) holds, the problems
they solved always turned out to be integer, either
immediatly or with the help of (4.1%). Thus, all that is
needed is a standard linear programming code and some
subroutine that produces for a given network and a
given T the constraints (4.1lo). Of course, the given
model is only meaningful if the travel costs are
deterministic rather than stochastic by nature, which

is not the case if travel costs depend on travel

flow and this flow varies largely. Therefore, this model
seems to be less suitable to urban areas with heavy traffic

congestion, in which case a stochastic model is appropriate,

Optimal network for an airline

We shall discuss the following problem: Given a set of
airports (the vertices) which should be connected somehow
by airplanes. Then two problems arise: Either the
transportation demand (trip matrix) between all pairs of
vertices is given and this demand has to be satisfied with
a minimum of necessary flight hours, say per week. As the
necessary flight hours determine the number of aircrafts
(for example, 26 flight hours necessary within 24 hours
can only be produced by at least two airplanes), this model
can be viewed as one to determine the minimal number of
airplanes for a given demand. Such a model is discussed in
Miller (1967).

A somehow complementary problem to the above one is the
optimal fulfilling of a given transportation demand where
the number of airplanes and,therefore flight hours per week
is fixed. This model can be viewed as one to determine the
optimal airplane - supply for a given transportation demand

and a fixed number of airplanes.

M

[

-99-

Such a model is mainly of interest to a domestic airline
because between nearly all vertices (airparts) an arc
(flight connection) exists, thus leaving enough possibi-
lities for optimizing, while in international airlines
usually only flight connections between a foreign airport
and a domestic one exist and none between two foreign
airports, thus reducing the amount of possible networks
drastically. TFor simplicity we shall be considering only
one type of network flow (i.e. one type of airplane),
although this model can be generalized.

Let us call the airports (vertices) ieX and the possible
flight connections (arcs) (i,j)eA, where the given net-
work is G=(X,A). Let fij denote the flow on arc (i,j),
meaning the number of airplanes flying on this route,

say per week., To each arc assigned are the flight costs
(time) i3 including also the necessary time for preparing
the airplane on ground (loading, unloading, filling up
etec.).

We now want an optimal airplane supply for a given trip
matrix. As well known,a flight,&hich does not go non-stop
from the origin to the destination airport,takes much
more time than a non-stop flight. Thus, the demand will
best be fulfilled if as mény people as possible can go
with a non-stop flight connection., But this objective
cannot be optimized directly because this would mean not
only an optimal assignment of flights to arcs,but also

of passengers to flights which would complicate the model
a lot. We therefore try to give an objective which is
closely related to the original one but has the advantage
of being easy to handle.

If the trip matrix is given by (gij), the objective is

max:) =z (4,15)

f..,g..
(i,3)ea 13 723

-lo00-

which results in giving proportional weight to flights
between two vertices according tolthe demand. This
objective has, of course, to be optimized under certain
constraints, the first of which are the conservation

equations, which have the simple form

£.. =0 , ieX (4.16)

% fij - ji

)
J
(i,3)eA (§,i)eA

as no airplanes are destroyed or created in any vertex.
If we denote p the number of passengers that can be
carried by a single airplane (this number is equal for
all airplanes as we consider only one type), then p'fij
gives the number of passengers that can be carried from
vertex i to j in a week. Although people may have to use
such a flight from i to j even when i is not their origin
or j not their destination, if a non-stop flight is not
available to them, the supply on this route should not
substantially exceed the demand, therefore leading to

(1+ﬁ% o
0 ¢ f£i4 ¢ [S § 5 (i,3)eA (4.17)

where B is the allowed oversupply and [.] denotes the
integer part of the number. Also, we want each vertex
to be served by at least one airplane a week and a
connection possibility between all pairs of vertices

(A is, of course, connected), thus

1 ¢ 7 £33 , ieX (4,18)
J
(i,3)eA

and between all pairs of vertices i and j there exists

a path, Naturally we assume that all demands gij are at
least as large as to justify one flight per week on all
arcs in the minimum (otherwise this arc will not be

considered at all). Finally, we have to restrict the total

o

m

e

o™

-1lo1-
number of flight hours by
} f.. .c.. ¢ B (4,19)
i,5 0
(1,])eA

If, for example, the air company runs three airplanes
for 1o hours a day,each during 7 days, then B can be
computed as 21o hours/week.

Now, the objective function (4,15) can be changed to a
minimization problem by multiplying with (-1). Then, this
transformed objective together with the constraints (4.16)
and (4.17) is a minimum cost flow problem for which we
already developed an algorithm in chapter 3.3.1. But if
we further consider the constraints (4.,18) and (%#,13), no
special algorithm is known for this problem and therefore
only an algorithm for the general linear, integer programming
problem seems to be appropriate. Unfortunately, such an
algorithm will only apply for small networks as the number
of integer variables is approximately growing with nz, where
n is the number of vertices of G=(X,A). Thus, a heuristic
algorithm is meaningful in this case. For this algorithm
we shall assume that for each arc (i,j)eA,there also exists
an arc (j,i)deA. This assumption in practice is always satis-
fied, The idea of the algorithm is to find quickly a feasible
solution that satisfies all the constraints, continuing then
by sequentially assigning flights to arcs, which are still
feasible and maximize the objective. The problem of finding
a feasible solution is very similar to the problem of
computing a Hamiltonian circuit. (A Hamiltonian circuit is a
circuit passing once,and only once,through each vertex of the
graph). If we want to find the least cost Hamiltonian circuit
this would be the well known travelling salesman problem,
which we shall discuss in a later chapter. Here now we are
looking for a circuit that passes at least once through all

vertices and has low cost. Such a circuit is then a good

-102=-

feasible solution for our original problem. Considering
the weights of the objective gij and the travelling costs
cij’it is obvious that if two equal demands gij * gyx
exist and i35 ¢ clk,then a flight should be scheduled to
arc (i,j). Bearing this in mind, we consider new arc costs

as

g
d,. = ==L , (i,j)eA (4.20)
ij C. .
ij
for the given network G = (X,A).

Algorithm for solving the airline problem

Step_1:

Start with an arbitrary vertex ieX and mark this vertex
as the starting point. Mark all other vertices as
being unserved and set fij=0, (i,3)eA.

Step_2:

For vertex ieX find all unserved vertices j,for which

g..(1+8)
fij+1£[-313———- , that means find

gi.(1+6)
jeH; = {31¢i,3)eA , j unserved and £,.¢ -ls___.A- 1}

If Hi £ @ then choose this vertex k, for which

diK = max (dij).

jeHi
Mark vertex k as being served and set

i = e v 1 -

Set i k and perform again Step 2.

@ , go to Step 3.

If H,
i

e

i

[

=-103=-

Step_3:

Let Uc¢ X be the set of unserved vertices.

If U # @,then find the shortest paths P33 from i to
all jeU. Check, if for all arcs of the shortest paths
it holds that

g.:(1+8)
{-il-——-] -1 (4,21)

P

f..
1]

n

and eliminate those paths, for which (4,21) is not satisfied
If no paths exist for which (4,21) holds, then no feasib-
le solution can be found. Stop. If such paths exist, choose
the vertex k with the minimum shortest path. Mark k as be-
ing served and set for all arcs along this shortest path

.

fij = fij + 1 ,

Set i=k and got to Step 2.
If U =0 go to Step 4.

Step_Uu:

Find shortest path from vertex k to the starting point
(vertex) of Step 1 that satisfies (4,21), If no such path

exists, then no feasible solution can be found, Stop.

If such a path exists, then set for all arcs along this
path

Proof, if
. .o € ,
I £55 .54 ¢B (4.22)
(i,3)eA

If (4,22) is not satisfied, then no feasible solution could
be found. Stop.
Otherwise, go to Step 5.

-lol-

Step_5:

Among all arcs (k,1)eA choose the one, for which

i ‘gkl(1+ﬁ)w .
le ———
L p i
r g, (148)]
f ¢ 1K -1
1k
L P |
f.. c.. + ¢ + C £ B
(i,j)eA 1] 1] k1l 1k
and for which
g g g .
B, Bl L (E_l_u_+5_n..),
°x1 1k (i,3)eAVCi3 Gi
among all possible arcs.
Is such an arc exists, set
fkl = fkl + 1
fi = fae * 1

and perform again Step 5.
If no such arc exists, then a solution has been found. Stop.

The heuristic algorithm will produce a fairly good result
except in cases where a feasible solution cannot be found.

This can occur , when for most of the arcs

[gij(1+5)}‘z .
p

or, when B in (4,19) gives a very tight bound. Both cases

are rather unlikely in practical situations.

M

™

Pt
s

T

35

Q00

20

15

sNoNeNoNoNoNoNeRoNeoNeNoNoRoIoNo Yoo N No Xo X o)

=-105=

.., ®¥% AIGORITHM FOR SOLVING THE AIRLINE PROBLEM
RE¥

INPUT

.eo N NUMBER COF VERTICES
. G(L) TRIP MATRIX THAT IS NUMBER OF PEOPLE WHO

WANT TO TRAVEL FRCM VERTEX I=(L-1)/N+1
TO VERTEX J=L-((I-1)*N)

. C(L) FLIGHT COSTS (TIME) FROM VERTEX I TO J
(AS DEFINED ABOVE). IF C(L)=0 THEN NO
DIRECT FLIGHT FROM I TO J IS ALLCWED.

. BETA ALLOWED OVERSUPPLY OF SEATS ON EACH ROUTE

P NUMBER OF SEATS PER AIRPLANE
... B MAXTMUM AVAILABLE FLIGHT HOURS PER TIME UNIT
. OUTPUT

.. F(L) NUMBER OF DIRECT FLIGHTS FROM I TO J
. LOG IF LOG=FALSE THEN NO FEASIBLE SOLUTION
HAS BEEN FOUND

.

SUBROUTINE AIRL(N,G,C,BETA,P,F,LOG,B)
INTEGER N,G(1),C(1),P,F(1),H(90),HH,IG(900),ID(900),B
LOGICAL LOG,ICA

veo STEP 1

LOG=.TRUE.

M=N*N

DO 5 I=1,M

F(I)=0

HH=1

H{HH)=1

DO 35 I=1,M
IG(I)=C(I)

CALL SPII(N,IG,ID,ICA)

. STEP 2

D=0

KD=0

DO 15 I=1,N

J=H(HH)

L=IND(J,I,N)

IF(C(L) .LE. 0) GO TO 15
DO 20 J=1,HH

IF(H(J) .EQ. I) GO TO 15
CONTINUE
E=FLOAT(G(L))/FLOAT(C(L))
IF(D .GE. E) GO TO 15
D=E

KD=1

CONTINUE

IF(KD .EQ. 0) GO TO 25
J=H(HH)

7

nNOOO

55

45

40

50
60

65

=106~

L=IND(J,KD,N)
F(L)=F(L)+1
HH=HH+1
H(HH)=KD

DO 76 1I=1,N
DO 77 J=1,HH
IF(4(J) .EQ. I) GO TO 76
CCNTINUE

GO TO 10
CONTIHUE

GO TO 30

. STEP 3

I=H(HH)

JJ=0

MI=2#¥17

DC 40 J=1,N

DO 55 X=1,HH

IF(H(K) .EQ. J) GO TC 40
CONTINUE

L1=IND(I,Jd,N)

IF(MI .LE. IG(L1)) GO TO 40
J1=J

K1=J1

J1=IND(I,K1,N)
J1=ID(J1)
L=IND(J1,K1,N)
AA=G(L)*(1.+BETA)/P-1.
LL=INT(AA)

IF(F(L) .GT. LL) GO TO 40
IF(Jt .NE. I) GO TO 45
Jd=J

MI=IG(L1)

CONTINUE

IF(JJ .NE. 0) GO TO 50
LOG=.FALSE.

RETURN

J1=JJ

HH 1=HH+1

K1=J1

J1=IND(I,K1,N)
J1=ID(J1)
L=IND(J1,K1,N)
F(L)=F(L)+1

HH=HH+1

H(HH) =K1

IF(J1 .ME. I) GO TO 60
HHZ=HH

MM=H(HH1)
H(HH1)=H(HH2)
H(HHZ2)=MM

HH1=HH1+1

HHZ=HHZ-1

IF(HH1 ,LT.HH2) GO TO 65
DO 66 I=1,N

DO 67 J=1,HH

3

(n

)]

m

L™

™

N

67

Qo

30
70

80

85

75

95

OaOQ

-107-

IF(H(J) .EQ. I) GO TO 66
CONTINUE
GO TO 10
CONTINUE

. STEP 4

H(HH)

IND(I,K1,N)

J=ID(J)

L=IND(J,K1,N)
AA=G(L)*(1.+BETA)/P-1.
LL=INT(AA)

IF(F(L) .GT. LL) GO TO 75
IF(J .NE. I) GO TO 70
J=1

K1=d

J=IND(I,K1,N)

J=ID(J)

L=IND(J,K1,N)
F(L):F(L)+T

IF(J .NE. I) GO TO 80
B1=0

DO 85 I=1,M
B1=B1+F(I)*C(I)

IF(Bt .LE. B) GO TO 90
LOG=.FALSE.

RETURN

DO g5 II=t,M
IG(II)=C(II1)
LL=G(II)*(1.+BETA)/P-1.
IF(F(II) .GT. LL) IG(II)=0
CONTINUE

CALL SPII(N,IG,ID,ICA)
J=1

L=IND(I,J,N)

IF(IG(L) .LT. 2%*17) GO TO 30
LOG=.FALSE.

RETURN

eoeo STEP 5

LL1=0

LL2=0

AA=0

DO 100 I=1,N

DO 105 J=1,N

IF(I .EQ. J) GO TO 105
L1=IND(I,J,N)

L2=IND(J,I,N)

IF(C(L1).LE.O0 .OR., C(L2).LE.0) GO TO 105
LL=G(L1)*(1.+BETA)/P-1.
IF(F(L1) .GT. LL) GO TO 105
LL=G(LZ)*(1.4BETA)/P-1.
IF(F(L2) .GT. LL) GO TO 105

~108~

BB1=B1+C(L1)+C(L2)

IF(BBY .GT. B) GO TO 1C5
AAA=FLOAT(G(L1))/FLOAT(C(L 1))+FLOAT(G(LZ))/FLCAT(C(L2))
IF(AA .GE. AAA)Y GO TO 105
AA=AAR

LL1=L1

LLz=Le

CCNTINUE

CCNTINUE

IF(AA LLE. 0) RETURN
B1=B1+C(LL1)+C(LL2)
F(LL1)=F(LL1)+1
F(LL2Y=F(LL2)+1

GO TO 90

END

(‘r"\

N

e

-109~-

4.4, Optimal network of a pipeline system

In this chapter we shall be dealing with the problem
of constructing a pipeline system that can transport
natural-gas from the gas fields to a separation plant,
where the gas is separated from its valuable by-pro-
ducts and impurities., Because usually for gas produced
from onshore fields where the.separation is performed direct-
ly at the well, the following model is mainly devoted

to offshore wells where the gas is transported through
pipelines to some separation plant on land. The methods

for analysing such a problem were first presented by
Rothfarb et al. (13970) and some faster but approximative
methods were given by Zadeh (1973), We shall state a
different approach that is like the one by Rothfarb heuri-
stic by nature and tries to reduce the time-consuming

exact computation of the optimal pipe diameters. - The
design of an offshore natural-gas system has two aspects.
First, to reduce investment costs, the total length of

all pipelines (arcs) should be as short as possible, but
connect all gas fields (vertices) with the separation plant.
It is quite obvious that the resulting network therefore
will be a spanning tree of the original network G(X,A),
which is the network of all gasfields (vertices) and all
possible pipelines.

Second, for minimizing the operating costs, the loss of
gas pressure on its way from a gas field to the separation
plant should be as low as possible., The maximum allowable
pressure is some constant Pmax’ which is the same for all
types of pipelines and the pressure available at each well
is at least Pmax .Because the gas has to be recompressed
at the separation plant, the cost for this recompression
is determined by the lowest pressure of gas arriving from
any well. As the pressure is the same at all wells, the
lowest gas pressure can be found in the pipeline with the
greatest pressure lost (the so-called critical pipeline
path). The loss of gas pressure is a function of the pipe=-

-110-

line length and the pipeline parameter

AP = P, - P, = F(L,D), (4.23)
where P1 is the output pressure, P, is the input pressure,

D is the pipeline diameter and L is the pipeline length. Of
course, the longer the pipeline will be, the larger the

differencePz-P1 will be, while in contrast, P,-P, will be

1 2 1
decreasing if D increases.

As it seems impossible to solve the optimization problem of
finding the optimal spanning tree and pipeline diameters in
one step, the problem is divided into two subproblems: first,
to find an optimal spanning tree: then an optimal diameter
for each arc of the tree such that the sum of the investment
and operating costs over a given planning horizon is mini-

mized.

Because the compression cost depends on the highest loss

pressure in any pipeline path and because the loss of pressure
for a given diameter depends on the length, it is obvious that
we should find a tree such that the longest pipeline path con-
necting a gas field (vertex) with the separation plant is
minimized. Having found this path, the other arcs should be in-
cluded in a way that no path is longer than the critical path
and that the sum over the length of all arcs is minimized in order to
minimize the investment costs. For the so determined spanning
treesan assignment of a pipeline diameter to each arc of the tree
must be performed to minimize the total costs. Because the
largest diameter will minimize loss of pressure but has the
highest investment costs, the optimal diameter can only be

found if the operating cost for a given loss of pressure and

the investment cost for a given diameter areknown and the plan-

ning horizon is given,

[
s

-
\

-111-~

Algorithm for finding the optimal spanning tree

Step 1:

For the given network G=(X,A), where xosX is {he separation
plant and the arcs eA give all possible pipeline connections
between vertices and to each arc (i,j) & length ei} is assig-
ned, find the shortest paths between X and all other vert-
ices jeX. Denote the length of the shortest path from j to

X, with pj. Order the vertices such that P1 %Py » «ee 3 P
where n is the number of vertices in X (besides xo).
Step_2:
Put Xy in Ye¢ X, the set of all already with X connected
vertices, Set k=1,
Step_3:
Find all shortest paths qki from vertex k to all vertices
jeY in the given network G=(X,A), (Note that for k=1 this
path already has been found to be pl).
Find

Ay = MIN Gy (4.24)

jeY \

such that

Include vertex k and all vertices that lie on the path
Q) into Y. Include all arcs that lie on the path Qyepn into
Sc A for the spanning tree T = (X,S)

Step_H:

Set k = k+1 , If k> n then Stop.
If k< n go to Step S.

-112-

Step_5:

If keY, then go to Step 4.
If k€Y, then go to Step 3.

The algorithm finds a spanning tree of G=(X,A) for which
the longest path in T=(X,S) between any vertex and Xq is
as short as poésible.

The other arcs are chosen in a way to minimize the sum
of the length of all arcs in S. This is performed by
(4.24),

Having found the spanning tree T=(X,S),the assignment of
the pipeline diameters still remains. We shall not go

into this problem which has been discussed for a discrete
number of possible diameters by Rothfarb et al. (1870) and
for a continuous number of pipeline diameters (restricted

to a maximum and a minimum one) by Zadeh (1973).

D

("

M

N

. .
.
.

.

OO0 0000000

aOan

10

20

15

c
Cc ...
C
25

-113-

%#%¥% PROGRAM FOR FINDING A SPANNING TREE ON A

. %%¥% GTVEN GRAPH, WHERE THE LONGEST SHCRTEST PATH
. ®¥% TS MINIMUM AND THE TOTAL LENGTH OF THE

.. *%¥% SPANNING TREE IS MINIMAL (PIPELINE PROBLEM)
%%

. INPUT

. NUMBER OF VERTICES

C(L) LENGTH OF THE ARC FROM I=(L-1)/N+1 TO
VERTEX J=L-((L-1)*N), L=1,...,N*N. IF
C(L)=0, THEN NO ARC EXISTS.

. OUTPUT

F(L) SUCCESSOR FUNCTION, I.E. F(L) DENOTES THE
SUCCESSOR OF VERTEX L IN THE FOUND SPANNING
TREE

SUBROUTINE OPTREE(N,C,F)
INTEGER N,C(1),F(1),IG(900),ID(900),A(30),B(30)
LOGICAL LOG.

. STEP 1

M=N#N

po 5 I=1,M

IG(I)=C(I)

CALL SPII(N,IG,ID,LOG)
MM=2%%17

LL=1

A(LL)=1

MN=0

LL=LL+1

K=0

DO 15 I=2,N
J=IND(I,1,N)

IF(IG(J). GE MM .OR. MN.GT.IG(J)) GO TO 15
IF(MN .EQ. IG(J)) GO TO 20
MN=IG(J)

LL=LL-K

K=0

A(LL)=I

GO TC 15

K=K+1

LL=LL+1

A(LL)=I

CONTINUE

IF(LL .EQ. N) GO TO 25
MM=MN

GO TO 10

STEP 2

LL=1
B(LL)=1

35

40

w OO0

[ONON®] OO
(@]

-114-

K=2

. STEP 2

MM=2##17

KK=A(K)
L=IND(A(2),1,N)
IP1=IG(L)

IG(1)=0

DO 35 I=1t,LL

J=B(I)

L=IND(KK,J,N)
L1=IND(J, 1,N)
IPP=IG(L)+IG(L1)
IF(IPP .GT. IP1) GO TO 3%
IF(IG(L) .GE. MM) GO TO 35
MM=IG(L)

II=J

CONTINUE

J=I1

K1=J

J=IND(KK,K1,N)

J=ID(J)

LL=LL+1

B(LL)=J

F(J)=K1

IF(J .NE. KK) GO TO 40

. STEP 4

K=K+1
IF(K .GT. N) RETURN

.. STEP 5

DO 45 I=1,LL

IF(A(K) .EQ. B(I)) GO TO 50
CONTINUE

GO TO 30

END

-115-

4.5, Optimal expansion of a railway system-

With the growing interest in mass transportation systems,
the improvement of railway systems has become an import-
ant question in many countries. Because most of the rail-
way networks,at least in Europe,were built at the begin-
ning of this century, these networks do not fit in many
cases to present transportation demands. Scme lines that
used to be essential are not so any more, while others

have been of growing importance. Of course, investments

for improving the situation are restricted and therefore
the question remains, which possible improvements should

be realized under the given budget constraint and which
should be left for consideration at some time in the
future. Improvement can mean two things: improving existing
lines (arcs) for higher speed or capacity and building
completely new arcs connecting towns (vertices) that have
not been directly connected yet. Both cases can easily be
combined, if the improvement of an existing arc is consider-
ed as building a new arc with shorter transpertation time
than the old one. To each new arc (i,j) (combining vertices
i and j) assigned are the construction costs a3 3 and to all
(new and old) arcs (i,j) assigned are the transportation
costs (time) iy As we are considering a railway system,we
do not introduce arc capacities as a constraint, because in
practice so far,the capacity of an arc has rarely been
restrictive. It is more the number of available railway-
coaches that seemsto restrict the transportation capacity of

a railway-system.

Yet, we have only discussed the constraints for the network
improvement and not its objectives. But quite haturally we

can adapt the objective of chapter 3.3. and try to minimize
total travel time for a given trip-matrix. To do so, we must
first know how trains,and therefore people,will travel along

a given network. Because no capacity constraints for arcs

-116-

are given, and because the travel time does not depend on
the travel flow,it is obvious that people will travel along
shortest paths between their origin and their destination
and usually routes for trains are chosen to lie on shortest
paths as well. At least, if there are two trains,one along
the shortest path between two vertices and one not, people
will, according to Wardrop's principles, choose the train

along the shortest path.

We have now completely defined the problem and can state it
more formally in the following way:

Let P be the set of all subsets of I (the set of all possible
arcs to be constructed). Then for a given network G=(X,A),

a given tripmatrix , where i,jeX, and a given budget B,

[t.:]
1]
find sets 0eP, for which the investment costs i 5 do not

exceed the budget

z qij ¢ B (4,25%5)
(1,3)e0cP

where i,jeX (we do not consider to connect new vertices that
are not already a member of X). For all such feasible sets
0eP, find the one for which

min: 13 i3

I te: PSs (4,26)
i,jeX

OeP

where pzj denotes the shortest path from vertex i to j in

the network G° = (X,Au0) and F is the sum of the travel time

of each passenger over all possible origin-destination pairs.

Because the construction of an arc can never result in in-

creasing shortest paths,it must hold that for any set RcOeP

R o :
) tij Pi3) tij Pi; (4,27)
i,jeX i,jeX

-117-

For the optimal solution it is therefore sufficient to take

only those sets OeP into consideration, for which

I a35 ¢ B (4.28)
(i,3)¢€0

and

} q..> B for all QeP
.. ij
(1,3)¢Q with Q> 0,

Such sets 0 we shall call maximal sets and the set of all
maximal sets we denote by M ¢ P, Although the number of ele-
ments in M cannot be given generally in a formula, it is
usually much smaller than the number of elements in P, which

. . : . n
is, if there are n arcs in I, 27-1,

Let us consider building costs for arcs in I, which are all
equal and let the budget B be given such that exactly n-m

arcs can be built, Then M, the set of all maximal sets contains

2

elements. If we remember formula (4.7), it holds that

(n;m) = 2Paq -121 (’D . (4.29)

i#m

Because (I;.): (I\EJ) , the worst case happens to be m= [n/Z], the
integer part of n/2. In this case, (4¥.29) can be written as

(E-n?QZ . 2n_1_(2l_n/2]-1_1+2 [(n+1)/2] -1 _ 1)

Although this upper bound in a special case is not very
promising, in practical cases the number of arcs that can be
built by constraint (4.25) will.be rather low and further re-
duced by (4.28). It is therefore meaningful to find all maximal
sets (in M) and compute the objective (4.26) for all such sets,

-118=-

thus finding the minimal one. If a maximal set has been found,
the problem of computing (4.,26) reduces to finding the shortest
paths pzj between all pairs of vertices for which Floyd's

algorithm can be used. Yet, we have only to state an algorithm

to find all maximal sets efficiently.

Let the arcs in I be called j=1,2,...,n. Let s be the construc-

tion cost for arc j.

Algorithm for finding all maximal sets:

Step_1:
Set x(2) = x(3) = ,.., = x(n) = 0.
Set x(1) = 1 and k = 1, Go to Step 2.
Step_2:
Compute
k
E =.Z Qe¢i) °
i=1
If E4<B, go to Step 3
else go to Step 6.
Step_3:

If x(k) <n, set kzk+1i, set x(k) = x(k-1) + 1
and go to Step 2

otherwise the set of arecs x(1), x(2),..., x(k) is
a maximal set,
Set x(k) = x(k)+1 and go to Step 4.

Step U:

If k1, set k = k=1, set x(k) = x(k) + 1 and
go to Step 5,
If x¢1, stop - all maximal sets have been found.

m

™

[

-118-

Step_5:
If x(k+1) - x(k) <1, go to Step 4
otherwise go to Step 2,
Step_6:

If x(k)<n,' set x(k) = x(k) + 1 and go to Step 2.

Otherwise, if k> 1, the set of arcs x(1), x(2),..., x(k=1)

is a maximal set. Go to Step 7,

Otherwise, if k=1, Stop - all maximal sets have been found.

Step_7:

Set k=zk-1, set x(k) = x(k) + 1 and go to Step 2.

The algorithm, although looking rather complicated, is very

easy to understand if we look at an example with 5 arcs. We

can interpret the algorithm as a type of branching technique

with (4,.25),as its bounds for deciding to backtrack. The
branching tree for 5 arcs is given in Fig.u4.5.

Fig. 4.5

x(1)

x(2)

x(3)

x(4)

x(5)

-120-

The numbers along the arcs of the branching denote the

value that is given to x(1), x(2),...,x(5) respectively.

As can be easily seen out of Fig.4%.5., each vertex in

Fig.4.,5. represents one element of the set of all subset

of I, namely P. The algorithm now always branches along

the most left arc in the tree of Fig.4.5. (and. also

in general). In any vertex two cases are possible. Either an
arc can be included into the set 0OeP, such that (4,25) still
holds,in which case a maximal set has not been found and
branching is done along the number of the arc that is in-
cluded in O (see Step 3). Or no such arc could be found,in which
case amaximal set already has been found (see Step &). If

we reached a final vertex in Fig.4.5. for which (4.25) still
holds, then a maximal set has also been found (see Step 3).
If a maximal set has been found,then backtracking is per-
formed to the predecessarvertex of the actual one (see Step

4 and 7), thus cutting off all succeeding vertices. If the
arc furthest to the right has been reached (which is indicated

by x(1)=@, all branches have beenexamined and the algorithm stops.

Of course the presented method not only works for railway
systems, but also for other transportation systems where
congestion cannot occur because a time scheduling is made
for the travelling vehicles. Thus it applies also to urban
underground railway systems and to tram networks, but it does
not apply to car traffic on roads. The algorithm can also be
used to find a completely new network, which is nowadays es-
pecially important for urban underground railway systems. The
algorithm remains unchanged, only in Step 2 it has to be
proven, if the actual set of arcs O together with the set of
vertices X define a strongly connected graph c°=(x,0). If not,
then Step 3 has to be performed and if x(k)=n, then no feasibleset
of arcs has been found in this case. To check 1if the graph is
strongly connected ,a necessary condition is that all vertices
have a degree greater than zero. If this is true,then a simple

algorithm finds out if the network is connected.

-121-~

Algorithm to determine if a network is strongly connected:

Step_1:
For a given network G=(X,A) define a matrix R=(rij) as
follows
1 if arc(i,jdeA
rij] 0 if arc(i,j)éA
Step 2:

Compute for p ¢ n, where n is the number of vertices in X

2

B =R +R2 +R3

+ ... + RP

9

"+"

where is the addition in the Boolean sense (i.e. 1+1=1),

If for some p ¢n the elements of the matrix B=(bij) are all
equal to 1 (bij=1, i,j=1,...,n) then the given network
G=(X,A) is connected, otherwise not.

QOO0 000000000000000000000

. « s

QOO

10

nNOOO

.

. ¥%% PROG

.0 *** EmA
, BE¥

. INPUT

.o N
. C(L)

. NN
. Y(M)

. QM)

. . -

CC(M)
B
T(L)

. OUTPUT

.. KK
. YY(M)

. IMPR

SUBROUT
INTEGER
REAL C(
LOGICAL

-122-

RAM FOR FINDING THE OPTIMAL
NSION OF A RAILWAY SYSTEM

NUMBER OF VERTICES

TRANSPORTATION TIME IN THE ORIGINAL NETWORK

FROM VERTEX I=(L-1)/N+1 TO VERTEX

J=L-((I-1)*N), L=1,..,N®N, IF C(L)=0, THEN

NO ARC EXISTS.

MAXIMUM NUMBER OF ARCS TO BE CONSTRUCTED

DENOTES THAT A NEW ARC CAN BE CONSTRUCTED

FROM VERTEX I=(Y(M)=1)/N+1 TO J=Y(M)-((I-1)*N),
FOR M=z1,..,NN

CONSTRUCTION COST FOR ARC Y(M)

TRANSPORTATION TIME ON ARC Y(M)

TOTAL AVAILABLE INVESTMENT BUDGET

NUMBER OF PEOPLE WHO WANT TO TRAVEL FROM VERTEX I
(SEE ABOVE) TO VERTEX J (SEE ABOVE) - TRIP MATRIX

OPTIMAL NUMBER OF ARCS TO BE CONSTRUCTED
ARC TO BE CONSTRUCTED - DEFINED LIXE Y(M) -
FOR M=1,..,KK

OPTIMAL TRANSP. TIME/ORIGINAL TRANSP. TIME

INE OPRAIL(N,C,NN,Y,Q,CC,B,T,KK,YY,IMPR) -
N,NN,Y(1),T(1),KK,YY(1),X(30),ID(300),IG(900),STEP
1),Q(1),cCc(1),B, IMPR

LOG

. INITIALIZATION

M1=N¥N
DO 5 I=
IG(I)=C
CALL SP
ORG=0
DO 101

1,M1
(1)
II(N,IG,ID,LOG)

=1,M1

ORG=ORG+IG(I)*T(I)

OPT=0RG
KK=0

IMPR=OPT/ORG

K=1

DO 15 1
X(1)=0

X(K)=1

STEP=1

. FINDING

LOG=.FA
CALL MA
IF(LOG)

=1,NN

NEXT MAXIMAL SET

LSE.
XSET(K,X,B,NN,Q,LOG, STEP)
RETURN

"

M

L

30

35

40

DO 25 I=1,M1
IG(I)=C(I)

DO 30 I=1,K

J=X(1I)

J1=Y(J)

IG(J1)=CC(J)

CALL SPII(N,IG,ID,LOG)
AA=Q

DO 35 I=1,M1
AA=AA+TIG(I)*T(I)

IF(AA .GE. OPT) GO TO 20
OPT=AA

KK=K

IMPR=0OPT/ORG

DO 40 I=1,KK

J=X(I)

YY(I)=Y(J)

GC TO &0

END

-123-

QOO0 000000000000000

> s 0

s 00

o s 0

e v e

o 08

o0 0

-124-

%%¥%* PROGRAM FOR FINDING THE NEXT MAXIMAL SET
Rk

INPUT

K NUMBER OF ARCS IN THE MAXIMAL SET
X(I) ARC NUMBER IN THE MAXIMAL SET, I=1,..,K
IT HOLDS THAT X(I)<X(I+1) FOR ALL I.
B TOTAL AVAILABLE INVESTMENT BUDGET
N MAXIMUM NUMBER OF ARCS TO BE CONSTRUCTED
Q(I) CONSTRUCTION COST FCR ARC I, I=1,..,N
STEP DENOTES THE LABEL WHERE PROGRAM SHALL START

OUTPUT

¥ NEW NUMBER OF ARCS IN THE MAXIMAL SET
X(I) NEW ARC NUMBERS IN THE MAXIMAL SET, I=t,..,K
LOG IF LOG=TRUE, ALL MAXIMAL SETS HAVE BEEN FOUND

SUBROUTINE MAXSET(X,X,B,N,Q,LOG,STEP)
INTEGER K,X(1),N,STEP

REAL B,Q(1)

LOGICAL LOG

Go TO (2,3%,7),STEP

X(K)=X(K)+1

GO TO 4

STEP 2

E=0

DO 10 I=1,K

J=X(1I)

E=E+Q(J)

IF(E .LE. B)Y GO TO 3
GO TO 6

STEP 3

IF(X(K) .LT. N) GO TO 15
STEP=2

RETURN

K=K+1

X(K)=X(K=1)+1

GO TO 2

STEP 4

IF(K .GT. 1) GO TO 20
LOG=.TRUE.

RETURN

K=K-1

X(K)=X(X)+1

STEP 5

JJ=X(K+1)-X(K)

-

.

IF(JJ .LE, 1) GO TO 4
GO TO 2

... STEP 6

[X O RO NP

IF(X(X) .EQ. N) GO TO 25

X(X)=X(K)+1

GO TO 2

25 IF(X .GT. 1) GO TO 30
LOG=.TRUE.
RETURN

30 STEP=3

K=K-1

RETURN

C
C... STEP 7
C
7 X(K)=X(K)+1

GO TO 2
END

-125~

-126-

4,6. Optimal expansion of a road network

Although we are considering the same problem for a

road network than we were discussing for a railway

system in the last chapter sthe method for solving this
problem will have to be quite a different one. The

reason for needing another:solution method is the way
traffic is assigned to a network. Although we assume in the
last chapter that arcs have unlimited capacity and

travel costs are constant leading to route choices

along the shortest paths in the network, it is no longer
true for car traffic , as we already dicussed '
in chapter 3.3. In fact, it is much more realistic to
assume that travel cost along an arc is an increasing
function of the travel flow and that car drivers be-
have according to Wardrop's first principle (descriptive
assignment). Because of these assumptions for modelling
road traffic, the useful result of chapter 4.5 given in
formula (4,27), stating that the construction of an addi-
tional arc in the network does not increase the total
travel time (costs) over all travelling persons, does not
remain true any more. In fact, we are confronted with

the rather paradoxical situation that a new road can even
increase total travel time. A rather famous example for
such a situation is the so-called Paradox of Braess, which

we are presenting now to illustrate what we just stated.

Let us consider a simple network as given in Fig.u4.6.

1

.
7

Y

A
Yy

N 6———Ae———0 =

Fig.4.6.

o

-127-

If the flows along the arcs are called X433%X4, X5, and Xy
respectively,we assume the travel costs (time) which

are increasing functions of the flow, to be

Cy3 = loxy;

c1L+ = S50 + x1u

- (u4,30)
C3p = S50 + X309

Cyy = loxu2 .
We further assume that there exists a flow of 6 units
from vertex 1 to 2. The descriptive assignment of the
units to the network will therefore result in 3 units

using the path 1-3-2 and 3 units using the path 1-4-2,
thus leading to total travel costs of

3.(10.3+450+3) + 3,(10,3+50+3) = 4398 (4,31)

The network of Fig. 4.6. is now expanded by ancther arc
as given in Fig.4.7. The traveling cost .

1 4

v

3
L4

N\ 74

Fig. u4.7.
along the new arc (3,4) is assumed to be

c = 1o + x (4,32)

34 3u

When solving the descriptive assignment problem, we
get 2 units using path 1-4-2, 2 units using path 1-3-2
and two units using path 1-3-4-2, The user's costs for

each unit however are now 92 (instead of 83 for the original

-128-

network); the total travel costs therefore 552, So the
addition of an arc means an increase of user's costs of

about 11 per cent.

In the last situation the assignment with 3 units on path
1-3-2 and 3 units on path 1-4-2 is not a solution of the
assignment problem according to Wardrop's first principle.
For in that case, it would be better for a unit on 1-3-2
with user's costs 83,to use path 1-3-4-2 with user's costs
81.

A similar example to the one given, which can be found in
Steenbrink (1974), is stated in Leblanc (1975). Quite a
lot of algorithms have been proposed to solve the problem
of road network investment and a very good review of those
algorithms is presented in Steenbrink (1874). But all of
them do not consider a situation like the Paradox of Brass
that could occur . Therefore these algorithms do not
seem to be of great validity for real situations,although
Steenbrink reports on an application of his algorithm to
the Dutch road network. The only algorithm so far presented
to consider Braess' Paradoxon was published by Leblanc
(1975), which is a branch-and-bound algorithm. We shall
state his algorithm in the following.

For a fixed set of vertices X and a fixed trip matrix bet-
ween all these vertices,let us denote by N(A) the optimal
value of the objective of the normative assignment as given
in (3.27) for a set of arcs A with associated flow costs.

For the same set of vertices X and trip matrix,let us denote
by D(A) the optimal value of the objective of the descriptive
assignment as given in (3.29) for a set of arcs A. Both N(A)
and D(A) can be computed with a traffic assignment algorithm,

which we discussed in detail in chapter 3.3.

i

)

-1289-

Like in the last chapter, let I denote the set of all arcs j
(with associated construction costs a; and flow costs) that
are considered to be included into the already existing net-
work G=(X,A).

For the purpose of the following algorithm, we divide I into
3 subsets 0,P,Q, where

I = 0uPuQ
OnP = @
PaQ = 0@
0nQ = @

O denotes the set of all arcs that are constructed. P denotes the
set of arcs that are not constructed. Q denotes the set of

arcs for which a deeision has not yet been made. Let B denote
the total budget available for road investment.

Because normative assignment always leads to better results

(in terms of transportation costs) than descriptive assignment,
and because for the normative assignment the objective will

not increase if a new arc is built (this is equivalent to (4.27)),
the following holds

D(A) » N(A) > NC(AvO) (%,33)

for any set of arcs A and additional set of arcs 0. We shall
need (4.33) for computing the lower bound of the objective in
each node of the branching tree of the following algorithm,

Algorithm for finding an optimal road network

Step_1 (Initialization):

Set O P =0 and Q = I.
Set T N(AuQ) and M = = ,
Set value of the origin node V(0,P,Q) = N(AWQ)

-130-

Step_2:

Choose an arc jeQ.

a) Set Qy Q -3
0q 0 v 3.

Compute, if

q. € B, (4,34)
jsO1 J

If (4,34) is not true, set the value associated to the

node V(Ol,P ’Ql) = » and go to Step 2b.
If Q is empty, compute D(Aqu) and set

M = min (M,D(Auol)). (4.35)
If Q1 is not empty, set the value associated to
(Ol’Ql’P)

V(Ol,P ’Ql) = V(0,P,Q) . (4,36)

b) Set P1 = Pui.

If Q4 is empty, compute D(A v0) and set
M = min(M,D(A v0)) (4,37)
If Q is not empty set

V(0,P,,Q,) = N(AuouQ15 (4.38)
Set V(0,P,Q)=w=,

Step_3:
Find a node (among those already analyzed), characterized

by the set (0,P,Q), such that

Q # 0
V(0,P,Q) ¢ M . (4,39)

If no such node exists, the set of arcs O associated with the
actual value of M is the optimal one to build. Stop.

If such nodes exist , find the one with the minimum value
V(.)., Fix the associated set (0,P,Q) and go to Step 2.

.

[

[P NSE®]

QOO0

. . .

. . .
.

-131-

. ¥#% PROGRAM FOR FINDING AN OPTIMAL ROAD NETWORK

.

x¥x

INPUT

. N

NA
MA
c(L)

. T(L)

LI)

. NN
. CC(L)
. UI)

. e
.

OO0 000000000000000000000 Q0

>
.

B

OUTPUT

L] m
. YY(M)

. IMPR

NUMBER OF VERTICES (STREET INTERSECTIONS, TOWNS)
NUMBER OF ARCS IN THE ORIGINAL NETWORK

NUMBER OF COEFFICIENTS PER ARC FLOW COST (TRAVEL TIME)
IF L=(I-1)*(MA+1)+1, THEN J=(C(L)-1)/N+1 DENOTES THE
ORIGIN VERTEX AND K=C(L)-((J-1)*N) THE DESTINATION
VERTEX OF THE ARC, WHOSE TRAVEL COST IS GIVEN BY
C(L+1)+C(L+2)#¥F+C(L+3)¥F*¥24, , , +C(L+MA) *F%%(MA-1),
WHERE F IS THE FLOW ON ARC(J,K) AND L=1,...,NA¥(MA+1)
NUMBER OF PEOPLE WHO WANT TO TRAVEL FROM VERTEX
I=(L-1)/N+1 TO VERTEX J=L-(I-1)*N, L=1,..,N*N

TOTAL AVAILABLE INVESTMENT BUDGET

NUMBER OF ROADS(ARCS) TO BE CONSIDERED FOR CONSTRUCTION
DEFINED LIKE C(L) FOR THE NEW RCADS, L=1,...,NN¥(MA+1)
CONSTRUCTION COST FOR THE ROAD DEFINED BY

CC(L), L=(I-1)*(MA+1)+1 AND I=1,...,NN

OPTIMAL NUMBER OF ARCS (ROADS) TO BE CONSTRUCTED
ARC(I,J) TO BE CONSTRUCTED, L=YY(M) AND I,J
DEFINED AT T(L)

OPTIMAL TRANSP. TIME/ORIGINAL TRANSP.TIME

SUBROUTINE OPROAD(N,NA,MA,C,T,B,NN,CC,Q,KK,YY,IMPR)
INTEGER N,NA,MA,T(1),NN,KK,YY(1)

REAL B,Q(1),IMPR,C(1),CC(1)

INTEGER F(14,14, 14, 14),FL(400),0(100,15),0Q(100, 15),P(15)
REAL V(100)

LOGICAL LOG

STEP 1 (INITIALIZATION)

KNOT=1

O(KNOT, 1)=0
QQ(KNOT, 1)=NN

P(1)=NN

DO 5 I=1,NN

P(I+1)=I

QQ(KNOT, I+1)=I

VM=2.%%30,

LOG=.FALSE,

CALL WERT(N,NA,MA,C,T,CC,P,F,FL,LOG,KC)
V(KNOT)=KC

LOG=.TRUE.

P(1)=0

CALL WERT(N,NA,MA,C,T,CC,P,F,FL,LOG,KC)

ORG=KC

«ss STEP 2

A)

rQ

25

10

30

35

- OO0

45

55

60

50

-132~-

KNOT1=KNOT

V(KNOT+1)=V(KNOT)

V(KNOT)=2.%¥%¥30.+1.

QQ(KNOT+1, 1)=QQ(KNOT, 1)-1
O(KNOT+1, 1)=0(KNOT, 1)+1
I1=0(KNOT+1, 1)+1
T2=QQ(KNOT, 1)+1

DO 20 I=2,I2
QQ(KNOT+1,I)=0Q(KNOT,I)
T3=0(KNOT, 1)+1

DO 25 I:Z, 13
O(KNOT+1,1)=0(XNOT,I)
O(KNOT+1,I11)=QQ(KNOT,I2)

E=0

DO 10 I=2,I1

J=0(KNOT+1,1)

E=E+Q(J)

IF(E .GT. B) GO TO 15
IF(QQ(KNOT+1,1) .LE. 0) GO TO 30
KNOT=KNOT+1

GO TO 15

LOG=.TRUE.

I1=0(KNOT+1, 1)+1

DO 35 I=1,I1

P(I)=0(KNOT+1,I)

CALL WERT(N,NA,MA,C,T,CC,P,F,FL,LOG,KC)
V{KNOT+1)=KC

IF(VM .LE. V(KNOT+1)) GO TO 15
KNOT=KNOT+1

VM=V (KNOT)

. STEP 2 B)

T1=0(KNOT1, 1)+1

DO 40 I=t,IN
O(KNOT+1,I)=0(KNOT1,I)
I1=0Q(KNOT1, 1)

DO 45 I=2,I1
QO(KNOT+1,I)=QQ(KNOT1,I)
QQ(KNOT+1, 1)=11-1
IF(QQ(XNOT+1,1) .LE. 0) GO TO 50
LOG=.FALSE.

P(1)=0Q(KNOT+1, 1)+O(KNOT+1,1)
DO 55 I=2,I1

P(I)=QQ(KNOT+1,1I)
I2=0(KNOT+1, 1)+1

DO 60 I=2,1I2

J=I1+I=1

P(J)=0(KNOT+1,1)

CALL WERT(N,NA,MA,C,T,CC,P,F,FL,LOG,KC)
V(KNOT+1)=KC

IF(VM .LE. V(XNOT+1)) GO TO 65
KNOT=KNOT+1

GO TO 65

LOG=.TRUE.

I1=0(KNOT+1, 1)+1

i

70

[NS NGO NP

75

95

100

90

105

110

115

120
80

125

-133-

DO 70 I=1,I1

P(I)=0(KNOT+1,I)

CALL WERT(N,NA,MA,C,T,CC,P,F,FL,LOG,KC)
V(KNOT+1)=KC

IF(VM .LE. V(KNOT+1)) GO TO 65
KNOT=KNOT+1

VM=V (KNOT)

. STEP 3

VVM="M

DO 75 I=1,KNOT

IF(V(I) .GT. VWM) GO TO 75
IF(QQ(I,1).GT.0 .AND. V(I).EQ.VVM) GO TO 75
VVM=V (1)

IKNOT=I

CONTINUE

IF(VVM .GE. ™) GO TO 80
JKNOT=K}NOT1

L1=KNQT-1

IF(IKNCT .NE. L1) KNOT=KNOT-1
V{JKNOT)=V (KNOT)
I1=0(KNOT, 1)+1

DO 95 I=1,I1

O(JKNOT, I)=0(XNOT,I)
T1=0Q(KNOT, 1)+1

DO 100 I=1,It

QQ(JKNOT, I)=QQ(KNOT,I)
IF(IKNOT .NE. L1) GO TO 90
KNOT=KNOT-1

GO TO 2

V(KNOT)=V(IKNOT)
11=0(IKNOT, 1)+1

DO 105 I=1,I1

O(KNOT, T)=0(IKNOT, I)
I1=0QQ(IKNOT, 1)+1

DO 110 I=1,11

QQ(KNOT, I)=QQ(IKNOT,I)
V(IKNOT)=V(KNOT+1)
I1=0(KNOT+1, 1)+1

DO 115 I=1,I?

O(IKNOT, I)=0(KNOT+1,I)
I1=QQ(KNOT+1, 1)+1

DO 120 I=1,11
QQ(IKNOT,I)=0Q(KNOT+1,I)
GO TO 2

IMPR=VM/ORG
KK=0(IKNOT, 1)

DO 125 I=1,KX
J=0(IKNOT,I+1)
L=(J=-1)¥(MA+1)+1
YY(I)=CC(L)

RETURN

END

20
15

AOOOOOO0OO0O0O0O00O00O000O0a0O0O00

-134-

.. ¥%¥% FUNCTION FOR COMPUTING THE TOTAL TRANSPORTATION TIME
. %%¥% FOR DESCRIPTIVE OR NORMATIVE ASSIGNMENT

. INPUT

.. THE PARAMETERS N.NA,MA,C.T,CC SEE UNDER SUBROUTINE OPROAD
... FL(L) FLOW ON ARC WITH NUMBER L. L=1,N¥*N

.. F(I,J,K,L) FLOW FROM VERTEX K TO L ON ARC(I.J)

. LOG IF LOG=FALSE, A NORMATIVE ASSIGNMENT IS FOUND

IF LOG=TRUE, A DESCRIPTIVE ASSIGNMENT IS FOUND

. P(L) P(1) DENOTES THE NUMBER OF NEW ROADS TO BE

CONSIDERED - P(I), I=%,...,P(1), DEFINE THE
ARC NUMBERS VIA CC(L)., L=(P(I)-1)*(MA+1)+1

. QUTPUT
. KC TOTAL TRANSPORTATION TIME

SURROUTINE WERT(M.NA.MA,C,T,.CC,P,F,FL,LOG,KC)
INTEGER N.NA,MA,T(1),F(14,14,14,14),FL(1),P(1),KC,E(400)
REAL C(1),CC(1),CN(1000),CX(1000)
LOGICAL LOG

NAN=NA+P(1)

DO 5 I=1,NA

J=(I-1)*¥(MA+1)+1

CN(J)=C(J)

CX(J)=C(J)

DO 10 Il=1.!

J=J+1

CN(J)=C(J)

CX(J)=C(J)

IF(.NOT.LOG) GO TO 10
CN(J)=CN(J)/FLOAT(I1)

CONTINUE

CONTINUE

J1=NA¥(MA+1)

DO 15 I=1,P(1)
J=(P(I+1)=-1)¥(MA+1)+1

J1=J1+1

CN(J1)=CC(J)

CX(J1)=CC(J)

DO 20 I1=1,MA

J=J+1

J1=d t+1

CN(J1)=CC(J)

CX(J1)=CC(J)

IF(.NOT.LOG) GO TO 20
CN(J1)=CN(J1)/FLOAT(I1)

CONTINUE

CONTINUE

CALL TRAFAS(N,CN,NAN,T,MA,KC,F,FL)
IF(.NOT. LOG) RETURN

CALL COST(M,NAN,MA,CX,F,E,FL)
KC=0 ‘
M=N#N

D

I

L

DO 25 I=1.M
XC=KC+E(I)*FL(I)
RETURN

END

-135-

-136-

The idea of the algorithm is very straight forward. The
normative assignment is used as a lower bound for the
descriptive assignment because of (4,33), In Step 3 we
always search for the node with the lowest bound. Bran-
ching from a node means that an arc in Q not yet decided
upon is being built (Step 2a) or not built (Step 2b)., If
it is built,then the budget constraint must hold (4.,34),
If there are no arcs left in Q,then the descriptive assign-
ment can be computed,thus giving an upper bound (4,39) for
the allowed lower bounds. The new lower bound V(.) need not

be computed because it is exactly the one of its predecessor
(4.36), as the lower bound of a node is always found by
assuming that all arcs not yet decided upon will be construct-

ed, leading to the lowest bound possible of
N(AuOWQ) ,

and therefore in Step 2a
OUQ = OluQi .

If the arc is not built (Step 2b), then the new lower bound
has to be computed (4,38),

It is obvious that the given algorithm is very time con-
suming because computing (4.,35), (4,36), (4.37) and (4,38)

is very expensive., Thus only for a small set I and/or a small
network G=(X,A),this analysis will be possible. For large
networks it will therefore be necessary to drop the idea of
finding the optimal network according to a descriptive assign-
ment and rather find the optimal network according to a norm-
ative assignment for which Steenbrink (1974) proposed a heuri-
stic algorithm that does apply even for very large networks
But one must be aware of the fact that this algorithm does

not consider the possibility of Braess' Paradoxon and therefore
quite invalid results might be possible, Note that in case of
the normative assignment,the algorithm for rail network ex-

pansion can be applied, because the objective of the normative

G’“.

o

4

-137-

assignment will be decreasing if an arc is included into
the network. Therefore only the maximal sets have to be
considered, thus leading to the same algorithm as in the

last chapter.
Exercise

Let G
Let I = {a,b,clbe the set of arcs that are considered for.

(X,A) be some road network and T be the trip matrix.

construction. Let the construction cost q; be

q, * 1.000
q = 2,000
q. = 300
and the available budget B be B = 1950

Find the optimal set of arcs to be constructed with the
algorithm of Leblanc.

Use the following transportation time of the descriptive
- D(0) - and the normative - N(0) - assignment:

D(Au{al) = 4,000 hours
D(Auv{alu{c}) = 4,500 hours
N(Au{alu{b}lu{c}) = 3,200 hours
N(Au{altv{c}) = 3.300 hours
N(Au{b}lu{c}) = 3,500 hours
N(Au{c}) = 4,200 hours

5.

-138-

Sequential construction of networks under investment

constraints

Having now exploited the structure an optimal network

should have, this network has to be constructed. Usually

the amount of money to build such a network or parts of

it - no matter if this network is a transportation net-
work - a pipeline system or a waste water canal system

is rather large and cannot be available all at one time.
Rather the investment is being made over some years. Be-
sides, the capacity of the construction firms is a limit-

ed one and therefore not all parts of the wanted network

can be built at the same time. These are the obvious

reasons that the time to finish the network construction
usually is not less then,say,five years. Because of such

a rather long period during which the investments would

not show any positive result concerning the objectives we
discussed, it is meaningful to ask 1f not some arcs that

are constructed could be finished in less time and already
be used before the total network comes in to operation. For
example, if a waste water canal system is to be constructed,
why cannot at least the water in the already built canals

be cleared in the filter plant, or why cannot an arc connect-
ing two railway stations be used before finishing the other
arcs? But if the construction of the network is done sequent=
ially (i.e. one arc after the other) according to the,say,
annual amount of money available and to the limited capacity
of the construction firms, we are confronted with the quest-
ion which arc to construct first, which second and so on,
thus leading to the problem of finding the optimal sequence
in constructing arcs of a given network, with which we shall

deal in this chapter.

Sequential construction of a waste water management system

In chapter 4.1. the problem of finding an optimal network
for the waste water was discussed. There.the total

costs had to be minimized under the restriction that all

-139-

waste water produced in each vertex of the network had to be
purified . As we now assume that this optimal network

has been found,we want to coénstruct the arcs of the net-

work and the filter plant itself (to each of which the
construction costs are associated) in such a sequence that
under an annual budget constraint the amount of water that can
be already purified during the construction time of the
whole network is maximized., For developing the optimization

model two important assumptions have to be made,namely:

- The construction time for an arc or the filter-plant is
totally defined by the construction cost and the available
amount of money, the sum of which is assumed to be a piece-
wise, nondecreasing linear function of the time as given

in Fig.5.1.

- All arcsand the filter plant can be constructed independent-
ly of each other. '

Both assumptions, of course, are a simplification of reality
but seem to be valid enough to produce practicable results,

as was shown inacase study by Knecht (1975), who also stated
the algorithm which we shall present here. An earlier work

on this subject was presented by Cembrovicz (1972),

-14o~-

Total N
budget
available
(money
units)

Cost of — P — — — — = — ;

the first |
arc (filten :
plant)to |
be built |
|
! .

° r 2|T‘ 3 4 5 Time
Construction (years)
time

Fig. 5.1.

Because of these two assumptions and in view of the objective

of maximizing the total amount of waste water flowing through
the filter plant, three guite obvious theorems can be formulated
that are necessary to develop the algorithm:

- It is always optimal to construct the filter plant first.
This is clear =-because no water can be purified before the
filter plant is in operation.

- It is always better to construct one arc after the other
instead of constructing two or more arcs at the same time.
Because the construction time of two arcs is the sum of the
construction time of each arc alone (according to the first

assumption), building both arcs at the same time will result

Y

-141-

in finishingthem at the same time ti’ while if they are
built one after the other, one of them will be ready at
some time t,, the other one at t,, where t2<ft1. Thus
water from the first arc can be transported to the filter
plant during the time period ty - tz,if this arc is
constructed before the other while,in the other casz,no

water of both arcs can be cleaned before t1.

- It is always better to construct an arc between two
vertices x and y,such that there is a path wusing the
already constructed arcs from x or y to the filter plant.
If neither from x nor y exists a path to the filter plant,
then, although the arc is built, no water can flow from
x and y to the filter plant and therefore does not meet the
objective., - Because we know from chapter 4,1. that the
optimal network will always be a tree with a filter plant
at its basis, each vertex (except the basis) has outdegree
one (i.e. the number of arcs with this vertex as their

- origin is one). Therefore,from each vertex there is exactly

one path to the filter plant in the optimal network,.

A very obvious way of constructing the arcs would be to choose
always the arc among the possible ones (such that there is
always a path from the newly connected vertex to the filter
plaht) such that the total amount of water that can be purified
in the short run is maximized. But this is not at all optimal
as the following example will show. Assume a network as given
in Fig.5.2. where the numbers at the vertices denote the amount
of waste water produced there and where the construction costs
of all arcs are equal and the construction time of an arc is
ane time unit (according to the budget). Let us further assume
that all arcs within

-142-

N

the dotted line are already existing. Then the sequence
of constructing the immediatly best arc would be
therefore the amount of water flowing

- a, = a

41 7 %2 4 3
to the filter plant wihtin Y% time units being.

(1) + (1+40) + (1+0+7) + (1+40+7+6) = 24 ,

But if we choose the sequence az-au-as—ai,the amount of
water now purified would be

(0) + (0+7) + (0O+7+6) + (O+7+6+1) = 34 ,

Let us define the part of construction k(k=1,2,...,n, the
total number of all vertices) as being all the constructions
necessary to connect a vertex with the already existing part
of the network. Besides building the arc that connects this
vertex with the rest, this part of construction also includes
all other works that are perhaps necessary on this purpose.
The time for realizing k under the budget constraint is called
t(k), where t(k) can be computed, if the cost of k as well

[

-143-

as the starting time for the construction of k is known.

The way t(k) is then computed can be seen in Fig.5.1.

Let now P be a feasible sequence kl’k2""’kn of parts

of coanstructions k = 1,2,...,n and let ggP) be the amount

]
of water flowing to the filter plant in the j-th construc-
tion period. If the construction sequence P is realized,

then our objective can be stated as

(P)

n
max: £ =)} g. ' . t(k.) . (5.1)
i=1 J J

The method chosen for solving this problem is dynamic
programming, which is possible, because the objective

can be stated recursively and is monotonically non-de-
creasing. Besides, the problem can be fully described by
defining the system variables Xj, j=1,2,...,n-, denoting
the set of vertices that are connected with the filter
plant after the j-th part of construction has been finished,
and the decision variables yj,(j=1,2,...,n), which denotes
the vertex that is connected with the filter plant in the
J-th part of construction. Clearly it holds that

Xj Xj"iu{yj}’ j = 1’2,coo,n

"
()

where - Xo

Because we know that the filter plant has to be built first,
this means, that

yq ¢ 1
X4 ={1}

if we denote the basis of the tree by 1. The idea of the
dynamic programming algorithm is to start by assuming that

all vertices have been connected. Then going one step further,
one assumes that two vertices are still left for connection.

-l44=

Then for all possible realized tree configurations Xn-2’ the
optimal sequence of connecting the last two vertices, Yy, _4 and
Yo is computed. The next step is performed by assuming that
there are still 3 vertices left and the last two vertices

apre connected according to the best solution found for

each configuration in the step before. Continuing in this way,
one finally reaches the state of the system, where only

one vertex (the filter plant) is connected, thus the

optimal seguence can be computed. This verbally stated
algorithm can be stated as follows:

Let us define

g(X) ... amount of water that can flow to the filter plant
per time unit, given the set of connected vertices
X.

Xj_1 ... set of all connected vertices at the beginning of the
j-th part of construction (systems variable).

Y3 ... number of vertex to be connected in the j-th part
of construction (decision variable) - therefore

Xj = Xj_1U{Yj}.

f(xj-l) ... maximum amount of water flowing to the filter plant
from the beginning of the j-th part of construction
until the end of the n-th part of construction (the
whole network), given the systems variable Xj-i -
of course f(Xn) - 0 and the objective as stated in
(5.1) can be written as f = f(XO) = £(2).

C(Xj-l) ... set of all predecessor-vertices of the vertices in
X5 g
n ... total number of vertices in the given tree.

q(yj) .. costs to construct vertex vy

+(b) ... total time necessary to construct a subtree with

costs b.

0

o

-145=

Algorithm for finding the optimal construction sequence

Step_1 (Initialization):

Set j:n’ an{yl,ooa,yn} and f(Xn)::O.
Step_2: Compute

£(X5_y

) = max[}(xj_lu{yj}) + g(Xs_y). (e(Jaly))) - t(Jaly))]

Y

)
3€C(Xj-1) | ylsz_lu{yj} ylsz_1

(5.2)

for all possible sets Qf vertices Xj-l , such that Xj-l
defines a connected subtree of the given tree Xn and the
filter plant,at vertex y1=1,belongs to Xj-l’ 1sz_1. Note
that f(Xj_lu{yj}) is already known because X. = Xj_lu{yj}.

J
Set j=j=-1 and go to Step 3.

Step_3 (Termination):

If j» 2 go to Step 2. Note that XO=¢ and X,= {1},

1

If § = 1 the optimal solution has been found and is given
as f = f(XO) = f(Xl) .
The optimal sequence y1(=1) - Y9 = +e. =y, can be found

out of (5.2) recursively. The optimal vertex Yo is the one
for which (5.2) was maximum if Xy = {yl}, knowing now

Xy = {yl,yz}, the optimal vertex y, can be found and so on.

The main problem of the algorithm is the amount of Xj's to be
analyzed and stored at each step, although this number is
substantially reduced due to the fact that the network has

to be connected all the time and that we know that the first
vertex to be constructed is the filter plant itself. Thus,

this algorithm will only apply to smaller networks. Knecht
(1975) reports on an application to a network with 16 vertices,

-146=

where, as he says, the computational limit nearly has been
reached. But, of course, the computation time depends
strongly on the type of tree, for which a solution has to
be found. For example, if, in the extreme case, the set
C(Xj-l) always contains only one element - a tree of this
type is drawn in Fig.4.4%4.,a = then the computation will be
very easy. In contrary, if C(Xj-l) contains all vertices
that are not member of Xj_1 - an example is shown in
Fig.4.4.b - then the computation will be difficult.

™

N

L.

OO0 0O000000000000000n

OO0

NOOO

20

LI

* 00

* 00

s 00

LR]

o0

-147-

¥%% PROGRAM FOR FINDING THE OPTIMAL CONSTRUCTION SEQUENCE
*#% OF A WASTE WATER CANAL-TREE-NETWORK

, RE®

INFUT

N
NSU(I)

WA(J)
IP

TIP
BB(L)
Q(J)
OUTPUT
oP

YY(I)

NUMBER CF VERTICES IN THE TREE

SUCCESSOR VERTEX OF VERTEX I IN THE TREE (I<NSU(I))

THE FILTER PLANT IS LOCATED AT VERTEX N

WASTE WATER PRODUCED AT VERTEX J PER YEAR

NUMBER OF PERIODS WITH DIFFERENT INVESTMENT BUDGETS
LENGTH OF PERIODS IM YEARS (EACH PERIOD HAS SAME LENGTH)
INVESTMENT BUDGET AVAILABLE UNTIL THE END OF PERIOD L
COSTS TC CONSTRUCT CONNECTION OF VERTEX J

MAXIMUM AMOUNT OF WATER TO BE CLEANED DURING
CONSTRUCTION TIME

OPTIMAL SEQUENCE OF CONNECTING THE VERTICES, WHERE
YY(1) DENOTES THE FIRST VERTEX TO BE CONNECTED AND
YY(N) DENOTES THE LAST ONE

SUBROUTINE OPCOSE(N,NSU,WA,IP,TIP,BB,Q,0P,YY)
INTEGER N,NSU(1),IP,YY(1)

REAL WA(1),TIP,BB(1),Q(1),0P

LOGICAL LOG

INTEGER IX(1000),MX(35),MY(35),JF(1000,34)
REAL F(1000)

... STEP 1 (INITIALIZATION)

eoo STEP 2

KK1=1

KK3=KK1+1

KK2=KK1

K=N

DO 5 I=1,N

MX(I)=I

CALL CODE(X,MX,IT)
IX(KK1)=II
F(KK1)=0.

DO 10 I=1,KK?
IT=IX(I)
CALL DECODE(II,K,N,MX)

K1=K-1

DO 15 J=1,K1

L1=0

DO 20 L=1,K1

L1=L1+1

IF(L .EQ. J) L1=L1+1

MY (L)=MX(L1)

CALL CONN(N,NSU,K?1,MY,LOG)
IF(.NOT. LOG) GO TO 15
CALL CODE(K1,MY,II)

-148-

IF(XK3 .GT. KK2) GO TO 25
DO 30 M=KK3,KKZ
IF(IX(M) .NE. II) GO TO 30
V:F(I)+G(KT,MY,WA)*(T(K,MX,Q,IP,BB,TIP)-T(K1,MY,Q,IP,BB,TIP))
IF(V .LE. F(M)) GO TO 15
F(M)=V
LX=N-K
IF(X .EQ. N) GO TO 14
DO 16 LY=1,LX

16 JF(M,LY)=JF(I,LY)

14 JF(M,LX+1)=MX(J)

LX1=LX+1
GO TO 15
30 CONTINUE
P KK2=KK2+1

IF(KK2 .LT. 1000) GO TO 29
PRINT #,” STORAGE IS TGO SMALL”
RETURN

29 IX(KK2)=1I

F(KKZ):F(I)+G(KT,MY,WA)*(T(K,MX,Q,IP,BB,TIP)-T(KT,MY,Q,IP,BB,TIP))

LX=N-K
IF(K .EQ. N) GO TO 24
DO 26 LY=1,LX

26 JF(XK2,LY)=JF(I,LY)

P JF(KK2,LX+1)=MX(J)
LX1=LX+1

15 CONTINUE

10 CONTINUE
DO 3% I=KK3,KK2
F(I-KK1)=F(I)
IX(I-KK1)=IX(I)
LX=N-K+1
DO 36 LY=1,LX

36 JF(I-KK1,LY)=JF(I,LY)

35 CONTINUE
KK 1=KK2-KK 1
KK3=KK1+1
KK2=KK1
K=K-1

C ... STEP 3 (TERMINATION)

IF(K .GE. 2) GO TO 2
QP=F(1)
YY(1)=N
LX=N-1
J=1
DO 40 I=1,LX
J=J+1
40 YY(J)=JF(1,N-I)
RETURN
END

M

OO0 000000N

o0

s e

LI

-149-

¥%% PROGRAM FOR TRANSFORMING A SET OF NUMBERS INTO

%¥% ONE NUMBER
#% %

. INFUT

K NUMBER CF ELEMENTS IN SET MX
MX(I) ELEMENT I, I=1,..,K, IN SET MX

OQUTPUT
IT CODE NUMBER

SUBROUTINE CODE(K,MX,II)
INTEGER K,MX(1),II

II=0

D0 5 I=1,K
TI=IT+2%*MX(I)

RETURN

END

-150~

#%%¥ PROGRAM FOR DECODING AN INTEGER NUMBER INTO A
k%% SET OF NUMBERS

, RER

OO0 0000

INPUT

I INTEGER CODE NUMBER
K NUMBER CF ELEMENTS IN THE SET MX
N HIGEST VALUE OF AN ELEMENT IN THE SET MX

OUTPUT
MX(I) ELEMENT I IN SET MX, I:i,..,K. MX(I)<MX(I+1) FOR ALL I

SUBROUTINE DECODE(II,K,N,MX)
INTEGER II,K,N,MX(1)
J1=1I1

K1=K

DO 5 I=1,N

I1=N-I+1

J2=J1-0%¥¥T1

IF(J2 .LT. 0) GO TO 5
MX(K1)=11

IF(J2 .EQ. 0) GO TO 10
K1=K1-1

J1=J2

CONTINUE

CONTINUE

RETURN

END

.

N

)

-151-

. ¥%% PROGRAM WHICH CHECKS IF A SET OF VERTICES MY DEFINES

.. ¥¥% A CONNECTED SUBTREE WITH BASIS N ON THE TREE GIVEN BY NSU
*R%

L A 4 B\IP[IT
.o N NUMBER CF VERTICES IN THE TREE
.. NSU(I) SUCCESSOR VERTEX OF VERTEX I, I<KNSU(I)
. K1 NUMBER OF VERTICES IN SET MY

ees MY(J) ELEMENT J IN SET MY
... OUTPUT

... LOG IF LOG=TRUE MY DEFINES A FEASIBLE SUBTREE
ELSE MY IS NOT A FEASIBLE SUBTREE

o

~

15

20
10
25

OO0 O00O00O00O0000000a0

SUBROUTINE CONN(N,NSU,K1,MY,LOG)

INTEGER N,NSU(1),K1,MY(1)
LOGICAL LOG
IF(MY(X1) .EQ. N) GO TO 5
LOG=.FALSE.

RETURN

K2=K1-1

IF(X1 .EQ. 1) GO TO &5
DO 10 I=1,K2

J=MY(I)

J=NSU(J)

IF(J .EQ. N) GO TO 10
DO 20 K=1,K1

IF(J .GT. MY(K)) GO TO 20
IF(J .EQ. MY(X)) GO TO 15
LOG=.FALSE.

RETURN

CONTINUE

CONTINUE

LOG=.TRUE.

RETURN

END

QOO0 0O000000000

s 0.

e 0.

o 00

-152~

*#%% FUNCTION FOR COMPUTING THE AMOUNT OF WATER FLOWING
#%%¥ TO THE FILTER PLANT PER YEAR FROM THE VERTICES IN

%¥%% THE SET MX
*%%

INPUT

K NUMBER COF ELEMENTS IN SET MX
MX(T) ELEMENT I OF SET MX
WA(J) AMOUNT OF WASTE WATER PRODUCED PER YEAR AT VERTEX J

OUTPUT
G AMOUNT OF WASTE WATER PRODUCED BY VERTICES IN MX

FUNCTION G(K,MX,WA)
INTEGER K,MX(1)
REAL WA(1),G

G=0.

DO 5 I=1,K

J=MX(I)

G=G+WA(J)

RETURN

END

N

10
20

15

OO0

.

-153=~

. %% FUNCTION FOR COMPUTING THE CONSTRUCTION TIME CF A
. *%% SUBTREE OF VALUE B

, A%
. INPUT
.. K NUMBER OF ELEMENTS IN SET MX
.. MX(TI) ELEMENT I OF SET MX
.. Q(J) COSTS FOR CONSTRUCTING COWNECTION OF VERTEX J
. IP NUMBER OF PERIODS WITH DIFFERENT AVAILABLE INVESTMENT

s

BUDGETS - EACH PERIOD HAS THE SAME LENGTH
TIP LENGTH OF ONE PERIOD IN YEARS
. BB(L) BUDGET AVAILABLE UNTIL THE END OF PERIOD L, L=1...,IP

... OUTPUT

T TOTAL CONSTRUCTION TIME FOR THE ELEMENTS IN MX

FUNCTION T(K,MX.Q.IP,BB,TIP)
INTEGER K,MX(1),IP

REAL Q(1),BB(1),TIP

QQzO .

DO 5 I=1,K

J=MX(I)

QQ=QQ+Q(J)

DO 10 I=t,1IP

IF(QQ .GT. BB(I)) GO TO 10
IF(I ,EQ. 1) GO TO 20

J1=I-1

GO TO 15

CONTINUE

T=TIP*QQ/BB(1)

RETURN

T= JT*TIP+TIP*(QQ-BB(JT))/(BB(J1+T)-BB(JT))
RETURN

END

-154-

5.2. Sequential construction of a railway network

We are confronted with quite a similar problem to the one
of the last chapter, when dealing with the

expansion of a rail network. Assuming that we already
know the optimal network by applying the algorithm of
chapter 4.5,we now want to know the optimal sequence

of construction, such that the total transportation time
during the construction period is minimum. Of course,

we assume that the trip matrix does not change during
this period and that people travel along shortest paths.
Although applying the dynamic programming algorithm of
the last chapter is possible, this does not lead to an
efficient algorithm because no reductions for the set

Xj can be made according to the restriction that the
network has to be connected and, besides, the objective
function is much more difficult to compute than in chapter 52.,
because the shortest paths between all pairs of vertices
have to be computed. If we denote by T(k) the time of
construction for arc k, k=1,2,...,m according to the

budget constraint, if tss denotes the number of people

travelling from vertex ijto j and if pgj denotes the

length of the shortest path from vertex i to j with the

set O of newly built arcs, the objective can be written

as to find some permutation of the sequence of construction
of the arcs kl,kz,...,kmsuch that

Z + : Ql-l

min: T = i3 pij

ne-13

T(ky) (5.3)
1 1

1 i,JeX
where X is the set of all vertices

and 0, = O 1~J{kl}, 0, = @ .

1 1l-

0
Obviously, the computation of Pi% is the critical part of

the objective. Therefore, instead of optimizing (5.3),

we suggest an heuristic algorithm that solves the problem

(.

-155=-

F= 7 (min T o lr k.)] 1
= L t.s oDl L 5 DysTOey
151 kg eP=0y_, i,jex * 71 13 713
k1+1eP-Ol . (5.4)

where P is the set of all arcs to be constructed.
(5.4) only gives a supoptimal solution to (5.3).

-156-

Selection of routes within a given network

Although we were already dealing with route selection

in connection with traffic assignment for roads and

for trains, we shall devote now a chapter to this problem,
discussing more intensively normative route selection
problems with which public services are confronted. These
problems,as we shall see,are rather different to those

we already discussed.

Street cleaning routes

Given a network of roads, where the arcs respresent streets
(possibly, if the network is directed, only one way of the
street) and the vertices represent intersections of these
streets. Such a network needs to be serviced regularly on
many purposes. The most regular service is usually the
cleaning of the streets (especially in urban areas), but

in winter the snow removal can be even more important. Be-
sides, there exist services that do not deal with the streets
directly, but have to use all the streets, for example a
postman delivering letters or a truck collecting garbage

from the households,All these services have in common that

a shortest route (or routes) has to be found such that all
arcs of the network are used and that this route is a circuit,

meaning that the initial and final vertex of the route is

the same. Although the application of this problem is broad,we

refer to it as the problem of street cleaning as it has been
extensively studied - see Liebling (1970), applying

his algorithm to the street cleaning of Ziirich jand Beltrami
& Bodin (1974) doing the same for New York City. Using the
shortest circuit that passes through all arcs at least once,
guarantees that the service (street cleaning, snow removal
etc.) can be performed with the minimum number of service
facilities (trucks) and manpower, thus resulting in cost-
minimization. - We shall divide this chapter into two parts.
First we will deal with the problem of finding the optimal
route without restricting the route length,thus resulting

in the well-known Chinese postman problem. Using the

q"\

-157=-

solution methods for this problem,we can then attack the
more realistic problem where the route length is restricted.
Therefore routes have to be found such that agains,all arcs
belong at least to one of these routes and that the total
length of the routes is minimum.

Street cleaning without limited route length - the Chinese

postman problem

Given a network G=(X,A) (directed or nondirected), a circuit
(path) that passes through all arcs (in the right direction)
exactly once is called an Eulerian circuit (path). Ob-
viously not all graphs have Eulerian circuits (or paths),

but if such a circuit exists,it means that the graph can be
drawn on paper by following this circuit and without lifting
the pencil from the paper. The basic theorem on the existence

of an Eulerian circuitis as follows:

Theorem: A connected,nondirected graph G contains an Eulerian
circuit (path) if,and only if, the number of vertices of odd
degree is 0 (0 or 2 for a path).

This condition is of course necessary because any Eulerian
circuit must use one link to arrive and a different to leave
the vertex,since any link must be traversed exactly once,
Hence, if G contains an Eulerian circuit,all vertex degrees
must be even, We shall not show the sufficiency of the
condition directly, rather we shall present an algorithm to
find an Eulerian circuit in a graph with all vertex degrees
to be even.

A very similar theorem holds in the case of a directed graph,

- namely:

Theorem: A connected,directed graph G contains an Eulerian
circuit (path) if,and only if,the indegrees dt(xi) and the

outdegrees dé(xi) of the vertices satisfy the condition:

-158~-

for the case of a circuit: dt(xi) = do(xi) for all vertices
for the case of a path (where p is the initial and q the

final vertex of the Eulerian path):
dt(xi) = do(xi) for all x,#p or q

dt(q)

do(q) + 1

and dt(p) do(p)‘- 1

The algorithm for finding such an Eulerian circuit (or path)
is based on a very simple idea. Start at any vertex and proceed
going along arcs which have not been used yet until the ini-
tial vertex is reached again and no unused arc can be found to
leave the initial vertex again. This is always possible be-
cause each vertex that has an unused arc to reach the vertex
also must have an unused arc for leaving (because the degree
is even), only the initial vertex has an already used arc for
leaving. Having already used all arcs,a Eulerian circuit has
been found. If not, one goes back along the just found circuit
until a vertex is reached which has not yet used arcs incident
to it. Then proceed along such an arc until the starting point
of this new circuit is reached again and include this circuit
+to the other one. Proceed like this until all arcs have been
passed exactly once, thus giving the Eulerian circuit. We shall
state the algorithm also in a formal way, as we shall need it

for the street cleaning problem,

Algorithm for finding an Eulerian circuit

Assumed is a graph G=(X,A), for which the mentioned theorems

guarantee that an Eulerian circuit exists,

Step_1:

Choose any vertex zeX as the initial vertex. Set x=z, T=A,
y=z, K=@0 and H=0,

Let I'(v) denote the set of all vertices to which there is an
arc connection from v. Therefore (v,T(v)) denotes the set of

arcs going out from v.

€D

N

5

i

N

-159-

Step_2:
Find the set of arcs

(y,T(y))AF = B ,

If B=@ then go to Step 4.

In the other case choose w,such that (y,w)eB and, if possible,

WEX
Set
F=F=-(y,w)
H=[H,(y,w)] , denoting the sequence of arcs al-
ready passed along.
Step_3:

Set y=w and go to Step 2.

Step U:

Let the last arc in the sequence of H be (u,v), thus

H=1[...., (u,v)]

Delete (u,v) in H and put it in the sequence of arcs K,

thus _
K =[Cu,v),K]

Step_5:
Check if H is empty. If so, the sequence of arcs in K is an
Eulerian circuit, Stop.

If not, set y=u and x=u and go to Step 2.

-160-

C ..., ¥%% DPROGRAM FOR FINDING AN EZULERIAN CICUIT IN A NONDIRECTED
C ... ¥%% GRAPH
C ... ®%%
C
C ... INPUT
C
... N NUMBER COF VERTICES IN THE GRAPH
c ... F(L) NUMBER OF TIMES THE ARC(I,J), L=IND(I,J,N), MAY BE
C PASSED, F(L)=F(L1), L1=IND(J,I,N) IS ASSUMED
C
C ... OUTPUT
C
C... NA NUMBER OF ARCS IN THE GRAPH
C ... KK(I) DENOTES THE I-TH VERTEX IN THE EULERIAN CIRCUIT
C KK(1)=1 AND KK(NA+1)=1
C
SUBROUTINE EULER(N,F,NA,KK)
INTEGER N,F(1),NA,KX(1),H(900),K(900),U,W,X,¥Y,KX,HX
C
C ... STEP 1
C
X=1
Y=1
KX=0
HX=1
H(1)=1
C
C ... STEP 2
C
2 DO 10 I=1%,N
IF(I .EQ. X) GO TO 10
L=IND(Y,I,N)
IF(F(L) .EQ. 0) GO TO 10
W=I
GO TO 15
10 CONTINUE
L=IND(Y,X,N)
IF(F(L) .EQ. 0) GO TO 4
W=X

15 F(L)=F(L)-1
L1=IND(W,Y,N)
F(L1)=F(L1)-1
HX=HX+1
H(HX)=W

s 0 STEP 3

QOO

Y=W
G TO 2

... STEP &

=000

IF(XX .GT. 0) GO TO 20
KX=KX+1

K(KX)=H(HX)

20 HX=HX-1

NP N@!

MO0

IF(HX .EQ. 0) GO TO 25
KX=KX+1

U=H(HX)

K(KX)=H(HX)

. STEP 5

Y=U
X=U
GO TO 2

. TERMINATION

NA=KX-1

DO 30 I=1,KX
J=KX=-I+1
KK(J)=K(I)
RETURN

END

~161-

-162-

Coming back to our problem, we are not interested in

finding an Eulerian circuit on a very special graph but

on a shortest circuit,using each arc at least once for an
arbitrary graph. But the latter problem can now be trans-
formed into the problem of finding an Eulerian graph. Let

us assume that the graph on which we want to solve the

Chinese postman problem (i.e, find the shortest circuit

using each arc at least once) is non-directed (for directed
graphs the transformation is quite the same). Of the graph
G=(X,A) some vertices will then have even degrees (let this
set be X7) and the other vertices (in the set X"=X-X") will
have odd degrees. Now the sum of the degrees di of all vertices
xieX is equal to twice the number of links in A (since each
link adds unity to the degrees of its two end vertices) and is

therefore an even number 2m. Hence

ZX d, = Z d; + 1 d; = 2m
X1 x.eXt x.eX™
1 1

and since) + 44 is even ,) _ ds is also even, which means
xieX xieX

that the number of vertices in the set X~ (with odd degree)

is even. If we now connect drbitrary pairs of vertices with
odd degree, doing this for all such vertices with artificial
links in the set L, this resulting in the graph G = (X,Aul),
then all vertices in & now have even degree and thus an
Eulerian circuit on @ can be found. Now the length of an
Eulerian circuit is just the sum of the length of all arcs

in AuL. As A is given originally, therefore L must be chosen
in a way such that the sum of the length of arcs in L is
minimum. As we do not build in new arcs into the original
graph G, the set L consists of arcs or paths in A and therefore
L denotes those arcs in A which have to be passed more than
once in order to pass-all arcs in A at least once. To find the
optimal set L ,the shortest paths between all possible pairs of
vertices in X 1is computed in the graph G=(X,A). These paths

iy

o

-163-

are the shortest possible connections between the vertices
with odd degree. Let us denote the length of these shortest
paths by pij’ for Xs s xjeX_ and the set of arcs of which
each shortest path consists by Sij' Then the problem of
finding those pairs of vertices Xy xjeX-,such that the

sum of the pij's associated to these pairs is minimum,is

a so-called assignment problem which can be solved effi-
ciently with the minimum cost flow algorithm of chapter
3.3.1. On this purpose we have to define the directed network
N=(Y,D). The set of vertices consists of the vertices s
(where the flow starts) and t (where the flow ends) and twice

and XZ)

the set of vertices X , (say X4

Y = {S,t}uX;uXZ . (6.1)
The set of arcs D consists of the arecs

(s,xi) with capacity of one unit and zero costs,

Xjeky (6.2)
(xi,xj) with capacity of one unit and costs Pijo
xisxijsxz s xi¢xj .
(xj,t) with capacity of one unit and zero costs,
xjeX2 .

If we now send a flow of value v=n (the number of vertices
in X7) from s to t with minimum cost, the solution will give
the set of pairs between which there is nonzero flow,such
that the sum of the assaciated pij's is minimum. If we now
form the set of arcs L by the sets of arcs Sij that are
associated to the optimal solution of the minimum cost
problem and find an Eulerian circuit on é=(X,AuL),we solved

~the Chinese postman problem,

~Algorithm for solving the Chinese postman problem

Step_1:

Given the nondirected graph G=(X,A)., Find the set of vertices
with odd degree X .

-164-

Step_2:

Compute the shortest paths in G between all pairs of

vertices in X .

Step_3:
Solve the minimum cost flow assignment problem with flow

v=n (the number of vertices in X~) for the network defined
in (6.1) and (6.2)

Step Uu:

Put all arcs that belong to the shortest path of a pair

of vertices (xi, xj), xi,x.eX s xi#xj for which a nonzero

J
flow has been found in Step 3 into the set L. Do this for

all pairs (Xi’xj) with nonzero flow.,

Step_5:

Find an Eulerian circuit on the graph G = (X,AvL), thus
denoting an optimal street cleaning tour of one vehicle on the
graph G=(X,A), where L denotes the set of arcs in A, which

have to be passed more than once.

QOO0

OO0

£

M

-165=-

.. *%%¥ PROGRAM FOR SOLVING THE CHINESE POSTMAN PROBLEM
*%%

. INPUT

L]

.o N NUMBER CF VERTICES IN THE GIVEN GRAPH
. C(L) ARC LENGTH FOR ARC(I,J) AND L=IND(I,J,N)

. OUTPUT

. LENGTH TOTAL LENGTH COF THE TOUR

. NUMB NUMBER OF ARCS INCLUDED IN THE TOUR

. KK(I) DENOTES THE I-TH VERTEX IN THE EULERIAN CIRCUIT
I=1,...,NUMB+1, KK(1)=KK(NUMB+1)

. .

. .

OO0 00O000a0000

SUBROUTINE CHIPOS(N,C,LENGTH,NUMB,KK)
INTEGER N,C(1),LENGTH,NUMB,KK(1)
INTEGER P(625),F(1600),X(25),D(1600)
LOGICAL LOG

eor STEP 1

M=N*N

LENGTH=0

D0 5 I=1,M
LENGTH=LENGTH+C(I)
F(I)=0

IF(C(I) .NE. Q) F(I)=1
CONTINUE
LENGTH=LENGTH/2

I13=0

DO 10 I=1,N

12=0

Do 15 J=1,N
L1=IND(I,J,N)
I2=I2+F(L1)

I1=I2+1

I1=11/2

I2=12/2

IF(It .EQ. I2) GO TO 10
I3=I3+1

X(I3)=1

CONTINUE

IF(I3 .LE. 1) GO TO 1

. STEP 2

aOOq

CALL SPII(N,C,D,LOG)
... STEP 3

DO 20 I=1,I3
I1=X(I)

DO 25 J=1,13
I2=X(J)
L1=IND(I,Jd,I3)

-166=-

L2=IND(I1,IZ2,N)
l P(L1)=C(L2)
20 CONTINUE
CALL ASGNMT(I3,P,KK,NCOS)
LENGTH=LENGTH+NCGCS
C
C... STEP 4
C
DO 20 I=1,I3
I1=X(I)
T2=KX(I)
I2=X(I2)
J=I2
35 K=J
J=IND(I1,K,N)
J=D(J)
L=IND(J,K,N)
F(L)=F(L)+1

T4=KK(I)
TF(KK(I4) .EQ. I) GO TO 40
L=IND(K,J,N)

F(L)=F(L)+1
40 IF(J .NE. I1) GO TO 35
30 CONTINUE

eo. STEP 5
CALL EULER(N,F,NUMB,KK)

RETURN
END

L

-

™

—

)

OO0

aaoa

10

-
[

15

[eNeXe! aQaao

* 0

s 0

-167=-

.. %%% PROGRAM FOR SOLVING ASSIGNMENT PRCBLEMS
®k%

INPUT

... N NUMBER OF ITEMS TO BE ASSIGNED TO EACH OTHER
. P(L) COSTS OF ASSIGNING ITEM I=(L-1)/N+1 TO

ITEM J=L-(I-1)*N, I .NE. J, L=1,..,N*N

OUTPUT

... KK(I) NUMBER OF ITEM TO WHICH ITEM I IS ASSIGNED TO
. COST MINIMUM ASSIGNMENT COSTS

SUBROUTINE ASGNMT(N,P,KX,COST)

 INTEGER N,P(1),KK(1),C0ST,C(2704),Q(2704),F(2704)

. DEFINING THE NETWORK FOR THE MINIMUM COST FLOW PRCGRAM

NN=2%(N+1)
NN 1=NN#*NN

DO 10 I=1,NN1
C(I)=0
Q(I)=0
D0 5 I=1,N
I1=I+1

2=I1+N
L1=IND(1,I1,NN)
L2=IND(I2,NN,NN)
C(L1)=1
Q(L1)=1

C(L2)=1
Q(L2)=1

DO 15 I=1,N

DO 20 J=1,N
IF(I .EQ. J) GO TO 20
I1=I+1

I2=J+N+1
L=IND(I1,I2,NN)
L1=IND(I,J,N)
C(L)=P(L1)
Q(L)=1
CONTINUE
CONTINUE

NV=N

NS=1

NT=NN

SOLVING THE MINIMUM COST FLOW PROBLEM
CALL MINCOS(NN,C,Q,NV,NS,NT,F,COST)
PREPARATION OF OUTPUT

COST=COST-2¥N
DO 25 I=1,N

30

-~
[~

DO 30 J=1,N
I1=I+1

I2=J+N+1
L=IND(I1,I2,NN)
IF(F(L) .EQ. 0) GO TO 30
KK(I)=d

GO TO &5
CONTINUE
CONTINUE
RETURN

END

-168~

™

0

6.1.2,

-169-

Street cleaning with limited route length

In practice the assumption that all the streets are
cleaned by Jjust one vehicle is too simple. Usually

on each vehicle,a constraint is imposed that restricts
the length of the tour, because, for example, cleaning

can only be performed a certain time per day or because
a certain area has to be cleaned within a given time to
guarantee that the total urban area can be cleaned, say ,
at least once a week. Talking about garbage collection,
the constraint on the tour length can also mean that the
total volume of garbage that can be collected during

one tour is limited.

There are two possible ways in handling this problem,
One can first solve the Chinese postman problem on the
given graph and then break this tour into parts such
that each part is a feasible tour. Or,one:can first
partition the given graph into smaller ones such that
each subgraph can now be served by one vehicle and then

solve the Chinese postman problem on each subgraph.

The first approach might not suit too well because the
public administration might prefer the region split into
seperated subregions for organisatorial reasons, which

is certainly not a result of the first approach.

The second approach, however, has some methodological

problems:

- The Euler tour formed for a subregion may not be
feasible in the sense that the time capacity constraints
of the vehicle may be violated.

- If all the Euler tours are feasible, then the total

travel time over all tours may not be minimized.

-170=

Liebling (1970) stated heuristic algorithms for both
approaches, while Beltrami & Bodin (1975) gave a brief
description of an algorithm for the first approach.

Here we shall only present an algorithm for the first
approach which is a simplified version of the algorithm

given by Liebling (1970),.

Algorithm for finding the optimal tours for street cleaning

vehicles

Step 1:

Let the original graph be G=(X,A). Solve the Chinese postman
problem on G. Let H=fa1,a2,...,a1] denote the sequence of

arcs of the founded tour.

Step_2:

Let BeX be the set of vertices in X from where vehicles start
or stop (the garages of the vehicles). Find the shortest of
all paths between any xiaX and all xjeB. Denote the length

by P;-

Step_3:

Start at some vertex xjeB. Find the longest sequence of arcs

in H, such that the sum of the P; of the starting point,plus
the length of the sequence of arcs,plus pj of the final vertex
of the cleaning tour,is less or equal to some fixed number L.
Assign a vehicle to this tour (including the shortest path
from and to a garage,to and from the initial and final vertex).

Do this again until each arc in H is assigned to a tour.

Of course the result will only be suboptimal as this heuristic
algorithm depends strongly on the tour that has been found
in Step 1 (usually the solution of Step 1 is not unique) and

on the choice of the initial vertex of the first tour. So, if

™y

o

hl

-171-

the result is not satisfying one has to repeat the algorithm
(which is very fast) with another route and a different

initial vertex,

Municipal waste collection

Most refuse collection activities in a city center around

the pickup of household refuse in small bins (problems of

this type can be handled in the same way as street cleaning).
However, large institutional sites such as schools, hospitals,
and apartment complexes usually have their refuse stored in
large containers. Thus, in many cities such sites will be
serviced by different trucks than those collecting the garbage
from normal households. Each such truck can service several
such sites before going to a dump to unload. The problem to be
considered is,then,how to route the trucks to minimize the
total travel time of the vehicles and to determine the minimum
number of trucks needed each day. This last condition is im-
portant from a point of view of minimizing the capital ex-
penditure needed to outfit a fleet of trucks. If we are dealing
with an unlimited tour length, then the problem to be solved
is the travelling salesman problem which we shall discuss in
chapter 6.2.1. If the tour length is restricted,only heuristic
algorithms are applicable which we shall discuss in chapter
6.2.2.

Refuse collection with unlimited route length - the travelling

salesman problem

The travelling salesman problem already has been studied
extensively and various algorithms exist to solve it, However,
we do not want to present them all. A very good review of
some of them can be found in Christofides (1975), The approach
we shall present here is based on the similarity between

travelling salesman and assignment problem, such that for

-172-

solving the travelling salesman problem the minimum cost flow
algorithm of chapter 3.3.1 can be used. From the definition
of a Hamiltonian circuit in a graph in chapter 2. it becomes
clear that the travelling salesman problem is one of finding
a Hamiltonian circuit (i.e. an elementary circuit which passes

through all vertices of a given graph) with minimum length,

The linear assignment problem (which was already discussed
in chapter 6.1.1.) for a graph with a cost matrix C=[ci§ can
be stated as follows:

Let kij be an n x n matrix of 0-1 variables,so that kij=1 if

vertex x,; is assigned to xj and kij=0 otherwise. In the

travelling salesman problem we could use a similar scheme,where
kij=1 would mean that the truck travels from X4 to xj directly
and kij=0 would indicate that the truck does not. For this last
problem we can assume cii=w(i=1,...,n) to eliminate non-sensical

solutions with k..=1.
ii

The assignment problem now becomes:

Find 0-1 variables kij so as to minimize

)
min: z = c.. k.. (6.3)
321 121 Y H
subject to
n Q
zki. =} kye =1 (6.4)
iz1 I j21 M
(for all i and j = 1,2,...,n)
and
k.. = 0or 1, (6.5)
1]

Equations (6.4) simply insure that to each vertex x. exactly one
vertex X3 is assigned,or in terms of the travelling salesman,

that each truck entering a vertex by an arc is also leaving this

0

™

™

-173~-

vertex. (6.3), (6.4) and (6.5) together form the assignment
problem which can be solved by the minimum cost flow

algorithm,

Together with the additional constraint that the solution

must form a single (Hamiltonian) circuit and not-just a number
of disjoint circuits, the equations (6.3) - (6.5) represent

a formulation of the travelling salesman problem. Since the
addition of any constraint to the assignment problem can only
increase or leave unchanged the minimum value of z as calcu-
lated from equations (6.3) = (6,5), this value of z is a valid
lower bound to the cost of the solution to the travelling sales-
man problem for-a graph with a cost matrix [cij] . Using there-
fore the objective of the assignment problem as a lower bound
to the objective of the associated travelling salesman problem,
a branch-and-bound algorithm can be stated to find the optimal
solution of the travelling salesman problem.

Algorithm for the travelling salesman problem

Let X be the set of all sites to be serviced for garbage
collection. Let A be the set of all arcs connecting the sites
in X, which represent the shortest path between two sites

using the road network. Therefore the graph G=(X,A) is complete
(i.e. each pair of vertices is connected by an arc) with the
cost of the arc ;4 being the length of the shortest path bet-

: . J
ween Xx., X.eX, Set c,.== and C= [c,.] . Let Z(C) denote the
i ii ij

value of t%e objective of the assignment problem solved for
vertices in X and the cost matrix C, Let U(C) denote a sequence
of arcs which form a circuit according to the optimal solution
of the assignment problem on X with cost matrix C. Let k(C)
denote the number of vertices which are incident to the arcs

in U(C) and n denote the number of vertices in X.

-174-

Compute Z(C)
If x(C) = n, Stop.
Set M=wo and D=(d..)=C=(c..).
ij ij
Store Z(C) into the set N, denoting the set of assignment

problems to be analyzed further.

Step 2:

Delete Z(D) from N.

Step_3:

Choose an arc (xi,xj)sU(D) and set its corresponding cost

to &..=w, Set C = D, but instead of d,. place c,..
L 1] 1]

Solve Z(C).

If k(8) = n, compute M=min(M,Z(C)).

If k(C) <n, store Z(C) into N.

Set U(D) = U(D) = {(xi,xj)}.'

Step_Hk:

If U(D)#0, go to Step 3.
If U(D)=@, go to Step 5.

Step_5:

Find the minimum value Z(D) for all solved assignment problems
stored in N.

If N is empty, set Z(D) = =,

If Z(D)» M, the travelling salesman problem is solved and is
the solution of the assignment problem associated with M.

If Z(D) <M, go to Step 2.

The idea of the above stated algorithm is to exclude circuits
that do not contain all vertices of X by setting the cost of
one arc of the circuit to infinity (Step 3). Then the assign-
ment problem associated to this new cost matrix will produce
another circuit. This procedure is done until only one circuit
is found with the shortest length (the smallest objective)

of all assignment problems under consideration (Step 5).

m

N

o

™

)

LI]
« .

. . o
.

L]

OOQOOO0OO0O00O00O000O000a00O0

OO0

10
15

oo aOan

100

95

=175~

#%% TRAVELLING SALESMAN PROGRAM
*% %

. INPUT

.

N NUMBER OF VERTICES

. C(L) LENGTH OF ARC(I.J), WHERE L=IND(I,J,N). IF C(L)=0

.

LI]

THEN THIS ARC DOZS NOT EXIST.

OUTPUT

..» LENGTH TOTAL LENGTH OF THE TRAVELLING SALESMAN TOUR

NUMB NUMBER OF VERTICES PASSED ON THE TOUR
KK(I) NUMBER OF THE I-TH VERTEX TO BE PASSED ON THE TOUR
I=1,...,NUMB

SUBROUTINE TRAVSL(N,C,LENGTH,KK,NUMB)

INTEGER N,C(1),LENGTH,KK(1),D(625),IG(625).U(10000,3)
INTEGER K(25),K2(25)

LOGICAL LOG

... STEP 1

CALL SPII(N,C,D,LOG)
CALL ASGNMT(N,C,K.LENGTH)
J=1

DO 10 I=1,N

J=K{J)

IF(J .NE. 1) GO TO 10
JX=I

GO TO 15

CONTINUE

IF(JX .EQ. N) GO TO 22
M=2%#30

KU=1

LU=1

NN=N#*N

«oo STEP 2

U(KU,2)=2%%30

... STEPS 3 AND 4
... FINDING THE SHORTEST CIRCUIT

LIY=N

DO 95 I=1,N

IH=0

J=I

J=K(J)

IH=TH+1

IF(J .NE. I) GO TO 100
IF(IH .GE. LIY) GO TO 95
IY=I

LIY=IH

CONTINUE

waOon

)
()}

30

35

40
45

50

N NONe!

55
60
65

INEOEPR®!

e o0

-176-

I=TY
COMPUTING THE NEW COSTS FOR THE ASSIGNMENT PROBLEM

JJ=K(I)

L=IND(I.JJ.N)

DO 25 II=1,NN
IG(II)=C(II)
IG(L)=2%%30

II=KU

IF(II .EQ. 1) GO TO 35
J=U(II,3)

IG(J)=2%#%30

II=U(II,1)

GO TO 30

CALL ASGNMT(N,IG.K2,NCCS)
IF(NCOS .GE. M) GO TC 20
Jd=1

DO 40 II=1,N

J=X2(J)

IF(J .NE. 1) GO TO 40
JX=IT

GO TO 45

CONTINUE

IF(JX .LT. N) GO TC 50
M=NCOS

MLU=LU+1

LU=LU+1

U(LU,2)=NCOS

U(LU, 1)=KU

U(LU, 3)=L

I=JJ

IF(JJ .NE. IY) GO TO 3

. STEP 5

NX=M

KU=MLU

DO 55 J=1,LU

I=LU-J+1

IF(U(I,2) .GE. NX) GO TO 55
NX=U(I,2)

KU=I

CONTINUE

DO 60 I=1,NN

IG(I)=C(I)

1=KU

J=U(I,3)

IG(J)=2%%30

I=U(1,1)

IF(I .NE. 1) GO TO 65
CALL ASGNMT(N,IG,K,LENGTH)
IF(NX .LT. M) GO TO 2

. PREPARATION OF OUTPUT

NUMB=1

S

Y

80
85
5

70

90

KK(NUMB)=K(N)
I2=K(N) .

DO 70 I=1.N
DO 80 II=1,N
IF(K(II) .NE. I2) GO TO 80
I1=1T

GO TO 85
CONTINUE

J=I2

KX=J
J=IND(I1,KX,N)
J=D(J)
NUMB=NUMB+1
KK(NUMB)=J
IF(J .NE. It) GO TO 75
I12=11
CONTINUE
NX=NUMB/2

DO 90 I=1,NX
J=NUMB~I+1
KH=KK(I)
KK(I)=KK(J)
KK(J)=KH
NUMB=NUMB=1
RETURN

END

-177-

-178-

6.2.2. Refuse collection with limited route length

Dealing with practical problems, the question is not
simply one of finding the travelling salesman circuit
since there are a number of complicating factors. First,
one must be mindful of capacity and time constraints.

Each pickup point can have a different quantity to be
picked up and, since the capacity of the truck is

limited, the route must be interrupted for travel bet-
ween pickup points to dumps. Moreover, there are several
dump sites. Having saturated the truck, the problem asked
is which dump site should be used? Finally, some locations
require daily service while others do not. Since there are
typically many points to be serviced, the problem is not
only to arrange the routes feasible but to assign each
pickup point to days of the week to minimize the number

of trucks.

Here we shall only be dealing with the simpler problem,
where the pickup points are already assigned to days of
the week and only the tours for the day have to be found.
We shall also restrict ourselves to the problem with only
one dump site. For a more detailed discussion of the problem
see Beltrami & Bodin (1974), The algorithm presented here
is heuristic by nature ,

The idea of the algorithm.is to combine vertices

to lie on the same route, such that the

savings in terms of route length is maximized, compared

to the two separated tours for each vertex and that the
time and capacity constraints are not validated. Let T
denote the set of tours yet found. For each tour teT let
p(t) denote the initial and the final vertex (site) X and
xgek (the set of all vertices) of the tour (excluding the
dump site). Let the costs associated to the arcs (xi,xj)eA

be ¢c...
1]

~179-

~
]

Algorithm for finding refuse collection tours

£

Step_1:

For all vertices x;eX let the initial tours consist of one vertex
only, therefore for each teT p(t)={xi,xi} » X:eX. Compute
shortest paths between all pairs of vertices in X. Let the
shortest route from p(t) to the dump site X, be denoted by

s, (t) (from dump site to initial vertex of tour t) and sz(t)
(from final vertex of tour to dump site xo).

§¢gp_2:

Let n(T) be the maximum number of vertices in a tour teT.
. Let the set of such tours be TncT. Set 1=n(T).

Step 3:

For all tours t,€T; and: all tours tstq, q<£1, let S(ti’tz)
denote the savings that would result if these two tours would be
combined to one. This is done by eliminating two paths si(t) from the

o

dump site X, to one initial vertex of t, or t, and cone final
vertex of t, or t; and adding the path length to combine the
final vertex of t, or t, with the initial vertex of t, or t,.
Find the pair of tours (ti’tj) with the largest savings
S(ti,ij),such that the time and capacity constraint is not
validated.

[

Step %3

If such a pair exists, eliminate t; and tj from T, add to T
the new tour (ti,tj) and go to Step 2.

If no such pair exists, set 1=1-1,

If 1L»1, go to Step 3.

If 1=0, the tours have been found, Stop.

o

Note that all vertices x.eX, except the dump site Xy, always
belong to one,and only one,tour in T. This algorithm can easily
be expanded to the case with more than one dump site.

OO

OO0 0O0000000

wOaOOonnOOO N

-180-

. *¥% AJGORITHM FOR SOLVING TRAVELLING SALESMAN PROBLEM

%¥%% WITH RESTRICTED TOUR LENGTH

T
. INPUT

.. N NUMBER OF VERTICES
. C(L) LENGTH CF ARC(I,J), WHERE L=IND(I,J,N)

LT MAXIMAL ALLOWED LENGTH CF A TOUR

.. IT IS ASSUMED THAT EACH TOUR STARTS AND ENDS AT VERTEX 1
. OUTPUT

.. NT NUMBER OF TOURS
. NV(I) NUMBER OF VERTICES BELONGING TO TOUR I, I=t,...,NT

NVX(I,J) J-TH VERTEX OF TOUR I, I=1,...,NT, J=1,...,NV(I)

SUBROUTINE RECOTO(N,C,LT,NT,NV,NVX)
INTEGER N,C(1),LT,NT,NV(?),NVX(30,30)
INTEGER D(300),S(30,2)

LOGICAL LOG

. STEP 1

CALL SPII(N,C,D,LOG)
NT=N-1

DO 5 I=1,NT
NVX(I,1)=I+1

NV(I)=1

I1=I+1
L1=IND(1,I1,N)
L2=IND(I1,1,N)
S(I,2)=C(L2)

NTMAX=1

. STEP 2
L=NTMAX

. STEP 3
MAXSAV=0
DO 10 I=1,NT ’
IF(NV(I) .NE. L) GO TO 10
D0 15 J=1,NT
IF(I.EQ.J .OR. NV(J).GT.L) GO TO 15
I1=NV(I)
I1=NVX(I,I1)

L1=IND(I1,I2,N)
LL1=S(1,2)+S(J,1)-C(L1)
LENG=C(L1)+S(I,1)+S(J,2)
IF(LLT .LE. MAXSAV) GO TO 20
IF(NV(I) .EQ. 1) GO TO &5
NZ=NV(I)

-

30
25

40
35

15
10
C
C
C

55

50

45

-181-

DO 30 JL=2,NZ
JL1=NVX(I,JL-1)
JL2=NVX(I,JL)
L2=IND(JL1,JL2,N)
LENG=LENG+C(L2)

IF(NV(J) .EQ. 1) GO TO 3%
NZ=NV({J)

DO 40 JL=2,NZ
JL1=NVX(J,JL-1)
JL2=NVX(J,JL)
L2=IND(JL1,JL2,N)
LENG=LENG+C(L2)

IF(LENG .GT. LT) GO TO 20
MAXSAV=LL1

IT=T

Jd=Jd

I1=NV(J)
LENG=LENG-C(L1)-3S(I,1)-S(J,2)
I1=NVX(J,I?)

I2=NVX(I,1)

L1=IND(I1,I2,N)
LENG=LENG+C(L1)+3(J, 1)+3(1,2)
IF(LENG .GT. LT) GO TO 15
LL1=S(J,2)+S(I,1)-C(L1)
IF(LLt ._E. MAXSAV) GO TO 15
MAXSAV=LL1

I1=J

JJ=I

CONTINUE

CONTINUE

. STEP 4

IF(MAXSAV .EQ. 0) GO TO 45
I1=1+NV(II)
I2=I1NV(JJ) -1

DO 55 I=I1,I2
NVX(II,I)=NVX(JJ,I-I11+1)
NV(II)=I2
S(I1,2)=S(JJ,2)
NV(JJ)=NV(NT)

S(JJ, 1)=S(NT, 1)
S(JJ,2)=S(NT,2)
NZ=NV(JJ)

DO 50 I=t,NZ
NVX(JJ,I)=NVX(NT,I)
NT=NT-1

NTMAX=T2

GO TO 2

L=L-1

IF(L .GE. 1) GO TO 3
RETURN

END

6.3.

-182-

School bus routing

With the growing need for better education in all countries,
there seems to be a great tendency towards building larger
schools which often results in reducing the total number

of schools, thus applying pupils with better facilities
which can be of fullusage only if the number of pupils

is big enough. Especially in areas where the population
density is low, this causes- a lot of problems because
somehow the pupils have to go to school and the supply of
transportation facilities via public transportation systems
is in many places not sufficient. Therefore in many countries
special buses are used to pick up pupils at some points that
can easily be reached from their homes and carry them to
school and vice versa. Of course, the expenses for this
transportation facility are high and efforts for reducing
the total amount of buses needed to meet the demands are
undertaken, The problem can again be considered as a routing
problem, similar to the one we described in chapter 6.2.2.
The most general approach to this particular problem was
published by Newton & Thomas (1974), which we shall state-
with some modifications - in the following. Like in all
papers on this subject, it is assumed that only one school
is served at a time, i.e. all buses transport pupils only

to one school., If more than one school must be served by

the same buses, then the idea is that those schools are
served one after the other, which means that schools do

not start (and end) at the same time, but after some inter-
val. Then we are confronted with the following problem:
Given a network G=(X,A), where seX is the location of the
school and 0 ¢ X 1is the set of vertices where buses are
located, then from each vertex xiaX a given number of pupils
needs to be taken to the school seX. The shortest trans-

portation time between each pair of vertices is given as the

)

7

oy

-183_

cost cij of the arc connecting them (G is a complete graph,
i.e. there is an arc between each pair of vertices in X).
Therefore it holds that Cijécﬁk:+ ki For each vertex

xieOC X, the number of buses that are located there is given.
All buses are assumed to have the same capacity C of people

to be taken with. Finally, the maximal length of a route

taken by any bus from its origin xieO to the school seX is
also restricted by R, being the same for all buses. That the
tour must not exceed R has two reasons: First, all pupils have
to be transported within some time interval to have the buses
available for the next school to be served and secondly, pupils
should not have to sit in buses for hours., Then the problem

is to find the minimum amount of buses needed to meet all
constraints, and to assign a route to each bus actually used
with shortest length. Note that this problem formulation in-
cliudes the possibility that all buses start from the school,

meaning that 0={s}.

In this case, the problem would be exactly the same than the
one of finding refuse collection tours with restricted length
(see chapter 6.2.2.), Obviously, as this problem is even more
complex than the one of chapter 6.2.2.,0nly a heuristic method
can beLﬁsed, the idea of which being the following: Assign
buses to vertices in 0. Find a shortest path from the vertex

in 0, to which the most buses have been assigned, to the school
by passing through all vertices., Partition this path into
subpathssuch that these routes do not validate the capacity
and time constraint of the buses. Iterate this procedure to
find routes such that their total length is reduced and, finally,
assign the buses located at the vertices in O to the routes.

Algorithm for solving the school bus routing problem

Step_1: (Preliminary computations)

Find a lower bound for the number of buses necessary to transport

all pupils to schoeol, being

-184-

R - number of pupils to be transported
min bus capacity C ’

where [.] denotes the next largest integer.

Denote by Rm the number of buses actually used and

ax
set R = R . .
m

ax min

Calculate a lower bound for the average length of a route
from any bus origin xieO to school seX. As each bus has to
pass by at least one vertex on its way from X to s, the

average minimum route length 5i from x, to s is then

X:.#X.,S
771

and v is the number of vertices in X,

Let ki be the number of buses available at origin xieO.

It is assumed that there are not less buses available in

the total than there are needed. Order the vertices xieO
such that p, ¢ Py € ... €Dy, where 1 is the number of vertices

in 0.

Let the sum of the length over all bus routess for the best
solution yet found,be B and set B=e,

Assign k1 buses to x,, k2 to x, until all needed buses Rmax

are assigned to some origin. Of course, if Rmax <k1,then
only assign Rmax buses to x4.

&>

-185-

Step_3:

Find the origin to which the most buses have been assigned and

order the vertices xisO, such that this origin is x,.
Set r=2 and F1=w.

Step_4:

Find a path from Xy to s by choosing first to go from X4
to x, (xris) and then always choosing a vertex Xy which
does not yet belong to the path, such that the travel time

- to this vertex is shortest among the possible ones. If all

vertices in X except s belong to the pathsthen go to s.
Determine the length of this path and denote it by Fr'
Set F_ = min(F_, F).

r r r-1

Step_5:

Generate a set of bus routes each of which starts at Xy
going along the path under consideration until either the
bus capacity is reached (by loading at each vertex all
pupils assigned to this vertex) or the time constraint (by
adding up the arc lengths), proceeding to s then. The next
route again starts at X4 and proceeds directly to the first

vertex of the path not yet assigned to a bus route., All

individual bus routes are determined in the same manner until

all vertices in X are assigned to some bus route. Let the
sum of the length of these bus routes be S and the number
of bus routes be t.

It sRmax , then go to Step 6.
If tv>Rmax, then go to Step 7.
Step_6:

Try to improve each bus route found in Step 5 individually
in the following way:

Let (1,2,...,i5..03J54¢05Ky.0.,n) denote the sequence of

-186~

vertices in the route. Then for each triple of vertices
i,j,k such that 1% i‘h¥j $k <n delete three arcs and build

in three new arcs such that:

[—rd ._.)o—_go_.)....—go——ﬁo—ﬁ...—”—p———}...__n
1 i h 1 j k g n
original
/——m
o—p - - —qw””:;E:’.... . . e e ce . —30
1 1 h 1 j k g

new

Note that the new route has the same direction, the same
initial and final vertices as the original one. If this
new route is shorter than the original one, i.e. if

+°1j+ckg’°ij+°1g+ckh ,

€in
then use the new route instead of the old one. The number
of possible new routes for aroute with nzh vertices is

growing with o).

Let the length over all bus routes be again S, then set
B=min(B,S). Go to Step 7.

Step_7:

If Fr‘cFr-i , then try to improve the path associated to Fr
with the algorithm described in Step 6. If an improvement

is found, set the length of this new path Fr and go to Step 5.
If no improvement can be found or if Frz’Fr-l’ set r=r+l,

If r ¢v, then go to Step 4.

If r »v, and B=e, then go to Step 2, otherwise go to Step 8.

o

0

D

™

-187-

Step_8:
Assign the buses from the vertices xieO to the optimal

routes that are associated to B in the following way:

Let P be the set of vertices that are the first ones on

each bus route. Construct a network N=(Y,B) where

Y = PouOulol} v {d}

and B consists of
arc (o,xi), xisO with no arc cost and arc capacity ki

(the number of buses at xi)

arc (xi,xj),xiao, xjeP with arc cost cij (the travelling

cost from X, to xj) and arc capacity =1,

If xi=xj, set cij=0.
arc(xj,d), xjsP with no arc cost and arc capacity =1,
New send a flow of the amount Rmax from o to d and find

a minimum cost flow pattern with the minimum cost flow
algorithm,

From each x;e0 to each xjeP,where there is a non zero flow
in the optimal solution, a bus is assigned to the route

starting at xj.

This algorithm avoids the time consuming solution of a
travelling salesman problem, Instead,the less expensive
heuristic search presented in Step 6 is performed, although
for large networks this also can cause problems.

In this case one has to reduce this search and
not examine all possible combinations of i,j,k.

Notice that although for O= {s} the problem of chapter 6.2.2.
and the school bus problem are equal, the algorithms proposed
for each problem are not. Because of their heuristic natuze
cne ecannot say a priori anything about the relation between
their results,

Qa0

-188-

... **%% PROGRAM FOR SOLVING THE SCHOOL BUS ROUTING PROBLEM #¥¥
X%*x

... INPUT

... N NUMBER CF VERTICES

... C(L) LENGTH OF ARC(I,J)., WHERE L=IND(I,J,N)

... PUP(I) NUMBER OF PUPILS AT VERTEX I WHO HAVE TO BE
TRANSPORTED TO THE SCHOOL AT VERTEX 1, I=Z...,N

... O(I) NUMBER OF BUSES LOCATED AT VERTEX I, I=1,..,N

... CAP CAPACITY OF A BUS

oo ML MAXIMAL LENGTH OF A BUS TOUR

... OUTPUT

... RMAX NUMBER OF BUSES NECESSARY FOR TRANSPORTATION

.es NV(I) NUMBER OF VERTICES BELONGING TO TOUR I, I=1...,RdAX

... NVX(I.J) J-TH VERTEX OF TOUR I, J=1,...NV(I). BETWEEN THE
J=TH AND THE (J+1)-ST VERTEX THE SHORTEST PATH HAS TO
BE USED.

OO0 0O0000000000000000n

SUBROUTINE SCHOOL(N,C,PUP,0,CAP,ML,RMAX,NV,NVX)

INTEGER N,C(1),PUP(1),0(1),CAP,ML,RMAX,NV(1).NVX(30,30)
INTEGER RMIN,P(30).B,K(30),F(320),R.S,T,D(900),PX(30).PT(30)
INTEGER TT,NVY(30),NVXY(30,30)

LOGICAL LOG

... STEP 1 (PRELIMINARY COMPUTATIONS)

CALL SPII(N,C,D,LOG)
RMIN=0

DO 10 I=2,N
RMIN=RMIN+PUP(I)
RMIN=RMIN/CAP+1
RMAX=RMIN-1

NBUS=0

DO 15 I=1,N
NBUS=NBUS+0(I)

DO 20 I=1,N

P(I)=0

IF(O(I) .EQ. 0) GO TO 20
DO 25 J=2,N

IF(J .EQ. I) GO TO 25
L1=IND(I,J,N)
L2=IND(J, 1,N)

Vo)
20

35

P(I)=P(I)+C(L1)+C(L2)
CONTINUE
P(I)=P(I)/(N=2)

I=t

J=1

PX(I)=d

J=2%%30

DO 40 IX=1.N
IF(P(IX).LT.PX(I) .OR. P(IX).GE.J) GO TO 40
J=P(IX)

P(IX)=0

m

.

M

40

30
50

wOOOQwm
.
.

E000

65

70

-189-

JJ=IX

CONTINUE

IF(J .EQ. 2%*30) GO TO 45
PX(I)=JdJ

I=I+1

IF(I .LE. N) GO TO 35
B=2%#30

NX=I-1

. STEP 2

RMAX=RMAX+1

IF{RMAX .LE. NBUS) GO TO 30
PRINT #*,” THERE ARE NOT ENOUGH BUSES AVAILABLE’
RETURN

MH=RMAX

DO 50 I=1,N

K(I)=0

DO 55 I=1,NK

J=PX(I)

K(J)=MINO(MH,0(J))
MH=MH-K(J)

IF(MH .EQ. 0) GO TO 3
CONTINUE

. STEP 3

MY=0

DO 60 I=1,NK

J=PX(I)

IF(J .EQ. 1) GO TO 60
IF(K(J) .LE. MY) GO TO 60
MY=K(J)

JZ=J

CONTINUE

R=2

F(1)=2%%30

... STEP 4

IF(R .EQ. JZ) F(R)=F(R-1)
IF(R .EQ. JZ) R=R+1
IF(R.GT.N .AND. B.EQ.2¥%*30) GO TO 2
IF(R .GT. N) GO TO 8

DO 65 I=1,N

P(I)=I

PT(1)=JZ

P(JZ)=0

PT(2)=R

P(R)=0

I=3

L=IND(JZ,R,N)

F(R)=C(L)

MH=2%%30

DO 75 J=2,N

IF(P(J) .EQ. 0) GO TO 75
L=IND(PT(I-1),J,N)

75

NGNS R

85

90

o OO

105

106

IF(C(L) .GE. MH) GC TO 75
MH=C(L)

JA=J

CONTINUE

PT(I)=JA

P(JA)=0

F(R)=F{R)+MH

I=I+1

IF(I .LT. N) GO TO 70
PT(I)=1
L=IND(PT(I-1),1,N)
F(R)=F(R)+C(L)
F(R)=MINO(F(R),F(R=1))
LOG=.FALSE.

. STEP 5

T=0
I=2
T=T+1

NVY(T)=1

NVXY(T, 1)=J2

MCAP=0

IF(T .EQ. 1) MCAP=PUP(JZ)
MML=0

o

=

L1=IND(NVXY(T,J-1),PT(I),N)

'L2=IND(PT(I),1.N)
MH=MML+C(L 1)+C(L2)
IF(MH ,GT. ML) GO TO 90
L3=PT(I)
MH=MCAP+PUP(L3)

IF(MH .GT. CAP) GO TO 90
NVY(T)=NVY(T)+1
NVXY(T,J)=PT(I)

I=I+1

J=J+1

MCAP=MH

MML=MML+C(L1)

IF(I .EQ. N) GO TO 90
IF(I .GT. N) GO TO 95
GO TO 85
NVY(T)=NVY(T)+1
NVXY(T,J)=1

IF(I .EQ. N) GO TO 95
GO TO 80

IF(T .GT. RMAX) GO TO 7

. STEP 6

S=0

DO 100 I=1,T

DO 105 J=1,NVY(I)
P(J)=NVXY(I,J)

CALL IMPR(N,NVY(I1),P,C,M)
DO 106 J=1,NVY(I)
NVXY(I,J):P(J)

=190~

)

r

™

100

125
120

~NOQO0

110

(e XO NG N®]

135
130

140

-191-

S=S+M

IF(B .LE. S) GO TO 7
TT=T

DO 120 I=1,TT
NV{I)=NVY(I)

DO 125 J=1,NV(I)
NVX(I,J)=NVXY(I.d)
CONTINUE

B=S

STEP 7

IF(F(R) .GE. F(R-1)) GO TO 110
IF(LOG) GO TO 110

CALL IMPR(N,N,PT,C.M) .

IF(M .GE. F(R)) GO TO 110
LOG=.TRUE.

GO TO 5

R=R+1

IF(R .LE. N) GO TO 4

IF(B .EQ. 2**¥30) GO TO 2

... STEP 8

RMAX=TT

DO 130 I=1.N

DO 135 J=1,RMAX
J1=NVX(J,2)

IF(J .EQ. 1) J1=NVX(1,1)
L1=IND(I,J1,N)
L2=IND(I,J,N)

D(L2)=C(L1)

IF(I .EQ. J1) D(L2)=0
CONTINUE

CALL ASGNMX(RMAX,D,N,0Q,P,M)
DO 140 I=1,N

IF(P(I) .EQ. 0) GO TO 140
J=P(I)

NVX(J,1)=I

CONTINUE

RETURN

END

OO0 O0O00O0000

30

s 00

00

o o0

-192-

¥%%¥ PROGRAM FOR REDUCING THE LENGTH OF A SCHCOL BUS ROUTE #*#*%

*%%

INPUT
. N NUMBER OF VERTICES
c(L) LENGTH OF ARC(I,J), WHERE L=IND(I,J,N)
NP NUMBER OF VERTICES IN THE TOUR
. P(I) I-TH VERTEX IN THE TOUR
QUTPUT
P(I) I-TH VERTEX IN THE IMPROVED TOUR
M LENGTH COF THE IMPROVED TOUR

SUBROUTINE IMPR(N,NP,P,C,M)

INTEGER N,NP,P(1),C(1),M,H,L,G,II,HH,LL,JJ,KK,GG,PX(30)

IF(NP .LE. 3) GO TO 20
NP 1=NP-3

MSPAR=0

NP2=NP-1

DO 5 I=1,NP1

H=I+1

MH=H+1

II=P(I)

HH=P(H)

DO 10 J=MH,NP2

L=J-1

JJ=P(J)

LL=P(L)

DO 15 K=J,NP2

G=K+1

KK=P(K)

GG=P(G)
L1=IND(II,HH,N)
L2=IND{(LL,JJ,N)
L3=IND(KK,GG,N)
Ly4=IND(II,JJ,N)
L5=IND(LL,GG,N)
L6=IND(KK,HH,N)
L7=C(L1)+C(L2)+C(L3)-C(L4)-C(L5)-C(Lb)
IF(MSPAR .GE. L7) GO TO 1%
MSPAR=L7

I1=I

J1=d

K1=K

CONTINUE

CONTINUE

CONTINUE

IF(MSPAR .EQ. 0) GO TO 20
DO &5 I=1,NP
PX(I)=P(I)

H=I 1+1

L=J1-1

DO 30 I=J1,K1
P(H+I-J1)=PX(I)

N

o

35
20

40

DO 35 I=H,L
P(H+K1-J1+I+1-H)=PX(I)
M=0

DO 40 I=2,NP

- I1=P(I-1)

12=P(1)
L1=IND(I1,I2,N)
M=M+C{L1)
RETURN

END

-193-~

OO0

10

35

~
[

15

QOO0

QOO0

OO0 000O00000n

~194 -

. ¥¥% PROGRAM FOR SOLVING ASSIGNMENT PROBLEMS
T

... INPUT

vee N NOMBER CF ITEMS TO WHICH AN ASSIGNMENT IS MADE

... P(L) COSTS OF ASSIGNING ITEM I TO ITEM J, WHERE L=IND(I,J,N)
... K(I) NUMBER CF ITEMS I WHICH CAN BE ASSIGNED, I=1,..,M

vee M NUMBER CF DIFFERENT ITEMS WHICH CAN BE ASSIGNED

.. OUTPUT

... KK(I) NUMBER CF ITEM TO WHICH ITEM I IS ASSIGNED TO
... COST MINIMUM ASSIGNMENT COSTS

SUBROUTINE ASGNMX(N,P,M,K,KK,COST)
INTEGER N,P(1),KK(1),COST,C(2704),Q(2704),F(2704),K(1)

... DEFINING THE NETWORK FOR THE MINIMUM COST FLOW PROGRAM

NN=C+N+M

NN 1=NN*NN

DO 10 I=1,NN1
C(I)=0

Q(I)=0

Do 5 I=1,M
I1=I+1
L1=IND(1,I1,NN)

C(L1)=t

Q(L1)=K(I)

DO 3% J=1,N
2=M+1+J

L2=IND(I2,NN,NN)

C(L2)=1

Q(L2)=1

L=IND(I1,I2,NN)
L1=IND(I,J,N)
C(L)=P(L1)
Q(L)=1
CONTINUE
CONTINUE

NV=N

NS=1

NT=NN

.» SOLVING THE MINIMUM COST FLOW PROBLEM
CALL MINCOS(NN,C,Q,NV,NS,NT,F,COST)
.. PREPARATION OF OUTPUT

COST=COST-cC*N

a

™
4

M

30
25

DO 25 I=1,M
KK(I)=0

DO 30 J=1,N
I1=I+1

I2=J+M+1
L=IND(I1,I2,NN)
IF(F(L) .EQ. 0) GO TO 30
KK(I)=Jd

GO TO 25
CONTINUE
CONTINUE
RETURN

END

-195~

-196-

6.4, Exercises

1) Given the following undirected network (the numbers
on the arcs denote their length in hundred meters),
representing a road network in a town (the vertices

represent intersections of the streets).

Y D 5 G 6 J
A o 0 -0 N
2 1 3 Y
5 & 5 b 5 H s <>1<
3 Y 2 1
I L
C o o O~ —0D
5 4 4

Find a shortest cycle for a vehicle situated at vertex
D to clean all streets, with the Chinese postman

algorithm .

2) Find an Eulerian circuit in the nondirected graph

given by the following incidence matrix:

a b ¢ d e f g h 1
a o0 o 1 1 0 1 1 0
b 11 1 0 1 0 0 1
c o 10 1 0 0 1
d o 1 1 1 1 1
e 1 0 1 1 0O
f o 0 0 1
g 0 1 0
h 0 O
i 1

Y

D

[
o

[

-197-

Route planning for urban public transportation systems

The problem and the need for solving it

Transportation has become one of the urgent problems of
urban areas. In many cities the gap between the need for
and the possibilities of transportation seems still to

be growing, resulting in increasing travel times for
citizens. Apart, air pollution, noise and accidents are
quite unwanted side effects of this development. There-
fore new solutions and planning in urban transportation
systems are needed. Although on the political scene it

is still an open question if public transportation systems,
should be given priority to individual car traffic, it has
become quite clear that individual transportation systems
like the present one by cars,will not be able to solve the
urban transportation problem. Since presently there exists
no other alternative to cars than buses, trams and rail-
ways (above and under the earth), strong efforts to improve
these mass transportation systems should be undertaken.

Planning transportation systems can hardly be separated
into various subproblems, because all the aspects of such

a system depend on each other.

Transportation planning tries to fulfill the forecasted
demand, but rarely takes into account that future demand

also depends on the results of todays trénsportation
planning. People choose their jobs and homes depending

on transportation facilities, firms, shops and officsgs

try to find good locations that also depend on transportation
facilities. Therefore a good transportation system tends

to create new transportation demands. This important effect,
in the long run,can hardly be forecasted yet - too little

is known about behaviour of people in this aspect.

-198-

Given a certain transportation demand, public and individual
transportation are in a competitive situation. Although it is
not too difficult to evaluate the number of people that use
one cr the other transportation possibility, only weak models
exist that try to forecast the splitting of the demand bet-
ween the two possibilities, if the transportation systems are
changed, e.g. if a better road or a new bus - or underground
line is built. Forecast models of this type, called modal-
split models,are presented in P,Micke & H.Hensel (1975), So
far,modal-split models are only of the forecast-type and do
not try to optimize certain criterions of transportation

planning.

Quantitative models that do optimize or suboptimize come

into consideration, if one is willing to neglect

- long run effects that means, one accepts the assumption
of independence between demand forecast and transportation

planning and

- the competitive situation between public and individual
transportation,implying that the demand for a public
transportation system does not change if this system
is changed. Therefore it is assumed that people either go
by car or by a public transportation system, but do not

move from one to the other.

Thus, being quite aware of the assumptions we have to state
for an optimization problem, we do not yet see a way out of
this dilemma. Although the need for better planning in urban
mass transportation systems seems to be obvious, surprisingly
little has been published in this area. It was not until

1967, when W,Lampkin & P.D,Saalmans (1967) reported on an
attempt to reorganize the bus routes and frequencies of a
public transportation system in an English town with the help
of an Operational Research approach. Besides this work only

two other case studies on this subject can be found in the

(N

(2

-198-

literature, being published by Silman, Barzily & Passy
(197%), who worked on the same problem for Haifa, Israel
and Hoidn (1977), who studied the problem for a Swiss town.
Uebe (1970) and especially Friedman (1976) reported con
models for optimal scheduling of mass transportation
vehicles.

In this chapter we shall discuss the problem of network
optimization for urban mass transportation systems in detail,
also stating not yet published algorithms.

Because the network of an urban public transportation system

has some special characteristics, we shall develop & shortest
path algorithm which will perform better on such special networks
than the ones of chapter 3.1, Chapter 7.3, will then be dealing
with the problem of finding a descriptive approach of assigning
passengers to the routes of the transportation vehicles.Finally,
we shall treat the problem of finding optimal routes for trans-
portation vehicles in a given network to meet some objectives

of transportation planning.

Shortest paths in public transportation networks

Looking at an urban public transportation network that is

built by bus or tram lines,we can note some special characteri-
stics. The vertices of this network usually indicate a stop or,
more generally,an area of a city that has to be served via this
stop. = This area should be small enough to reach every point
within it from the stop by foot. - The arcs connecting the
vertices will then either denote the street (in case of a bus),
along which the bus drives or denote the rails (in case of a

tram), along which the tram proceeds. Of course, not each vertex

(and therefore not each arc) will be served by all bus or tram lines

that are running within the city. By a line we mean the route

~-200-

of a vehicle (tram or bus) along the specified network
consisting of streets or rails, Usually lines have two
final points (vertices), called terminals, where they turn
and change the direction, but there also exist ring lines,
where the route goes along a cycle of the network, thus no
terminals exist. Because in practice most of the lines use
the same arcs in both directions = this is especially true
for trams, sometimes it is not true for buses, because of
one-way-streets, but even then the routes are very

close to each other (i.e. the next street), we shall assume
that the transportation network (consisting of stops and
streets or rails) is not directed. Formally speaking we are
dealing with a nondirected network of streets or rails
G=(X,A) and a set of lines L defined on it, such that each
element lel denotes a chain (a nondirected path) which can
be a cycle. Because each stop (vertex in X) must be served
by at least one line, each xeX must belong to at least one
leL. Certainly each passenger of a public transportation
system wants to be able to reach stop xieX from any other
xjeX by using a sequence of lines lisL, changing the lines
at vertices xkeX which belong at least to those two.lines
between which the passenger changes. Let us denote by
V(l)eX,leL, the set of vertices that belong to line 1 and
S(1l)eA, leL, the set of arcs that belong to line 1. Then
the following must hold

U V(1.) = X (7.1)
1,eL 1

If we call the set of arcs that belong to at least one line
F,

F U S(li)CA (7.2)

l.el
i

then the network & = (X,F) must be srongly connected (or
strong), i.e. any two vertices are mutually reachable., G

must be strong too, of course,.

.

™

y

M

-201-

Let us now call the line-degree of a vertex the number of
lines lieL to which the vertex belongs. Then we can state
that if the line-degree of xeX is one,the degree of xeX
must be one (if it is a terminal vertex) or two. This is
obvious because each line is a chain, which means that
each vertex of the chain is incident to one arc (if it is
an initial or final vertex of the chain) or to two arcs.
Because any community wants to keep the number of lines
small (for operational and financial reasons, as we shall
see in chapter 7.4) and also wants the lines to proceed

on near to shortest paths in the network G (which will -
again be argued for in chapter 7.4), many vertices in the
network G will only have line-degree one, therefore having
degree one or, two. This now is a special characteristic of
G,which we were talking about at the beginning of this

chapter and which we shall make use of in our further consi-

~derations., Another special class of vertices are those with

degree two and line-degree of two or more. This case occurs.
when two or more lines proceed along the same sequence of

vertices and arcs for some stops. For example, in main streets

~quite a few lines will pass through usually with more than
~one_stop.If people want to change lines they can then do this
~at any stop which belongs to both lines, but for simplicity

we shall assume that people change either at the stop where

the two lines meet or at the stop were they separate, but not
at a stop between those two. This assumption will not influence
any analysis of the following chapters.

We can now divide the vertices in X into two subsets:

The set I of vertices where interchanges (from one line to
another) occur and the set Q of vertices that do not belong
to I.

Like in other transportation networks, it is now interesting
to know the shortest path between two vertices in the network
& = (X,F). But, although all vertices are reachable from any

other vertex,in many cases people will have to change lines

-202-

to reach their destination. Because on each line vehicles
run in some frequency (usually between 5 to 15 minutes)

to change a line also means to have to wait for the next
vehicle of the other line. Therefore the travel time in

an urban public transportation system is the sum of the
transportation time along the used lines plus the sum of
all waiting times that occur when waiting for a vehicle

of a line. When talking about railway systems in chapter
4,5, ,we could ignore the waiting time because the trans-
portation time usually dominates the total travel time and
therefore the waiting time can be neglected. But in an
urban transportation network where distances are small,the
waiting time might be even greater than the transportation
time and cannot be neglected. To include waiting time in
our network G means that a vertex is split into as many
vertices as there are lines passing through this vertex and
if the original vertex belongs to I,these new vertices are
connected by arcs denoting the possible changes and the
length of each arc denoting theaverage waiting time., This

transformation is shown in the example of Fig.7.1.

Line 1 Line 2
aQ
\\
N2 2
N\,

AN
woa
o
|
dp
|
I3
i

Line 3 Y ' 2 5
O—o—o—-'—o—t C-'—.—.e—-o —_— O

a
iy
|
A d

e

/

7 .7 3

a) Original network without waiting time. The

number on each arc denotes the travel time

O

™
o

-203-

b) Network with waiting time on the double-lined arcs

Fig., 7.1.

Some remarks on Fig.7.1. are necessary: First, it is easy to
see that,in order to compute the shortest paths in G,the

number of vertices and arcs has to be increased substantially.
Secondlysthe waiting time can be chosen different at all inter-
changes. Finally at the intersection of line 3 with line 2

and 1,only interchanges between 3 and 2 or 3 and 1 are possible
and not between 2 and 1,because we assume that people change
from 2 to 1 or vice versa at vertices a and d in Fig.7.1., a).
Although the shortest paths can be computed in Fig.7.1. b) in
principle (with Dijkstra's or Floyd's algorithm),we are seeking
now for a procedure to decrease the number of vertices and arcs
again, thus reducing computation time. Let us look to the vertices
belonging to the set Q, where no interchanges occur . Let us
assume that the shortest paths between all vertices in I in

Fig.7.1.b),where interchanges occur, are known. Then, in order

-20u4=-

to find the shortest paths from a vertex q in Q to any other
vertex x in Xj;one only has to find the nearest vertices to

q that belong to I and also belong to the same line than

does q - for each line to which q belongs there are two such
vertices (except if q is a terminal,then there is only one
such vertex). If the same is done for x,then the shortest

path can be computed as the minimum over all possible paths
from q to all nearest vertices in I on the same line,

plus the shortest paths between those vertices and the nearest
vertices in I on the same line as xj plus the length from
these vertices to x. If x and q belong only to one line,then
only four possible paths must be considered. If x and g belong
+o the same line,then the path length without interchange must
be considered as well. Although this procedure sounds rather
complicated,Ajzen & Rokeach (1974) report on good results with
a slightly less general procedure than the one stated here,
‘although they did not use Floyd's or Dijkstra's algorithm for
the computation of the shortest paths. Therefore to solve the
shortest paths problem on Fig. 7.1, b),only the shortest paths
of the graph in Fig.7.2. (including only the vertices in I)
have to be computed by Floyd's or Dijkstras's algorithm, out
of which all other shortest paths can be found directly.

Line 1 Line 2
\/ 2 /
P
5 5

Line 3

Line 1 Line 2

Fig.7.2.

-205=

Because changing lines is not only time consuming but also
inconvenient - one might have to wait while raining or one
might have to give up a seat and perhaps has to stand in the
next vehicle - many people do not want to find the shortest
path but the one with the least changes necessary. This
minimum - change paths can be found completely the same way
than the shortest paths if, instead of assigning the real
waiting time to each arc denoting a possible change, one
assignsthe same high value a to those arcs,such that a is
much greater than the transportation time. Then the shortest
path will be one where changes occur as seldom as possible
because any such change would increase the path length by the
value a. Also, by dividing the path length by a and taking
the integer part of it, it would immediatly give the number of
necessary changes. We can therefore conclude that both
problems, the shortest path and the minimum change in urban
public transportation systems,can be found efficiently with
the following algorithm,

Algorithm for finding shortest paths or minimum changes in

urban public transportation networks

Let the nondirected network G = (X,F) denote the transportation
network that is built up by the set of lines L. For each arc

in F the travel time on this arc is given (it is assumed to

be the same for any line lelL using this arc) and the average
waiting time for a vehicle for each line lel.

Step_1:

Find the set of vertices I ¢ X where people change lines.

These are all vertices where lines cross, meet or

separate,

Let Q= X~I be the set of vertices where people do not change.

-206=-

Step_2:

Construct a new nondirected network H=(Y,E) in the following
way. For each xieI define a vertex y;j if Xy belongs to line
jelL. The set of all yij being Y. Let E consist of the following

arcs.

arc (yij’yik) if at vertex Xs people change from line J to
line k and vice versa. The length of this arc is
either the average waiting time for a vehicle of
line j or k (if these are not equal then H must
be directed) in case of shortest path problem or
a large number a in case of minimum change problem.

arc (y.) connecting vertices that belong to the same

.,y .

* iine jeL. The length of this arc is the transportation
time between x. and x; along line j.

For each vertex qeQ find the "nearest" vertices €Y in the
following way: If q belongs to line j,then find the closest
vertex xieI that also belongs to line j in both possible
directions to go along from q along line j. (If q is a terminal
vertex of line j then, of course, one can only go along one
direction). By this procedure each qeQ is assigned to one or
two vertices i3 and ylj for each line j to which q belongs.
Doing this for all lines to which q belongs, let the set of
all vertices Vis to which q is assigned to be denoted by n(qlcY
and the transportation time from q to some n(q) being the trans-

portation time along line j to which both vertices belong.

For each vertex xieI let n(xi)cY consist of all vertices yij

and the transportation time between X and n(xi) be zero,

Step_3:

Find the shortest paths between all pairs of vertices on the
network H=(Y,E) with Floyd's algorithm,.

o

&

=207~

Step 4

— et ——

For any pair of vertices x, and xjeX find the shortest

path as the path with minimum length among all paths

Xs = n(xi) - n(xj) - xj (7.3)

The lengthsof all paths (7.3) can easily be computed be-
cause the lengtlsof the paths n(xi) - n(x.) have been

computed in Step 3 and the lengths of the paths xi-n(xi)
were stored in Step 2.

Note that in order to find the shortest path itself (and
not only its length),only the shortest paths in network H
have to be computed because the rest of the path for any

pair of vertices X;,%5 can be readily found out of (7.3).

OO0 000000a0000000000000000

20

s 0

L)

>0

=208~

#%¥%¥ PROGRAM FOR FINDING SHORTEST PATHS IN PUZLIC

. %%*% TRANSPORTATION NETWORKS

*XFk¥E

INPUT
NUMBER OF VERTICES IN THE NETVWORK

N
. C(L) TRAVEL TIME ON ARC(I.J)., L=IND(I.J,N)

NL NUMBER OF LINES
NV(I) NUMBER OF VERTICES BELONGING TO LINE I
NVX(I.J) J-TH VERTEX OF LINE I, J=1,...NV(I), I=1,...NL

. WAIT WAITING TIME IF A LINE HAS TO BE CHANGED

QUTPUT
. NNX SUM OVER ALL VERTICES WHERE PEOPLE CAN CHANGE
LINES MULTIPLIED BY THE NUMBER OF LINES TO WHICH
EACH SUCH VERTEX BELONGS TO
H(L) LENGTHS OF SHORTEST PATHS BETWEEN I AND J,

L=IND(I.J,NNX). WHERE NX(I,1) AND NX(I,Z) DENOTES
THE VERTEX NUMBER AND THE LINE NUMBER, RESPECTIVELY

MX(I.,K) SEE ABOVE, I=%,...NNX, K=1.2

T(L) SHORTEST PATHS BETWEEN I AND J, L=IND(I.J.NNX)
WHERE NX(I,1) AND NX(I.2) DENOTES THE VERTEX
NUMBER AND THE LINE NUMBER, RESPECTIVELY

NQ(I,J,K) NQ(I.J,2) DENOTES A VERTEX NUMBER OF H(L) TO WHICH
VERTEX I IS ASSIGNED TO AND NQ(I,J.1) THE ASSCCIATED
TRAVEL TIME, SUCH THAT NX(NQ(I,J.2).1) DENOTE THE REAL
VERTEX NUMBER AND NX(NQ(I,J,2),2) THE LINE, I=1,.

J=2,..,NQ(I,1,1)

SUBROUTINE SHOPAT(N,C,NL,NV,NVX,WAIT,NNX,H,NX,T.NQ)
INTEGER N,C(1),NL,NV(1),NVX(30,30).WAIT,T(1)

INTEGER I(30).Q(30),NX(30,2),H(1),0X,NQ(30,20,2),NNX
LOGICAL LOG

STEP 1

J=0

DO 5 K=1,N

JJ1=0

JJa=0

JJ3=0

DO 10 L=1%,NL

DO 15 M=1,NV(L)

IF(NVX(L,M) .NE., K) GO TO 15
IF(JJ2 NE. 0) GO TO 20

JJ2=K

IF(M .GT. 1) JJ1=NVX(L,M=1)
IF(M LT, NV(L)) JJ3=NVX(L.M+1)
GO TO 15

JJu=0

JJs5=0

IF(M .GT. 1) JJU=NVX(L.,M=1)
IF(M ,LT. NV(L)) JJ5=NVX(L.M+1)
IF((JJ1.EQ.JJ4 ,OR. JJ1.EQ.JJS) .AND. (JJ3.EQ.JJu4 .CR.

o

T

(o

15
10

30
25

C

C
C

45
40
35

60

65

70.

-209-

X JJ3.EQ.JJ5)) GO TO 15
J=Jd+1
I(J)=X
GO TO 5
CONTINUE
CONTINUE
CONTINUE
IX=J
J=0
L=1
DO 25 K=1,N
IF(K .EQ. I(L)) GO TO 30
J=J+1
Q(J)=K
GO TO 25
L=L+1
CONTINUE
X=J

STEP 2

0
35 K1=1,I
I(Kt)
40 L=1,NL
DO 45 M=1,NV(L) -
IF(NVX(L,M) .NE. X) GO TO 45
J=J+1
NX(J,2)=L
GO TO 40
CONTINUE
CONTINUE
CONTINUE
NNX=J
L=0
DO 50 K=1,NNX
DO 55 M=1,NNX
L=L+1
H(L)=2%%34
IF(K .EQ. M) GO TO 55
IF(NX(K,1) .NE. NX(M,1)) GO TO 60
H(L)=WAIT '
GO TO 55 '
IF(NX(X,2) .NE. NX(M,2)) GO TO 55
H(L)=0
MY=2%%34
LL=NX(X,2)
KZ=0
KZ=KZ+1
IF(NVX(LL,.XZ).EQ.NX(K,1) .OR. NVX(LL,KZ).EQ.NX(M,T)) GO TO 70
GO TO 65
KZ=KZ+1
IF(KZ .GT. NV(LL)) GO TO 66 N
LR=IND(NVX(LL,KZ),NVX(LL,KZ=1),N)
H(L)=H(L)+C(LR)
IF(NVX(LL,KZ) .NE.NX(X.1) .AND. NVX(LL,KZ).NE.NX(M,1)) GO TO 70

83w

66
55
50

90

95

105
101

102
100

85
80
I4)

103
120
115
110

Cees

-21o0-

MY=MINO(MY,H(L))

H(L)=0

GO TO 70

H(L)=MY

CCNTINUE

CONTINUE

DO 75 K=1,0X

K1=Q(X)

NQ(K1.1.1)=1

DO 80 L=1.NL

DO 8% M=1,NV(L)

IF(K1 .NE. NVX(L,M)) GO TO 85
LS=1

LT=NQ(X1,1, 1)+1

NQ(X1,LT,1)=0

MX=M

MYX=MX+LS

IF(MX.LT.1 .OR. MX.GT.NV(L)) GO TO 100
LR=IND(NVX(L MX-LS) NVX(L,MX),N)
NQ(X1,LT.1)=NQ(X1,LT, 1)+C(LR)

DO 105 K2=1,1X

IF(NVX(L.MX) .LT. I(X2)) GO TO 95
TF(NVX(L,MX) .NE. I(K2)) GO TO 105
NQ(K1,1, 1)=LT

GO TO 101

CONTINUE

DO 102 KB=1,NNX
IF(NX(KB, 1) .NE.NVX(L,MX) .OR., NX(XB,2).NE.L) GO TO 102
NQ(K1,LT.2)=KB

GO TO 100

CONTINUE

IF(LS .EQ. -1) GO TO 85

LS==1

GO TO 90

CONTINUE

CONTINUE

CONTINUE

DO 110 K=1,IX

K1=I(X)

NQ(K1.1,1)=1

DO 115 L=1,NL

DO 120 M=1,NV(L)

IF(X? .NE. NVX(L,M)) GO TO 120
NQ(K1,1,1)=NQ(K1,1, 1)+1
LR=NQ(X1,1,1)

NQ(K1,LR, 1)=0

DO 103 KB=1,NNX
IF(NX(¥B,1).NE.K1 .OR. NX(KB,2).NE.L) GO TO 103
NQ(K1,LR,2)=KB

GO TO 115

CONTINUE

CCNTINUE

CONTINUE

CONTINUE

STEP 3

/

3]

™

0

[

145

-211-

CALL SPII(NNX,H.T,LOG)
DO 145 K=1,NNX
L=IND(X,K,NNX)

T(L)=K

H(L)=0

RETURN

END

-212-

7.3. Traffic assignment

Traffic assignment in this context can mean two things:
Assigning people to linesand/or arcs or assigning lines

to the underlying transportation network. The latter we
shall discuss in chapter 7.4, So, our problem is to find
the number of people travelling along a specific line or
arc, given the network G = (X,F) of lines and given the
trip matrix T=(tij), stating the number of people travell-
ing between pairs of vertices Xs and X3 So far, very
little attention has been paid to this problem and only
Chriqui & Robillard (1975) have treated it in more detail.

Although Wardrop's principle on the normative assignment
can be accepted here (including,of course, waiting time),
the descriptive assignment principle will not remain true,
As already mentioned, not all people really minimize travel
time, but rather try to minimize changes, and some behave
according to a weighted sum of transportation and waiting
time. Unfortunately, no empirical results seem to exist

on the behaviour of people in urban public transportation
networks. Therefore, any descriptive assignment principle
must be tested on its validity. Nothing is reported on this
matter in Chriqii & Robillard (1975),

As a first approach to this problem,we suggest to assume
that some fraction, say one third, of all passengers going
from any vertex to another (i.e, tij/3) behaves according
to time minimization, another one third behavesaccording
to change minimization and one third givesweight to each
change as being two or three times the average waiting
time and minimizestravel time according to this weighted

walting time,

Although we shall make use of the just stated descriptive
assignment "principle", we are quite aware of the fact that
a lot of empirical investigations need to be undertaken

to find the correct descriptive assignment principle,

™

D

-213-

Using this descriptive assignment approach,there are five
different models that could be used. First, where no arc
capacities exist and the arc costs are constant on the
network G = (X,F). Of course, in contrary to car traffic
assignment, normative and descriptive assignment is not
equal, because some people do not minimize travel time in
the descriptive assignment. The next models would be with
constant arc costs again but with arc capacities and, finally,
with no arc capacities but with costs increasing with
arc flow. '

The last two models can also be applied if the arcs have no
capacity constraints but a specific line on an arc, therefore
each line can have a different capacity on the same arc. In-
stead of an arc cost depending on the flow,one can also assume
different arc costs for each line depending on the flow on an

arc belonging to a specific line.

a) Norarc capacities and constant arc costs

In this case all people travel along the path they wish

to take according to their objective, Therefore the
algorithm of chapter 7.2, can be used directly for the
nofmétive assignment. In case of the descriptive assignment
the shortest path problem has to be solved for three
different waiting times. Assuming that tij/3 people use each
of the three different found shortest paths,the flow on each
arc can be computed as the sum of all people using the arc
by one of the three paths (which may be, of course, equal).
The flow on each arc of each line is not completely defined,
because if more than one line proceedsalong the same arcs,
people might use both of them along these arcs, thus the flow

assignment to lines is not unique.

OO0

OO0 0O00000000000000000aa0an

s 00

LI]

-214-

#%% DESCRIPTIVE ASSIGNMENT IN PUBLIC TRANSPORTATION

#%% NETWORKS WITH CONSTANT ARC COSTS AND WITHOUT ARC CAPACITIES
L

INPUT

N NUMBER CF VERTICES IN THE NETWORK

. C(L) TRAVEL TIME ON ARC(I,J), L=IND(I,J,N). IT IS ASSUMED

THAT TRAVEL TIME CON ARC(I,J) IS EQUAL TO THE ONE
ON ARC(J,I). IF C(L)=0 NO ARC EXISTS.

NL NUMBER OF LINES

NV(I) NUMBER OF VERTICES BELONGING TO LINE I

NVX(I,J) J-TH VERTEX OF LINE I, J=1,..,NV(I), I=%,..,NL

WAIT AVERAGE WAITING TIME FOR A BUS (TRAM) WHICH IS HALF
THE TIME INTERVAL BETWEEN BUSES (TRAMS)

. G(L) NUMBER OF PEOPLE WHO WANT TO TRAVEL FROM VERTEX I

TO J, L=IND(I,J,N). IT IS ASSUMED THAT G(L)=G(K),
K=IND(J,I,N).

OUTPUT

TOT TOTAL TRANSPORTATION TIME OF ALL PASSENGERS
INCLUDING THE WAITING TIME FOR A BUS (TRAM) AT THE
BEGINNING OF THE JOURNEY AND WHEN CHANGING LINES

FL(L) FLOW FROM VERTEX NX(I,1) BELONGING TO LINE NX(I,2)

: TO VERTEX NX(J,1) BELONGING TO LINE NX(J,2), WHERE
L=IND(I,J,NNX) AND I,J=1,...,NNX
FL(K), K=IND(I,I,NNX), DENOTES THE FLOW THROUGH K
WITHOUT CHANGING LINE,

NX(I,K) SEE ABOVE

NNX SEE ABOVE

T(L) LENGTH OF SHORTEST PATH BETWEEN VERTEX I AND J,

L=IND(I,J,N)

SUBROUTINE DESCRI(N,C,NL,NV,NVX,WAIT,G,TOT,FL,NX,NNX,T)
INTEGER N,C(1),NL,NV(1),NVX(30,30),WAIT,G(1),TOT,FL(1),NX(30,2)
INTEGER NNX,H(900),T(1),NQ(30,20,2),D(900)

. COMPUTING THE LENGTHS OF THE SHORTEST PATHS

CALL SHOPAT(N,C,NL,NV,NVX,WAIT,NNX,H,NX,D,NQ)
M=NNX*¥NNX

TOT=0

Do 5 I=1,M

FL(I)=0

DO 125 K=1,N
L=IND(X,K,N)

T(L)=0

DO 130 M=1,N

IF(K .EQ. M) GO TO 130
L=IND(K,M,N)
T(L)=2%%34
KY=NQ(X,1,1)
MY=NQ(M, 1, 1)

DO 135 I1=2,KY

DO 140 Iz2=2,MY

~N

C -215-

J1=IND(NQ(K,I1,2),NQ(M,I2,2),NNX)
~ J2=NQ(K,I1, 1)+NQ(M,Iz, 1)+H(J1)+WAIT
IF(Je .GE. T(L)) GO TO 140

T(L)=J2
JB=NQ(X,I1,2)
: JC=NQ(M, I2,2)
140 CONTINUE
135 CONTINUE
TOT=TOT+T(L)*G(L)
LZ=IND(JC,JC,NNX)
IF(JB .EQ. JC) FL(LZ)=FL(LZ)+G(L)
IF(JB .EQ. JC) GO TO 130
JZ=JC
= IZ=JC
10 .KZ=JZ
JZ2=IZ
IZ=IND(JB,JZ ,NNX)
IZ=D(IZ)
LZ=IND(JZ,JZ,NNX)
IF(NX(IZ,2).EQ.NX(JZ,2) .AND. NX(JZ,2).EQ.NX(KZ,2))
XFL(LZ)=FL(LZ)+G(L)
LZ=IND(IZ,JZ,NNX)
FL(LZ)=FL(LZ)+G(L)
IF(IZ .NE. JB) GO TO 10
LZ=IND(IZ,IZ,NNX)
IF(NX(IZ,2) .EQ. NX(JZ,2)) FL(LZ)=FL(LZ)+G(L)
130 CONTINUE
125 CONTINUE
C
C ... COMPUTING THE LENGTHS OF THE PATHS WITH MINIMUM CHANGES
C
r MWAIT=2##30
CALL SHOPAT(N,C,NL,NV,NVX,MWAIT,NNX,H,NX,D,NQ)
NNX2=NNX*¥NNX
DO 15 I=1,NNX2
J=H(I)/MWAIT
15 H(I)=H(I)-J*MWAIT+J*¥WAIT
{ DO 225 K=1,N
' DO 230 M=1,N
IF(X .EQ. M) GO TO 230
L=IND(K,M,N)
MTL=2%%3Y
KY=NQ(K,1,1)
L MY=NQ(M, 1,1)
DO 235 I1=2,KY
DO 240 I2=2,MY
J1=IND(NQ(K,It,2),NQ(M,I2,2),NNX)
J2=NQ(K,I1,1)+NQ(M,I2,1)+H(J1)+WAIT
IF(J2 .GE. MTL) GO TO 240
MTL=J2
JB=NQ(K,I1,2)
JC=NQ(M,I2,2)
240 CONTINUE
235 CONTINUE
TOT=TOT+MTL*G(L)
- LZ=IND(JC,JC,NNX)
' IF(JB .EQ. JC) FL(LZ)=FL(LZ)+G(L)

P

.

o

230

225

-216=-

IF(JB .EQ. JC) GO TO 230

JZ=JC

1Z=JC

KZ=JZ

JZ=17

IZ=IND(JB,JZ,1NX)

I7=D(IZ)

LZ=IND(JZ,JZ,NNX)

IF(NX(IZ,2).EQ.NX(JZ,2) .AND., NX(JZ,2).EQ.NX(KZ,2))

XFL(LZ)=FL(LZ)+G(L)

LZ=IND(IZ,JZ,NNX)
FL(LZ)=FL(LZ)+G(L)
IF(IZ .NE, JB) GO TO 20
LZ=IND(IZ,IZ,NNX)
IF(NX(IZ,2) .EQ. NX(JZ,2)) FL(LZ)=FL(LZ)+G(L)
CONTINUE

CONTINUE

TOT=TOT/2.

DO 25 I=1,NNX2
FL(I)=FL(I)/2.

RETURN

END

S

b)

-217-

Arc capacities or non constant arc costs:

Given the network G = (X,F) and the set of lines L. In
order to include waiting costs at vertices,the network
G has to be expanded in the following way (which is
similar to Step 2 of the algorithm of chapter 7.2.):

Let the new network be B=(Z,K), For each xieX define a
vertex zisz, if x4 belongs to line jeL. The set of all
Zs 3 being Z. Let K consist of the following arcs:

arc (Zij’zlj)’ if arc (xi,xl)eF with the same arc costs.

arc (zij’z'l)’ if people may change from line j to line 1

i
at vertex X;. The arc cost is the waiting time

or some value greater than the waiting time.

Because each arc of G appears now more than once in B,
arc capacities dil in G are transferred into capacity

constraints over the sum of flows, being

§ arcflow (zij,zlj)s a;q
No specific algorithm is known for this problem, but the
general simplex-algorithm can be used in case of normative

assignment,

If the arc costs depend on the flow in G, this is transferred
in B into a problem where the arc costs on arc (zij’zlj)
depend on the sum of Flows Z ancflow(zij,zlj). Again no

specific algorithm is known,]but an algorithm for solving
optimization problems with linear constraints and a convex
objective could be used,in principle,for the normative
assignment (although only on small problems). For larger
normative assignment problems the algorithm of chapter 3.3.2.

can be adapted., Again the assignment to lines will not be

-218-

unique. For the descriptive assignment problem no algorithm

exists so far.

¢) Line capacities or non constant line-arc costs:

In this case each arc in B=(Z,K) has his own capacity or
cost and the algorithms of chapter 3, can be applied
directly. In case of the descriptive assignment no algorithm

exists so far.
Concluding this chapter,we remark that descriptive assignment
can only be found for the simplest model yet. Which of the

models fit best to reality can hardly be answered in general.

Route planning

In the last two chapters we assumed that the set of lines L is
given. However, as this set of lines only has to satisfy the
feasibility conditions (i.e. all vertices of the network G=(X,A)
have to belong to at least one line lelL and the network G = (X,F
built by the set of lines L is strongly connected),a number of

feasible sets of lines will exist.

Thus, one may introduce some objective according to which the
best set of lines is chosen. Generally spoken, there are two
meaningful approaches to the problem of choosing a suitable set
of lines: Either the service level offered to the passengers 1is
given and the objective is t6 minimize the operating costs or,
vice versa, the operating costs are restricted and the service
level is to be maximized., Here we shall concentrate on the
latter problem, because it seems to be the usual way in practice
to deal with the problem. Service level can easily be measured
by the total transportation time of the passengers as found by a
suitable descriptive assignment: service level is good if

total transportation time is low. For measuring the

operating costs,we shall adapt the approach suggested by Silman

et al, (1974), namely the number of buses/or trams used at the

m

i)

e

™

-219-

same time to travel along the lines. This 1is suggestive, be-
cause the fixed and variable costs of all the buses and/or
trams together represent the largest part of the total
operating costs (of course the first costs not only include
the expenditure for buying a vehicle,but also the salaries
for the drivers).For-a given set of lines the number of buses
(trams) determines the frequencies and thus the waiting time.
Therefore, the more buses used on a given set of lines,

the less the total transportation time will be,

Our problem can now be formulated as follows:

Given the transportation network G=(X,A), where X represents

urban areas (or stops) that have to be served and A represents
possible streets (or rails) that can be used. To each arc in

A the transportation time on this arc is given. The transportation
demand matrix T (i,e. the number of passengers) from vertex

x; to x5 (xi,xjeX) is assumed to be known and constant. The

number of buses or trams is restricted by some number N. Then

a feasible set of lines L is to be found,such that the total
transportation time according to some descriptive assignment

(with waiting times defined by the number of buses N) is mini=-

mized.

Note that this model does not include the possibility that not
every vehicle can use all arcs in A. This can occur if the
transportation system consists of both, trams running along
rails and buses running along streets. Then the model only
applies if the set of streets and the set of rails are the
same (i.e. every vertex can be served by bus and by tram) or
if the set of bus lines is chosen independently from the

set of tram lines.

Complex as the stated problem is, only a heuristic algorithm
seems appropriate. The algorithm we present here completely
differs from those presented by Lampkin et al. (1367), Silman
et al.(1974) and Hoidn (1977), Its advantages to the already

published approaches are:

-220-

- The algorithm is independent of the particular descriptive
assignment procedure chosen. Any descriptive assignment

algorithm may be used.

- The algorithm proceeds to find first a feasible set of lines
and then iteratively changes this set while reducing the
total transportation time in every step. Therefore the
algorithm produces a number of feasible sets of lines to be

compared by the transportation planner.

- The transportation planner can decide if the set of terminal
vertices chosen for initialization of the algorithm is fixed

or may be altered by the algorithm,

- Ring lines (i.e. lines that form a cycle) can be considered

by the algorithm as well,

- Existing lines can easily be taken into acount.

As the size of the network G=(X,A) determines the size of the
problem and therefore the costs (especially the computer time)
to find the solution, the construction of this network is of
great importance. From the view of minimizing the solution

costs it should be as small as possible, from the view of the
transportation planner who wants a detailed answer, it should
be as large as possible. In practice, not every stop that should
be served will be included into the set of vertices X. Rather,
the urban region should be divided into areas, each of which
should be served by at least one line, The size of these areas
usually varies and will be larger where the population density
is low (i.e. in suburbian areas) and smaller nearby the center
of the city. As already mentioned in chapter 7.1.,the assumption
that the demands T=(tij) are constant will only remain true
~over a rather short time period. The only way of handling ex-
pected changes in T is by performing sensitivity analysis and

to find the actual demand T every year., In fact, it is one of
the main handicaps of every urban public transportation system

that estimating T is rather expensive and therefore not done

™

Y

-221-

frequently. So the recent changes in transportation demands
cannot be considered and individual car traffic becomes more
and more attractive. Another simplification of the model is

the fact that T is assumed constant during day. In reality,

the demand is quite different at every hour of the day. To

deal with this problem an average demand has to be used or

the maximum demand that occurs. during rush-hours. It's no

use to find optimal sets of lines for different hours of the
day, because the organizational problems would become enourmous
and also no passenger would be interested in having different
lines at different times. Finally, the model does not deal with
varying travel and waiting times, which also change during

time because of congestions due to individual car traffic.Thus
the transportation times along arcs are supposed to be an
average transportation time,

As already mentioned the algorithm is divided into two parts.
First a good feasible, initial set of tours is created and
second, the set of lines is changed to reduce total transportation
time. To find such a good set of lines,only heuristic rules can
apply 'because the quality of a set of lines cannot be measured
by descriptive assignment as long as this set is not feasible.
Let us denote the total travel time found by a descriptive
assignment for a given network G=(X,A), transportation demand T
and number of buses N with D(L) thus being a function of the set
of lines.L. In order to run the initialization algorithm, some
additional data is required, namely

= an even number of vertices in X to become terminals of some
line. Each vertex that has to remain a terminal is marked as
fixed terminal, while the other terminals may become non-
terminals in the course of the algorithm.

- for each ring line that should be introduced,three vertices
that should belong to a particular ring line, Again these
vertices may be permanent or temporary members of the ring
line. Preferably, these three vertices should approximately mark
the size of the cycle, as shown in Fig.7.3.a). A choice like

the one shown in Fig.7.3. b) should be avoided.

-222-

Compute the shortest paths between all pairs of vertices in X,

Let gij denote the length of the shortest path between Xy and

X5

Let YeX denote the set of vertices which are not yet assigned

to a line lieL. Let vij denote the number of vertices

which belong to the shortest path between Xy and Xj’ Let Q be

the set of terminals not yet used.lLet G=(X,A) be the given network.

Step 2:

In order to create lines that combine terminals alcng shortest
paths and that include as many vertices as possible (to avoid

line changing),choose xi,ijQ such that

Vij = max vyiq oo (7.4)

xk,xleQ

o

=223~

If more than one such pair exists choose the one with
minimum distance 855 Mark the shortest path from x, to
xj as a new line lelL and delete all vertices belonging to
1l from the set Y and delete Xs and xj from Q.

Repeat Step 2 until Q=0,

Step 3:

—~— g " wm

Combine the three vertices belonging to the same ring line
by a cycle that is equal to the shortest path between every
pair of the three vertices. Mark this cycle as a new line
lel and delete all vertices that belong to 1 from Y. Repeat
Step 3 for all ring lines given.

§tgg_i:

If ¥ is empty, go to Step 6.
Otherwise go to Step 5.

Step_S

Compute

c =iT§?k(gij+gik-gjk) (7.5)
where xieL, xj,xkeleL
and arc (i,j), arc (j,k), arc(k,i)eA.,
If a feasible (and therefore an optimal) solution of (7.5)
exists, include Xs into line 1 between vertices xj and X
delete X4 from ¥ and go to Step 4.
If no feasible solution to (7.5) exists, set Q=Y and find
a new line as stated in Step 1 in case Y contains at least
two vertices. If Y contains only one vertex, create a new
line between this vertex and the nearest vertex belonging to
some line lel.
Delete the vertices now belonging to a line from Y and go

to Step 4.

-224-

Step_6:

(X,F) created by the set of lines
L is strongly conncted. If it is, then a feasible set of

Prove, if the network G

lines L has been found. Stop.

If not, identify the set of vertices VicX (g/vizx, Vir\Vj=®),
the members of one set being mutually reachible . Set the
members of some V; into the set Y and eombine V. with X=v.
in the same way as stated in Step 5.

Repeat Step 6 until G is strongly connected.

Note that the algorithm never fails to find a feasible set
of lines, but eventually creates lines by itself with terminals

not stated in Q.

0

ot
1!

OO0

20
10

17

16
15

oieNoNoleNoNoNoNoNoNeNoRo koo NoRo o Ko e X Ro RO X®

L]

. e
.

s 00

.
.
* L]

.
.

.
.

LN

=225~

*%% PROGRAM FOR FINDING A "GOOD" AND FEASIBLE SET COF

. *%% [TNES FOR AN URBAN PUBLIC TRANSPORTATION SYSTEM

H¥%

.. INPUT

N NUMBER OF VERTICES

c(L) TRAVEL TIME ON ARC(I,J), L=IND(I,J,N). C(L)=0 DENOTES
THAT THIS ARC DOES NOT EXIST. IT IS ASSUMED THAT
C(L)=C(M), M=IND(J,I,N). IT IS FURTHER ASSUMED THAT EVERY
EXISTING ARC(I,J) IS THE SHORTEST PATH BETWEEN VERTICES

I AND J.
8) NUMBER OF PREFIXED TERMINALS. QX MUST BE EVEN.
Q(I) TERMINAL VERTICES, I=1,..,QX<N
RX NUMBER COF WANTED RING LINES (CYCLES)

. R(I,X) R(I,1),..,R(I,3) DENOTE 3 VERTICES BELONGING TO CYCLE I,

I=1,..,RX, K=1,..,3
QUTPUT
NL NUMBER OF LINES

. NV(I) NUMBER OF VERTICES BELONGING TO LINE I, I=1,..,NL

NVX(I,J) J-TH VERTEX OF LINE I, J=t,..,NV(I), I=t,..,NL

SUBROUTINE FEASIB(N,C,QX,Q,RX,R,NL,NV,NVX)

INTEGER N,C(1),QX,Q(1),RX,R(10,3),NL,NV(1),NVX(30,30)
INTEGER Y(40),V(1600),VV(1600),G(1600),D(1600)
LOGICAL LOG,ICAL

STEP 1

N2=N*N

DO 20 I=1,N2
G(I)=C(I)

V(I)=0

IF(C(I) .GT. 0) V(I)=1
DO 10 I=1,N

Y(I)=I

CALL SPII(N,G,D,LOG)
N1=N-1

DO 15 I=1,N?

I1=I+1

DO 16 J=I1,N
L=IND(I,J,N)

V(L)=1

IB=J

IB=IND(I,IB,N)
IB=D(IB)

V(L)=V(L)+1

IF(IB .NE. I) GO TO 17
L1=zIND(J,I,N)
V(L1)=V{(L)

CONTINUE

NL=0

NQX=QX

LOG=.FALSE.

30
25

40

w OO0

35

-226-

ICAL=.FALSE.

. STEP 2

IF(NCQY .LE. 1) GO TC 3
M=0

MG=o¥#3y

MQX=0X-1

DO 25 I=1,MQX

I1=I+1

IA=Q(I)

IF(IA .EQ. 0) GO TO &5
DO 30 J=I1,QX

JA=Q(J)

IF(JA .EQ. 0) GO TO 30
L=IND(IA,JA,N)

IF(V(L) .LT. M) GO TO 30
IF(V(L).EQ.M .AND. MG.LE.G(L)) GO TO 30
MG=G(L)

M=V(L)

IB=I

JB=d

CONTINUE

CONTINUE

TA=Q(IB)

Q(IB)=0

JA=Q(JB)

Q(JB)=0

NOQX=NQX-2

NL=NL+1

NV(NL)=1

NVX(NL,1)=JA

I=JA

I=IND(IA,I,N)

I=D(I)

NV(NL)=NV(NL)+1
NVX(NL,NV(NL))=I

IF(I .NE. IA) GO TO 40
DO 70 I=1,NV(NL)
J=NVX(NL,I)

Y(J)=0

IF(LOG) GO TO 4

GO TO 2

. STEP 3

IF(RX .EQ. 0) GO TO 4
DO 80 I=1,RX
NL=NL+1

NV{NL)=1

NVX(NL, 1)=R(I,1)
Y(R(I,1))=0

ITA=?

JJA=0

ITA=ITA+?

JJA=JJA+1

TF(IIA .GT. 3) IIA=?

0)

h

‘/‘

0000
L]
L]

Ne)

5

naaoo

120

-227-

IA=R(I,IIA)

JA=R(I,JJAa)

IB=JA

IB=IND(IA,IB,N)
IB=D(IB)
NV{NL)=NV(NL)+1
NVX(NL,NV(NL))=IB
Y(IB)=0

IF(IB .NE. TA) GO TO 90
IF(IIA .NE. 1) GO TO 85
CONTINUE

. STEP 4

IF(ICAL) GO TO 6

DO 95 I=1,N

IF(Y(I) .GT. 0) GO TO 5
CONTINUE

GO TO 6

. STEP 5

MC=2%#34

DO 100 I=1,N

IF(Y(I) .EQ. 0) GO TC 100
DO 105 JJ=1,N

IF(Y(JJ) .NE. 0) GO TO 105
L=IND(I,JJ,N)

IF(C(L) .EQ. 0) GO TO 105
MG=G(L)

JA=JJ

DO 110 J=1,NL

DO 115 K=1,NV(J)
IF(NVX(J,K) .NE, JA) GO TO 115
IF(K .EQ. 1) GO TO 120
K1=NVX(J,K=-1)
L=IND(I,K1,N)

IF(C(L) .EQ. 0) GO TO 120
LA=IND(K1,JA,N)
LC=MG+G(L)~G(LA)

IF(MC .LE. LC) GO TO 120
MC=1C

MX=K~1

MY=I

MZ=J

IF(K .EQ. NV(J)) GO TO 110
K1=NVX(J,K+1)
L=IND(I,K1,N)

IF(C(L) .EQ. 0) GO TO 110
LA=IND(X1,JA,N)
LC=MG+G(L)-G(LA)

IF(MC .LE. LC) GO TO 110
MC=LC '
MX=K

MY=I

MZ=J

GO TO 110

15
110
105
100

130

125

136

145

140

i3

—~ OO0

CONTINUE
CONTINUE
CONTINUE
CONTINUE

-228-

IF(MC .EQ. 2%*34) GO TO 125

Y(MY)=0

NV(MZ)=NV(MZ)+1

K=MX+2

DO 130 I=K,NV(MZ)
J=NV(MZ)-I+K
NVX(MZ,J)=NVX(MZ,J=1)
NVX(MZ,MX+1)=MY

GO TO 4

NQX=0

DO 135 I=1,N

IF(Y(I) .EQ. 0) GO TO 135
NQX=NQX+1

QNQX)=I

CONTINUE

IF(ICAL) GO TO 135
QX=NQX

L.0G=.TRUE.

IF(QX .GE. 2) GO TC 2
M1=0%%3y

Mo=2%%34

M1=0

DO 140 I=1,N

IF(Y(I) .NE. 0) GO TO 140
L=IND(I,Q(NQX),N)

IF(C(L) .EQ. 0) GO TO 140
IF(C(L) .GE. M1) GO TO 145
M2=M1

M1=C(L)

IM2=IM1

IM1=I

GO TO 140

IF(C(L) .GE. M2) GO TO 140
M2=C(L)

IM2=I

CONTINUE

IF(IM1 .NE. 0) GO TO 141
NOX=NWK=1

GO TO 136

NL=NL+1

NV(NL)=2

NVX(NL, 1)=IM1
NVX(NL,2)=Q(NQX)

IF(IM2 .EQ. 0) GO TO 6
NV(NL)=3

NVX(NL, 3)=IM2

. STEP 6

DO 149 I=1,N2
V(I)=2%%30

DO 150 I=1,NL
DO 155 J=2,NV(I)

™

[}

155
150

160
165

170

-229-

L=IND(NVX(I,J),NVX(I,J=1),N)
v(L)=1
L=IND(NVX(I,J-1),NVX(I,J),N)
V(L)=1

CONTINUE

CALL SPII(N,V,VV,LOG)

DO 160 I=2,N

IF(V(I) .LT. 2%*30) GO TO 160
GO TO 165

CONTINUE

RETURN

Y(1)=1

DO 170 I=2,N

Y(I)=0

IF(V(I) .LT., 2%*30) Y(I)=I
CONTINUE

ICAL=.TRUE.

GO TC 5

END

-230~-

Of course, this algorithm can also be used if part of
the lines are already given, in case the transportation
system already exists and should be expanded only, in-
cluding new areas of the city. One only has to exclude
all vertices belonging to existing lines from Y in Step 1

and store all existing lines in L.

Having now found a feasible set of lines,another algorithm
is applied to improve this set to minimize the total
transportation time. On this purpose not only the trans-
portation time along an arc is needed but also the waiting
time for changing. In fact, as long as the bus scheduling
for each line has not been done, waiting times are not
really defined. We therefore make the assumption that the buses
(N in total) are assigned to each line,such that bus fre-
quencies on each line are the same and that the average
waiting time is half the time interval between two buses on
the same line. Let r(L) be the sum of the travel times over
all lines lel, then

2, r(L)

1 = bus time interval = ——

bus frequency

(7.6.)
walting time = Eé&l

Unfortunately, the waiting time as given in (7,6) has two
shortcomings. The first being the fact that because only
an integer number of buses can be assigned to each line,
the frequency on each line cannot be exactly the same,
Secondly, if a person can use two lines, because both travel
to the same vertex along the same arcs, then the waiting
time will of course be shorter, unless buses of different
lines appear at the same time. To overcome these problems
would involve a much more complicated descriptive assignment
procedure than the one given in chapter 7.3.,, therefore we
shall use the waiting time of (7.86) as an approximation of

the real one,

™

o

0

~

-231-

The idea of the following algorithm now is to search for
changes of lines - such that the set of lines remains
feasible - according to heuristic rules that indicate a
possible improvement of the descriptive assignment. If a
promising change is found, it is performed and the des-
criptive assignment computed for this new set of lines.
If this set of lines turns out to be better than the old
one,it is accepted and the search procedure starts again
until no improvement can be found any more. The possible

changes we are considering are

- New combination of terminals by exchanging parts of lines

at an intersection vertex, 1i.e.

) line 1 line 2
line 1 line 2

line 1 line 2 line 2 line 1

old v new

This exchange is performed to reduce the number of people

who have to change lines,

- Including a vertex that is close to a line, if transportation

demand between this vertex and the vertices on the line is
high.

- Excluding a vertex from a line that is already served
by another line, if transportation demand between this
vertex and the other vertices on the line is low, in order
to reduce the length of this line (which results in lower

waiting times because r(L) is reduced).

- Combining one line with part of another line.

-232-

Algorithm for improving a feasible set of lines:

Compute the waiting time r(L)/N, where L is the new set of lines.
Find descriptive assignment with this waiting time - resulting
in the total transportation time D(L).
If D(L)<D(L) thenaccept the new set of lines L, set L=zL and
go to Step 3.
If D(L)2 D(L) and I=5, Stop.
D(T) and I<5, go to Step (I+1).

Set I=3,

Consider all vertices, where people can change lines (the set I
as defined in chapter 7.2).

Let vertex ieI belong to line 1 and k (1l,kel). Let i, and ik
denote vertex i on line 1 and on line k respectively. Let f_

be the flow from il to ik and fb the flow from ik to il. Finally
let fl
not change line at i) and let fk be the flow through vertex i

be the flow through vertex i that remains on line 1 (does

that remains on line k. The situation is pictured in Fig.7.W4.

flow f flow f

line 1 ’ line k

Fig.7.u4

m

-233=-

Among all vertices in I find the one for which
£, + £y y £, - fi. > 0. (7.7)

If more than one such vertex éxists, choose the one for
which (7.7) is maximum.

If no vertex in I exists for which (7.7) holds, go to Step U4,
Combine the two lines 1 and k the way shown in Fig.7.5. Out
of the two possibilities given in Fig,7.5b) and Fig.7.5¢)
choose the one with smaller objective value of the descriptive
asssignment DCL). Go to Step 2.

line 1 line k 1 k 1
/////,<::E;;tex i /;ji:>x<:::// ,
line k line 1 1 k ' k X
a) original b) c)
Fig.7.5
Step_4:
Set I=u,

For each pair of vertices xi,xjex that do not belong to the
same line let bij be the difference of the length of line 1
to which xj belongs, if Xy is included into line 1 or if it
is not (the way Xs is included is stated in Step 5 of the
algorithm for finding a feasible set of lines), Let t% be the
amount of people travelling between X and all vertices on
line 1,

Find vertices xi,xjsX for which

c = min (ti/b..). (7.8)

x;£leL 1]
xjeleL

-234-

If no pair of vertices exists such that xj can be included
into same line 1 go to Step 5. If (7.8) is optimal for
vertex x_ to be included into line h, include X and go

to Step 2.

Step_5:

Set I=5,

Find the set of vertices P that belong to at least two lines
and that do not lie on the shortest path in G between the

two neighbour vertices of the vertex on line 1. If P is empty,
Stop - no further improvement can be made.

If P is not empty find the vertex x in P for which the flow

of people changing lines at vertex x plus the flow of people
between x and the other vertices of line L (to which x belongs)

is minimum,., Delete x from line 1 and go to Step 2.

£n

&
AEi

OO0 0000000000000

-235=-

.. ¥%% PROGRAM FOR IMPROVING A FEASIBLE SET OF BUS (TRAM) LINES
®R% :

. INPUT

Y NUMBER OF VERTICES
.. C(L) TRAVEL TIME ON ARC(I,J), L=IND(I,J,N). C(L) DENOTES

THAT THIS ARC DOES NOT EXIST. IT ASSUMED THAT C(L)=C(M),
M=IND(J,I,N), AND THAT EVERY ARC(I,J) IS THE SHORTEST
PATH BETWEEN VERTEX I AND J.

... NL NUMBER OF FEASIBLE LINES
... NV(I) NUMBER OF VERTICES BELONGING TO LINE I, I=1,..,NL
... NVX(I,J) J-TH VERTEX OF LINE I, J=1,..,NV(I), I=1,..,NL

G(L) NUMBER OF PEOPLE WHO WANT TO TRAVEL FROM VERTEX I TO J,
L=IND(I,J,N). IT IS ASSUMED THAT G(L)=G(M), M=IND(J,I,N).

. NBUS NUMBER OF OPERATING BUSES (TRAMS)
. OUTPUT

. TOTO TOTAL TRANSPORTATION TIME OF ALL PASSENGERS

WAITO AVERAGE TIME WAITING ON A BUS (TRAM)

.. NLO NUMBER OF OPTIMAL LINES
. NVO(I) NUMBER OF VERTICES BELONGING TO LINE I, I=t%,..,NLO

NVXO(I,J) J-TH VERTEX OF LINE I, J=1,..,NVO(I), I=%,..,NLO

. T(L) LENGTH OF SHORTEST PATH BETWEEN VERTICES I AND J,
L=IND(I,J,N) USING THE OPTIMAL LINES INCLUDING THE WAITING

TIMES

o

SUBROUTINE BUSOPT(N,C,NL,NV,NVX,G,NBUS, TOTO,WAITO,NLO,NVO,NVXO,T)
INTEGER N,C(1),NL,NV(1),NVX(30,30),G(1),NBUS,TOT,WAIT,NLO,NVO(1)
INTEGER NVXO(30,30),T(1),FL(900),NX(30,2),NNX,TOTO,WAITO,U(30,4)

e

o

PO

15
10

30
25

- OO0

. STEP 1

TOTO=2%%34
IIX=2

. STEP 2

LENG=0

DO 10 I=1,NL

DO 15 J=2,NV(I)
L=IND(NVX(I,J-1),NVX(I,J),N)
LENG=LENG+C(L)

CONTINUE

WAIT=LENG/NBUS+1

CALL DESCRI(N,C,NL,NV,NVX,WAIT,G,TOT,FL,NX,NNX,T)
IF(TOT .GE. TOTO) GO TO 20

CALL PBUSOP(NL,NV,NVX,TOT,WAIT,T,N)
TOTO=TOT

NLO=NL

DO 25 I=1,NL

NVO(I)=NV(I)

DO 30 J=1,NVO(I)

NVXO(I,J)=NVX(I,J)

CONTINUE

w =
U O

wOOO

50
45

55
60

[ONO RS Ne)
|

70

QOO0

-236-

WAITO=WAIT

GO TO 3

CALL DESCRI(N,C,NLO,NVO,NVXO,WAITO,G,TCTO,FL,NX,NNX,T)
IF(IIX .EQ. 5) RETURN
WAIT=WAITO

IIX=IIX+1

NL=NLO

DO 35 I=1,NL
NV(I)=NVO(I)

DO 40 J=1,NV(I)
NVX(I,J)=NVXO(I,J)
CONTINCE

Go 10 (1,2,3,4,5), IIX

. STEP 3

MC=0
IIX=3

... FIND PAIR OF VERTICES BETWEEN WHICH THE NUMBER OF PEOPLE
.. WHO CHANGE LINES MINUS THE NUMBER OF PEOPLE WHO DO NOT IS
. MAXIMUM

NNX1T=NN¥-1

DO 45 I=1,NNX1

NNX2=I+1

L1=IND(I,I,NNX)

DO 50 J=NNX2,NNX

IF(NX(I,1) .NE. NX(J,1)) GO TO 50
L2=IND(J,dJ,NNX)

L3=IND(I,J,NNX)

L4=IND(J,I,NNX)
TA=FL(L3)+FL(L4)-FL(L1)-FL(L2)
IF(MC .GE. IA) GO TO 50

MC=IA

IX=I1

JX=J

CONTINUE

CONTINUE

IF(MC .EQ. 0) GO TO &4
LN1=NX(IX,2)

LN2=NX(JX,2)

DO 55 I=1,NV(LN1)

IF(NVX(LN1,I) .NE. NX(IX,1)) GO TO 55
I1=I

GO TO 60

CONTINUE

DO 65 I=1,NV(LN2)

IF(NVX(LN2,I) .NE. NX(IX,1)) GO TO 65
Ie=I

GO TO 70

CONTINUE

. COMBINE FIRST PART OF FIRST LINE WITH SECOND PART OF SECOND LINE

NU1=NV(LN1)
NU2=NV(LN2)

S

OO0w

73

90
85

100
95

110
105

115

120
125

Q00

-237~-

DO 72 I=1,NU1
U(I,1)=NVX(LN1,I)

DO 73 I=1,NUC
U(T,2)=NVX(LN2,I)
I1%=I1+1

I2X=I2+1
NV(LN1)=I14NU2-12
NV(LN2)=I2+NU1-I1

IF(I1X .GT. NU?1) GO TO 85
DO 90 I=I1X,NU1?
J=I-I1X+I2X
NVX(LN2,J)=U(I, 1)

IF(I2X .GT. NU2) GO TO 75
DO 80 I=I2X,Nu2
J=I-I2X+I1X
NVX(LN1,J)=U(I,2)

CALL DESCRI(N,C,NL,NV,NVX,WAIT,G,LT1,FL,NX,NNX,T)
NU3=NV(LN1) -
NU4=NV(LN2)

DO 92 I=1,NU3
U(I,3)=NVX(LN1,I)

DO 93 I=1,NU4
U(I,u)=NVX(LN2,I)

. COMBINE FIRST PART OF FIRST LINE WITH FIRST PART OF SECOND LINE

NV(IN1)=I1+I2-
NV(LN2)=NU1-I1+1+NU2-I2
IF(I2 .EQ. 1) GO TO 95
12Y=12-1

DO 100 I=1,I2Y

J=I1+12-1
NVX(LN1,J)=U(I,2)

IF(I1 .EQ. NU1) GO TO 105
DO 110 I=I1X,NU1
J=NU1-I+1
NVX(LNZ,J)=U(I,T)

DO 115 I=I2,NU2
J=I-I2+NU1-11+1
NVX(LN2,J)=U(I,2)

CALL DESCRI(N,C,NL,NV,NVX,WAIT,G,LT2,FL,NX,NNX,T)
IF(LT2 .LE. LT1) GO TO 2
NV(LN1)=NU3

NV(LN2)=NU4

DO 120 I=1,NU3
NVX(LN1,I)=U(I,3)

DO 125 I=1,NU4
NVX(LNZ,I)=U(I,4)

GO TO 2

... STEP 4

150

155

145
140
135
130

160

G NONON®!

180
175

185

-238-

IF(I .EQ. X) GO TO 140

DO 145 L=1,NV(K)
L1=IND(NVX(I,J-1),NVX(X,L),N)
KD=C(L1)

IF(C(L?1) .EO. 0) GO TO 15
L1=IND(NVX(I,J),NVK(K,L),N)
KD=C(L1)+KD

IF(C(L1) .EQ. 0) GO TO 145
DO 150 M=1,NV(I)
IF(NVX(K,L) .EQ. NVX{(I,M)) GO TO 145
CONTINUE
L1=IND(MVX(I,J=1),NVX(I,J),N)
KD=KD-C(L1)

KB=0

DO 155 M=1,NV(I)
L1=IND(NVX(I,M) ,NVX(K,L),N)
KB=KB+G(L1)

BK=KB/FLOAT (XD)

IF(CM ,GE. BK) GO TO 145
CM=BK

IF=I

JE=dJ

KF=K

LF=L

CONTINUE

CONTINUE

CONTINUE

CONTINUE

IF(M .EQ. 0) GO TO 5

DO 160 I=JF,NV(IF)
J=NV(IF)+1+JF-1
NVX(IF,J)=NVX(IF,J-1)
NV({IF)=NV(IF)+1
NVX(IF,JF)=NVX(KF,LF)

GO TO 2

... STEP 5

CM=2%% 34

DO 165 I=1,NL

IF(NV(I) .LT. 3) GO TO 165

DO 170 J=3,NV(I)
L=IND(NVX(I,J-2),NVX(I,J),N)
KD=-C(L)

IF(Cc(L) .EQ. 0) GO TO 170

DO 175 K=1,NL

IF(I .EQ. K) GO TO 175

DO 180 L=1,NV(K)

IF(NVX(K,L) .EQ. NVX(I,J-1)) GO TC 185
CONTINUE

CONTINUE

GO TO 170
L=IND(NVX(I,J=-2),NVX(I,J=1),N)
KD=KD+C(L)
L=IND(NVX(I,J) , NVX(I,J-1),N)
KD=KD+C(L)

KB=0

™

(>

-

Y

190

200

205

195

170
165

-238-

DO 190 K=1,NV(I)
L=IND(NVX(I,K),NVX(I,J-1),N)
KB=KB+2¥G(L)

K1=0

K2=0

DO 195 K=1,NNX
IF(NX(K,1) .NE. NVX(I,J-1)) GO TO 195
IF(NX(X,2) .NE. I) GO TO 200
K1=K

IF(K2 .EQ. 0) GO TO 195
GO TO 205

K2=K

IF(K? .EQ. 0) GO TO 195
L=IND(K1,K2,NNX)
KB=KB+FL(L)
L=IND(K2,K1,NNX)
KB=KB+FL(L)

CONTINUE

BK=KB/FLOAT(XD)

IF(M .LE. BK) GO TO 170
CM=BK

IF=1

JF=d

CONTINUE

CONTINUE

IF(CM .EQ. 2%¥34) RETURN
DO 210 I=JF,NV(IF)
NVX(IF,I-1)=NVX(IF,I)
NV{(IF)=NV(IF)-1

GO TO 2

END

-240-

Having finally found a good set of lines there is one
problem left. As already said in chapter 7.1., public and
individual transportation facilities are in a competitive
situation,especially in urban areas. Assuming that at least
some people will make their transportation mode decision
depending on the total travel time, it is meaningful to
compare the travel time between each pair of vertices of

the public transportation network and the equivalent pair

of vertices of the road network for cars. If it turns out
that for two vertices with high demand between them the
travel time on the public transportation system is much
greater, because no direct line is connecting the two Qertices,
then the transportation planner, who wants to convince people
rather to use public transportation facilities, should con-
sider the possibility of including a direct line between such
vertices. So far, no algorithm exists to perform such con-

siderations automatically.

Although for the purpose of the algorithm we assumed that on
each line the buses run in the same frequency, this might
not be the best choice. Thus, finding an optimal scheduling
for the buses still remains to be solved. This is not a
problem of network optimization and therefore is beyond the
scope of this book. The interested reader should look at
Friedman (1976) and Uebe (1970).

Exercise

Given a set of bus stations

X = (A,B,C,D,E,F,G,H,I,J,K,L,M)

These bus stations are served by 3 bus lines in the following
way:

bus line 1: A - B = F = J =M

bus line 2: B-E - I -J -H-D~-C - B

bus line 3;: K= I « G = D--H - J = L

h

m

o,

-241-

O— O D
3 (1
E# H
1 2
I J
K d/ﬁf- 2 2¥?\§9
M

The numbers on the arcs denote travel time in minutes.
The waiting time for a bus, if a change is necessary,
is 3 minutes, Find the shortest paths between all pairs

of bus stations.

8.

-242-

References

W.Ahrens (1974), Die l8sung eines nichtlinearen In-
vestitionsproblems mit Hilfe bindrer Optimierung,
Zeitschrift fiir OR 18, B131-B1lu47,

H.Ajzen & L.Rokeach (1974), Routenwahl in Liniennetzen,
Zeitschrift fiir OR 18, Blol-Bl2o.

E.Beltrami (1976), Models for public systems analysis,
Academic Press,.

& L.Bodin (1974), Networks and vehicle routing
for municipal waste collection, Network 4, 65-9u

J.Byrd (1975), OR models for public administration,
Lexington Books

R,Cembrovicz (1972), Ein Modell zur Investitionsoptimierung
beim Aufbau von regionalen Abwasserbeseitigungssystemen,
Wasser und Abwasser in Forschung und Praxis 5, 227-241l

C.Chriqui & P.Robillard (19875), Common bus lines, Trans=-
portation Science 9, 115 -121

-

N.Christofides (1974), Optimal expansion of an existing
network, Math.,Progr.6, 197-211

(1375), Graph theory an algorithm approach,

Academic Press

A.Drake, R.Keeney & P.Morse (1372), Analysis of public systems,
MIT Press

M.Florian, S.Nguyen & J.Ferland (1975), On the combined distri-
- . 'bution - assignment of traffic, Transportation Science 9,
43-53

M.Florian (1978), Traffic equilibrium methods, Lecture Notes
in Economics and Mathematical System 118, Springer Verlag

M.Friedman (1976), A mathematical programming model for optimal
scheduling of buses departures under deterministic condi=-
tions, Transp.Res.lo, 83-90.

S.Gass & R,Sisson (1975), A guide to models in governmental
planning and operations, Sauger Books

B,Golden & T.Magnanti (1977), Deterministic network optimization:
a bibliography, Networks 7, 149-183,

£

{r"\

-243-

M.Greenberger, M.Crenson & B.Crissey (1976), Mcdels in the
policy process:public decision making in the computer
era, Russell Sage Foundation

S.Hakimi (1964), Optimal locations of switching centers and
the absolute centers and medians of a graph, Opns.Res,
12, 450-459

(1965), Optimun distribution of switching centers
in a communication network and some related graph
_theoretic problems, Opns.Res.13, 462-475

H.Hensel & P.,Micke (1975), Arbeitsmethode der stddtischen
Verkehrsplanung, Bauverlag

H.-P.Hoidn (1977), Busnetz von Aarau: Neukonzeption der
Linien, IFOR-Studienberichte 6, ETH-Zlrich

T.Hu (1970), Integer programming and network flows,
Addison Wesley

R.Karp (1975), On the computational complexity of combina-
torial problems, Networks 5, 45-68

Th.Knecht (1975), Sequentielle Bauweise eines Abwasser-
reinigungssystems, IFOR-Studienberichte 3, ETH-Zirich
1-18

W.Knd8del (1963), Graphentheoretische Methoden und ihre An-
wendungen, Springer Verlag ,

W,Lampkin & P,D.Saalmans (1967), The design of routes,
service frequencies and schedules for a municipal bus
undertaking: a case study, OR Quarterly 18, 375-397

L.Leblanc (1975), An algorithm for the discrete network
design problem, Trans,Sci.9, 183-198

Th.,Liebling (1970), Graphentheorie in Planungs- und Touren-
problemen, Lecture Notes in OR 21, Springer Verlag

R.Mackinnon (1976), Optimization models of transportation
network improvement: review and future prospects,
ITASA, Austria

R.Miller (1967), An optimization model for transportation
planning, Transportation Research 1, 271-287

R.M,.Newton & W.H.Thomas (1974), Bus routing in a multi-
schoolsystem, Comput. & Ops.Res,l, 213-222

-2u4-

S.Nguyen (1974), An algorithm for the traffic assignment
problem, Transportation Science 8, 203-216

R.0liver & R.,Potts (1372), Flows in transportation net-
works, Academic Press

A.Polyméris (1977) Optimierung und Aufteilung der Kosten
regionaler Abwasserverbénde, in: Kombinatorische Ent-
scheidungsprobleme, Kursunterlagen des Instituts flir
OR, ETH=-Zirich

Ch.Revelle, D.Marks & L.,Liebmann (1970), An analysis of
private and public sector location models, Man.Sci.16,
6892=7c7 :

B.Rothfarb, H.Frank, D.Rosenbaum, K.Steiglitz & D,Kleitman
(1970), Opntimal design of offshore natural-gas pipeline
systems, Operations Research 18, 982-1020

L.Silman, Z.Barzily & U,Passy (1974), Planning the route.
system for urban buses, Comput.,& Ops.,Res,l, 201 - 211

P.Steenbrink (1374), Optimization of transport networks,
John Wiley & Sons

C.Toregas, R.Swain, Ch,Revelle & L,Bergmann (1971), The
location of emergency service facilities, Opns.Res.19,
1363-1373

G.Uebe (1970), Optimale Fahrpldne, Lecture Notes in Economics
and Mathematical Systems 20, Springer Verlag

F.Weinbefg et al.(1976), Operations Research im &ffentlichen
Dienst, Verlag Paul Haupt

N,Zadeh (13973), Construction of efficient tree networks:
the pipeline problem, Networks 3, 1-31

(1974), On building minimum cost communication
networks over time, Networks 4, 19-34

