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1 Introduction

Cointegration has been one of the most prominent topics in econometrics during
the last ten years. Numerous papers on theoretical problems as well as empirical
applications have been published.

Among all the different methods for estimation and testing for cointegration that
are available the method developed by Johansen [7, 8, 9, 11] is the one that is
most widely used. The Johansen method starts from a fully parametrized vector
autoregressive model (VAR). Therefore, one obtains estimates of the cointegrat-
ing vectors, the adjustment parameters, the short-run coefficient matrices and
the variance-covariance matrix of the residuals. This allows for a detailed anal-
ysis of the dynamic properties of the model at hand, including the testing for
(weak) exogeneity of variables. Furthermore one can also try to link the results
to economic theory via the construction of a structural vector autoregression
(SVAR).

A large variety of hypotheses on the cointegrating space or on individual coin-
tegrating vectors can also be formulated and tested, as can hypotheses on the
adjustment parameters.

The complete dynamic specification is on the other hand probably the drawback
of this method since one is restricted to analyze VARs only. The restrictions are
not as stringent as they might seem at first glance. It can be shown that, if the
data generating process is not purely autoregressive but autoregressive moving
average one can overcome this problem by adding a sufficient number of lags to
an autoregressive approximation of the process and use the Johansen procedure
for the autoregressive approximation. To be precise, Saikkonen [16] has shown
that, generalizing the work of Said and Dickey [15] to the multivariate case, one
can consistently estimate the cointegrating space of a general (1) process when
one increases the lag order of an autoregressive approximation with an appro-
priate rate for increasing sample size. Another possibility is to use the results
of Yap and Reinsel [19], who have derived the maximum likelihood estimator
for the cointegrating space in a Gaussian vector autoregressive moving aver-
age (VARMA) framework, but due to the small sample sizes that are usually
available in macro-econometric applications one is restricted to estimate simple
models. If the data generating process is VARMA, but one uses the Johansen
procedure for a VAR, Wagner [18] has shown that the Johansen procedure still
produces consistent estimates of the cointegrating vectors under some condi-
tions on the moving average part of the model. This result is described in some
detail in Section 2.

Despite all the above results it might be the case that one does not necessar-
ily have to specify the dynamics of the model if one is only interested in the
cointegrating space. To address this question Bierens [2, 3] has developed a
non-parametric procedure to estimate and test for cointegration. The procedure
is designed for general processes integrated of order 1, see Section 2 for a dis-
cussion. This offers an alternative to the Johansen procedure if one cannot be
sure whether the data are indeed generated by a low-order vector autoregression



and one does not want to fully parametrize a VARMA model, e.g. because of
short sample sizes or poor statistical properties of estimated low-order autore-
gressive (moving average) models. Compared to the parametric cointegration
approaches by using Bierens’ approach fewer results are obtained since one only
gets estimates of the cointegrating space. This is the price that has to be paid
for increased flexibility of the models that are allowed for as data generating
processes, again in comparison to the Johansen procedure. Bierens has also de-
veloped tests for hypotheses on the cointegrating vectors.

There are already a couple of papers published that analyze the behavior of the
Johansen estimation and testing procedure under misspecification by means of
simulation studies (e.g. Bewley and Yang [1], Podivinsky [14] or Toda [17], and
also Wagner [18] is investigating the empirical relevance of the above mentioned
theoretical results via a simulation study).

The aim of this paper is to explore whether the method developed by Bierens
can step in when there are doubts about the VAR nature of the data generating
process. The results from Wagner [18] suppose that although the estimates gen-
erated by applying the Johansen procedure are consistent for ARMA processes
as well, it is the testing step that tends to have low discriminatory power for
finding the correct dimension of the cointegrating space. At this stage it can
be assumed that the Bierens test could add some extra value in helping to find
the correct dimension of the cointegrating space. Since the Bierens procedure is
designed implicitly for ARMA processes, it will also be interesting to find out
how much moving average dynamics we have to put to an autoregressive model
to make the Bierens test superior to the Johansen test. In this interpretation
we look at autoregressive moving average processes as disturbed autoregressive
processes.

The paper is organized as follows. In Section 2 the methods are briefly de-
scribed and discussed, in Section 3 the set-up and the results of the simulations
performed are presented and discussed and Section 4 gives the results of an
empirical application of both methods to see their relative performance on real
data. Section 5 concludes.

2 A description of the methods

Johansen [7, 8, 9, 11] has derived the estimation and testing procedure for
cointegration analysis in a Gaussian vector autoregressive framework.! Since
this method is very well known by now, we will keep the discussion very brief.
For notational simplicity we ignore deterministic factors like intercepts, trends
or seasonal dummies. Let

a(L)z; = & (2.1)

1'We restrict ourselves here to a discussion of the (1) case. Johansen [10, 12] has developed
estimation and testing procedures for cointegration in VAR systems integrated of order 2.



where z; is an m-dimensional random variable, a(z) = I, — a1z — ... — ap2P?
and ¢; is iid N(0,X). The assumptions concerning a(z) are that det a(z) = 0
implies z = 1 or |z| > 1. So all the roots of the polynomial a(z) are either outside
the unit circle or at z = 1. As is well known cointegration manifests itself in a
reduced rank of the matrix a(1). Let r denote the rank of this matrix, then r is
also the dimension of the cointegrating space.

The above model can be re-written in Error Correction Form

A.’L’t = FlASIJt_l +...+ Fp_lASL't_p+1 + Hl't_p + &¢

It is easy to see that I'; = —I,, + a1 + ... +a;—1 for ¢ = 2,...,p—1 and
II=—-a(1) =ap'.

The columns of the matrix 8 span the cointegrating space. To guarantee that
x is not in fact integrated of an order higher than one, a further assumption is
required. The matrix

O/J_(az(;) |lL=1)81

has to have full rank m — r. Here for a matrix P € R™*" with full rank the
matrix P, is € R™*™~" has full rank and spans the orthogonal complement of
the space spanned by the columns of P, i.e. P| P = 0.

The maximum likelihood estimation of 3 proceeds as follows. In a first step one
can concentrate the likelihood function with respect to the parameter matrices
I'1,...,Tp—1 by running two OLS regressions. This is achieved by a regression of
Az and a regression of x4, on the lagged differences Azy_1,...,Azs_pyi. The
residuals of these two regressions are denoted with Ry; and Rp;. The product
moment matrices of these residuals are given by

T
1 .
Sij = T ZRitR;'ta i,j=0,p
t=1

Using the above quantities the maximum likelihood estimates of 3 are given by
the eigenvectors corresponding to the r largest eigenvalues Aq,..., A, of

|)‘Spp - Spos&)ISOM =0

The likelihood ratio test statistic of Hy : dim(8) < r against the alternative
dim(B) = m is given by

—20n(Q), =T i In(1—X;)

i=r+1

This test is denoted trace or 7 test. We can also test the hypothesis Hy :
dim(B) < r against the alternative dim(8) = r + 1. This leads to the max
or £ test with test statistic

—2n(Q)e = In(1 = i)

2We use L to refer to the Lag operator, and z refers to a complex valued variable.




The Johansen method thus gives at the same time estimates of the cointegrating
vector and test statistics for determining the number of cointegrating vectors.
The critical values of the test statistics are tabulated and can be found e.g. in
Osterwald-Lenum [13] or Johansen [11].

Within the framework developed by Johansen there is a variety of possibilities
to test for hypotheses on the cointegrating space, see e.g. Johansen [11].
Wagner [18] has shown that the Johansen procedure is delivering consistent
estimates of the cointegrating space also if the true model is not autoregressive
as assumed above, but is given by

a(L)zy = b(L)e, (2.2)

with a(L) as above, (a,b) left co-prime and det b(z) # 0 for z = 1.

Theorem 2.1 The Johansen estimation procedure for cointegrated vector au-
toregressive models yields under the form of ARMA misspecification discussed
above consistent estimates B for 3.
The estimates ¥ and I1 are generally not consistent and their limits are given
by

n5m+ Epa(a’a) 550

and
S5 S -gale'a) 151880 — Sep854(e'a) ta'el —
—&a(a'a) 'E55(a'a) M aE, + & + &,
With
q
fo = D baZc, —mpil o
n=1
& = To— T fhso
and

q q
. (z b 1S BT ) ;
n=1 n=2

q
=Y bnid, T}
m=p

for ¢ > p and 5 = 0 for q < p. The ¢, are the coefficients from the Wold
representation for Axy, i.e. from Az, = c(L)ey, the by, are the coefficients from
the MA polynomial b(L) and dpm—p = — Zfij_H ¢i.

A proof of this theorem is given in Wagner [18].



This result is based on the fact that the cointegrating spaces of system (2.1)
and all systems (2.2) are identical, which is also shown in Wagner [18]. The
last observation becomes clear by looking at the common trends representation
of integrated systems of order 1, which is the content of the famous Granger
representation theorem, see e.g. Engle and Granger [5]. To make the argument
visible we write the ARMA system as follows:

a(L)zy = uy

Uy = b(L)Et

which reduces to the AR case if b(L) = I. Now the Granger representation the-
orem derives an MA representation of the above ‘autoregressive’ representation,
which is given by

T
zy = B1(a’ a1 (1)3L) T, Zut + c1(L)ug (2.3)
=1

Furthermore, a; (1) is given from a(L) = a(1) + (1 — L)a; (L). The same deriva-
tions apply to ¢1(L), where ¢(L) is the inverse of a(L)/(1 — L).
Now replace u; by b(L)e; in (2.3)

T ¢
Ty = ﬂL(alal(l)ﬂL)_lalZzba"ft*j+Cl(L)b(L)€t

t=1 j=0
T

= Bu(iar(1)BL)7 e/ b(1) Y e+ e (L)b(L)e
t=1

For this being a common trends representation we need that the second term
on the right-hand side of the above equation is stationary.

From the assumptions on a(L) we know that ¢;(L) has all its roots outside
the unit circle. Therefore, we have to require that also b(1) has no unit roots,
to guarantee stationarity of that component. Now, if b(1) is non-singular, we
see that the common trends in the first component, in the pure autoregressive
case given by o, Zle €, are subject to a coordinate transformation due to
pre-multiplication by b(1) and are now given by ', b(1) Zthl Et-

The above theorem shows that the regularity of b(1) is sufficient, together with
the assumption of left co-primeness of a(L) and b(L), so that the cointegrating
space of order 1 remains unchanged.

We have seen above that the common trends are given by o/, b(1) Ez;l €, there-
fore it is no surprise that the estimate of « is inconsistent since the loading
matrix under misspecification is influenced by the MA polynomial. The same
holds for the variance matrix of the residuals.

It might be an interesting question to relate these results to the literature on
AR estimation of ARMA processes in the stationary case.

Wagner [18] also discusses the fact that regardless of the misspecification the



first r eigenvalues of the generalized eigenvalue problem are converging towards
non-zero constants, while the latter go to zero as Op(%). This directly implies
that the asymptotic power of the trace test against the alternative that there
are r + s cointegrating vectors is tending to 1, because then the test statistic
-Ty i, i In(1- \i) contains s terms that are diverging.

An important remark that has to be made here is (this can be easily deduced
from the above) that for integrated processes of any order, the cointegrating
spaces of all orders are invariant to MA polynomials b(L) as long as det b(1) # 0.
For a discussion of these issues see Deistler and Wagner [4].

The method developed by Bierens on the other hand is designed for Gaussian
vector autoregressive moving average processes. A precise description including
all the proofs can be found in Bierens [2, 3].

The starting point of Bierens’ considerations is the following representation of
the integrated vector valued time series

Tt =Ti—1 + Ut

where u; is an m-dimensional stationary process. x; is assumed to be observed
for t =0,1,...,T. Under some regularity conditions we can write

Uy = C(L)Et

where £, is white noise with unit variance. The assumption concerning C(L) is
that it can be written as

C(L) = Cy (L)Ca(L)

where C1(L) and Cs(L) are finite order lag polynomials and det(C1(z)) has all
its roots outside the unit circle. C(L) is a m xm lag polynomial. By construction
C(L) — C(1) is zero in each entry, so we can write

CWe = C(l)e+(C) — O (2.4
= e+ CB=D gy,

= C(e+CY(L)(1 - L)ey

with C*(I) = “H=FR (1 - L) = £32, G5 1)
Denoting by w; = C*(L)e; one can write

U = C(l)Et + wg — we—1

and

t
Ty = Ty — Wo +wt+C(1)Zsj
Jj=1

3 Analogous reasoning works also for the max test.



Under the presence of cointegration, as we have seen before, C(1) will be singu-
lar. The vectors spanning the left-kernel of C'(1) span the cointegrating space.
Furthermore, to exclude cointegration of higher order, the matrix

B.C*(1)C*(1)'B,

has to be regular, where B, is a matrix spanning the r-dimensional cointegrat-
ing space.*

The idea behind the non-parametric cointegration approach is to exploit dif-
ferences in the convergence behavior of certain weighted means of z; and of
Aux; that occur under the presence of cointegration or otherwise. The means are
given by,

where F' is a continuously differentiable function on the unit interval.
Under the stated assumptions it can be shown (see Lemma 1 in Bierens [3]) that

( M7 (F) ) R C(l)YF\/ffF(y)F(z)min(y,z)dydz (2.5)

VT
C(1)Zr\/ [ F(y)*dy

MA(FWT

where Yr and Zr are independent m-variate normally distributed random vec-
tors® depending on F' as follows

Ve = JFy)W (y)dy
VI I F@)F(2)miny, 2)dyds
20— FOWQ) — [ 10)W )dy

VJ F)2dy

where W (.) is an m-dimensional Wiener process and f(y) is the first derivative
of F(y) with respect to y.

In the case of cointegration, where C(1) is singular, the limiting distribution of
(2.5) is singular.

For any cointegrating vector § it follows that g’ % — 0and 8'MA*(F)VT —
0. Thus, the convergence rates are different for the weighted means whether they

4Note that B, the matrix that spans the cointegrating space is equivalently the matrix of
eigenvectors to the eigenvalue 0 of the matrix C(1)C(1)’.

5To achieve independence of Yz and Zp the function F has to be chosen to satisfy
J F(y)dy = 0. All the integrals in this paper are from 0 to 1.



are premultiplied with cointegrating vectors or not. It is this difference that
Bierens exploits in constructing his test. The limiting behavior of the weighted

means premultiplied with the matrix B = (84, .. ., 8-) spanning the cointegrat-
ing space is given by(see Lemma 2 in Bierens [3]),
BMyFWT\ _, ( BC()Zr [F(o)dy .
B'M2*(F)T F(1)B'C*Z '

Zp is as above, Z is an m-dimensional standard normally distributed random
variable and C* = (Z;‘-FZO cycy! )2. These differences can now be used to con-
struct the nonparametric cointegration test.® The computation of the test statis-
tic involves choosing a sequence of functions Fy(y), all satisfying [ Fj,(y)dy = 0,
and the construction random matrices involving weighted means of z;, Az; and
the functions Fj. These weighted means are then the input in a generalized
eigenvalue problem, whereas in the Johansen approach the test statistics are
given by the solutions of that eigenvalue problem. An optimal choice for the
functions Fy, is given by
Fi(y) = cos(2kmy)

which maximize a lower bound of the power function of the test.” The above-
mentioned random matrices are computed as follows

“ 812 & 1 & 1 <&
Ap = T ZjZ(T Z cos(2jm(t — 0'5)/T)$t)(T Z cos(2jm(t — 0.5)/T)zy)’

j=1 t=1 t=1
h 1 T 1 T
al _ .9 - . _ - . _ 1
B = 2Tj; (5 t:Zlcos(Zyﬂ(t 0.5)/T)Az,)( tzzlcos(Qﬂr(t 0.5)/T)Ax;)

Based on the random matrices described above the following can be shown(Bierens [3],
Theorem 1 on page 387)

Theorem 2.2 Let (5\1,h,---,5\m,h) be the ordered solutions of the generalized
etgenvalue problem

. . 1 .
det(A, — \(By, + ﬁAhl)) =0
and let (M p,---, Am—rn) be the ordered solution of the generalized eigenvalue

problem

h h
det(d XX =AD YY) =0
s=1 s=1

6The details are given in Bierens [2, 3].
"To make the test invariant for drift terms one can choose Fy(y) = cos(2km(y — 55)).



where the X} ’s and the Y]* ’s are iid N (0, L,—..). If x4 is cointegrated with r linear

~

independent cointegrating vectors, then (:\l,ha ... Am,n) converge in distribution
to ()‘1,/’” ces Ay 0,- ,0).

This theorem is the basis for using Xm_r,h as a test statistic for testing the null
hypothesis that the dimension of the cointegrating space is r + 1.8

The power of the test depends upon, as already mentioned, the choice of the
functions Fj, and upon the choice of the summation index h. Bierens [2] derives
an optimal value for maximizing a lower bound of the power function given the
choice of F(y) = cos(2kmy). It turns out that in most cases h = m is optimal.’
After having decided about the dimension of the cointegrating space, a basis of
this space can be estimated as follows. Given that there are r linear independent
cointegrating vectors f1,...,0, a consistent estimate of a basis of the space
spanned by the 3’s can be obtained as follows. Choose h = 2m and solve

1 -

det(A, — A(Ap, + Ay

1)—1) =0

Let H be the matrix of eigenvectors corresponding to the r largest!'? eigenvalues
of the above problem. Then H = (81,...6,)E, + Op(%) where E, € R™*" with
full rank. In other words the eigenvectors to the smallest eigenvalues form an
estimate of the cointegrating space. Again the rate of approximation is 0,,(%),
i.e. the cointegrating space is estimated super-consistently.

3 Results of a simulation study

The aim of this section is to explore the finite sample behavior of the two
discussed methods. The cited result of Wagner [18] shows that the Johansen
procedure has some useful theoretical robustness properties. Since an analytical
derivation of the limit distribution of the test statistics is not available under
the discussed form of misspecification, it is unclear how much influence on the
asymptotic distribution is really exerted by the MA polynomial b(L).!!

We want to study several aspects. For both tests we want to see whether the
actual size of the test is approximating the nominal size. Since we are going to
simulate ARMA systems, this serves as an indication of the empirical relevance
of Theorem 2.1 in the case of the Johansen method. For the Bierens method,
which is designed for ARMA processes, this gives an indication of the speed
of convergence of the finite sample values of the test statistic to the tabulated

8The test is left-sided: the null is rejected if j\m_,‘h is smaller than a critical value. The
critical values can be found in Table 2 in Bierens [3].

9See Table 1 in Bierens [2] for details.

10Tn the papers Bierens [2, 3] the eigenvectors to the smallest eigenvalues are incorrectly
specified as the cointegrating vectors.

1 The simulations have been performed using GAUSS 3.2, the programmes and further
results are available from the author upon request.
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(asymptotical) values.

Second, we want to analyze the behavior of the estimated cointegrating space
and the distance, measured by the Hausdorff distance defined below, between
the estimated and the true cointegrating space. This set-up allows us to dis-
tinguish the properties of the test from the properties of the estimation of the
cointegrating space of the different methods. This allows for the detection of
the weaknesses as well as the advantages of the different methods. As we shall
see below the Johansen procedure has size distortions for some of the simulated
systems for 50 observations. Nevertheless, the estimated cointegrating space,
given the dimension, is estimated very precisely already for that sample size.
This means that if prior information concerning the number of cointegrating re-
lationships is available, e.g. from economic theory, small samples allow already
for a quite precise estimation of the relationships by using the Johansen pro-
cedure. Another possibility that arises from this set-up is to combine several
methods for testing and estimating for cointegration to exploit the advantages
of the different methods. E.g. if one test has better size properties than another,
but the estimates are more precise for the method with the test with larger size
distortions, one could use the test result from the first method and the estimated
cointegrating relationships from the second.!?

Both of these aspects are investigated for different sample sizes to see whether
the established consistency of the estimated cointegrated space of the Johansen
procedure under misspecification is of empirical relevance and also to see the
small sample properties of the Bierens procedure.!?

As a distance measure between the estimated and the true cointegrating space
we use, as indicated above, the Hausdorff distance, which is defined as follows:
Let ¢ and 1 be two subspaces of R™. The intersection of a subspace € of R™
with the closed unit circle in R™ is denoted by C(6),

CO) ={zebllzl<1},

where || z || is the Euclidean norm of z. Using this notation the distance d of ¢
and 7 is given by the Hausdorff distance dg of C(¢) and C(n), i.e.

d(¢,n) = du(C((), C(n)) = maz(p(C((), C(n)), p(C(n),C(C)))
where p(Cy, Cs)is given by

p(C1,C2) = sup inf [z —y||.
zeCy Y€C2

The first set of models that has been simulated are two-dimensional ARMA(2,1)

121n our case it turns out though that the Johansen procedure dominates the Bierens Pro-
cedure, for almost all ARMA systems considered. Further results are available upon request.

13A natural guess at this point is that for small samples, for which only low-order AR
models can be estimated, Bierens’ test is superior since it is designed for ARMA systems. Its
non-parametric character on the other hand indicates that it might require bigger samples.
For large sample sizes we would not expect to observe all too big differences. Things turn out
to be different, however.

11



systems with one cointegrating vector adopted from Hargreaves [6]:14
1 -2 Yt _ U1t _ 1.5 0 Ult—1 +
-1 3 Tt - Ut - 0 0.5 U2t—1
-05 0 Urg—2 €1t v 0 ] [€1t—1 ]
3.1
+[ 0 0][U2t—2]+[62t]+[0 Y2 €2t—1 (3-1)

The parameter values for the MA polynomials that we have chosen are y, = —1
and vy, = —0.9, systems with

=7 =—08,-0.5.—0.2,0,0.2,0.5,0.8,

and 71 =1 and v, = 0.8.

The first system has a unit root in the MA polynomial, so that it does not satisfy
the conditions of Theorem 2.1. Still, it is interesting to see the behavior of the
Johansen estimates in the case of the presence of an MA unit root. The fifth
system, the pure AR(2) system, serves as a point of reference. In the following
discussion these systems will be referred to as MA1 to MA9.

The true cointegrating vector of the above system(s) is, suitably normed, given
by (1,-3), it is of course the space spanned by the second row of the matrix at
the beginning of the first line of (3.1).

In the simulations presented below the order of the systems is assumed to be
unknown. Since we are going to apply the Johansen procedure the order of an
autoregressive approximation of the ARMA systems has to be selected. This
will be done by selecting the lag length according to an information criterion. In
the paper the results are given for choosing the lag length according to the AIC,
the results are practically identical when the lag order is selected according to
the BIC.

In Table 1 it can be seen that only for the systems with large positive autocor-
relation of the e;’s large lag lengths tend to be chosen. Also for the system with
a unit root in the moving average polynomial a lag length of 2 is selected for an
autoregressive approximation of the system.

Figures 1 and 2 show the probabilities for choosing the correct number of coin-
tegrating vectors for the Johansen and the Bierens procedure.

Comparing the two figures one sees enormous differences in the performance of
the tests. The Johansen procedure fails to show some reasonable performance
only for the system with a unit root in the MA polynomial. This system violates
our assumption at the top of Theorem 2.1, so some strange behavior had to be
expected. For all the other systems, the nominal size tends to the asymptotical

14 A1l the two- and three- dimensional systems have been simulated 5000 times. Time series
of length 250 have been generated, the first 50 observations have been skipped. The time series
of the different sample sizes have been constructed as the corresponding observations of the
remaining 200 observations. The results related to the tests are all at the 5 % critical level.
The results are almost unchanged for other significance levels and available from the author
upon request.
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MA1 MA2 MA3 MA4 MA5 MA6 MA7 MA8 MA9
50 2 2 2 2 2 2 3 4 5
100 2 3 2 2 2 2 4 4 4
150 2 3 2 2 2 2 4 4 7
200 2 3 2 2 2 2 4 4 7

Table 1: Selected autoregressive order of an autoregressive approximation of
systems (3.1) for different sample sizes using AIC.

Figure 1: Acceptance probabilities of the correct number of cointegrating vectors
for systems (3.1) using the Johansen trace test.

13



size.!®

Only for the systems with a high positive autocorrelation in the MA polyno-
miall® do we see a clear under-acceptance of the correct number of cointegrating
vectors for a sample size of 50 observations. This effect becomes negligible for a
sample size of 100 or larger.

Things turn out to be different for the Bierens procedure. Here reasonable re-
sults are only obtained for the systems with negative correlation in the MA
polynomials, including the MA polynomial with a unit root. For all the other
MA parts and all sample sizes the acceptance probability for choosing a coin-
tegrating space of 1 remains below 10 %. Since the procedure is in principle
constructed for ARMA systems, this observation raises some doubts about the
usefulness of this procedure in empirical analysis. As we will see later, things
are even worse for a set of three-dimensional systems.

Figure 2: Acceptance probabilities of the correct number of cointegrating vectors
for systems (3.1) using Bierens’ non-parametric cointegration test.

Having seen that the performance of the procedures is quite different at the test
step, we will now look at the distribution of the estimated cointegrating space,
assuming the true dimension to be known. Since the true dimension is 1 and
we are analyzing two-dimensional systems, after normalization only one element
in the cointegrating vector is undetermined.!” The empirical distribution of the
second element is described by its mean, standard deviation, median, skewness
and kurtosis.'®

15The actual size tends to get close to the nominal since the acceptance probabilities are
tending to values in the vicinity of 95 %, and the tests have been conducted at the 5 % critical
level.

16These are the systems for which higher orders have been selected by AIC.

17Tables describing the features of the distributions for all sample sizes and all MA polyno-
mial for both procedures are available upon request.

18The empirical distribution is calculated from taking the first solution vector of the eigen-
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The general picture that emerges is the following. The (empirical) means are
tending to the true value of -3 for increasing sample size for all systems and
for both procedures. Generally, the values of the Johansen estimates are closer
to the true value than the ones computed using Bierens’ method. This is per-
fectly consistent with the observation that the standard deviations are smaller
for Johansen’s than for Bierens’ method for all systems and all sample sizes.
The same picture emerges for the median. Skewness and kurtosis are essentially
of the same magnitude for both procedures.

In Figure 3 we see the Hausdorff distance of the vectors composed of the mean
elements and the true cointegrating space. The four subpanels display the re-
sults for the four different sample sizes. Again, for all MA polynomials and all
sample sizes, the Johansen procedure dominates the Bierens procedure. For the
larger sample sizes the means of the Johansen estimates are practically identical
to the true cointegrating space. Also, due to superconsistency, the mean of the
Bierens’ estimates is close to the true value, but not as much as Johansen’s
estimates.!?

As a conclusion we find for the two-dimensional systems that in all the ‘dimen-
sions’ that we have looked at the Johansen procedure strictly dominates the
Bierens procedure, with the latter producing extremely bad results in the test
step.

The second set of systems that has been simulated are three-dimensional ARMA (2,1)
systems with a two-dimensional cointegrating space.

1 1 0 Y1t U1t 0.8 0 0 Urt—1
1 01 Yot = U2t = 0 1.2 0 U2¢—1 +
1 1 3 Y3t U3t | 0 0 1.5 i U3t—1
0 0 0 Urg—2 €14 [ 0 0 [ €11
+10 -0.7 0 Uog—2 | + | €2 | + 0 v O €1 | (3.2)
0 0 —-0.5 U3t—2 €3¢ i 0 0 73 | €3t—1

The MA polynomials used for simulation are 3 = —1,v2 = v3 = —0.9 and the
following systems with identical entries

M =7 =7 =-05, 0, 0.6, 0.8

Again the first system, MA1, has a unit root in the MA polynomial. These
systems will be referred to as MA1 to MAG in the following tables and figures.

value problem in each repetition of the simulation. Our measure of skewness is

q97.5 — 450.0
450.0 — g2.5

_1,

where g; is the i-th quartile. As a measure of the kurtosis we use

q97.5 — q2.5 1.96

@99.5 —qo.5 2575

Both measures are equal to zero for a normally distributed random variable.
19The qualitatively same picture emerges for the median vector.
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Figure 3: Hausdorff distances between the true and the mean of the estimated
cointegrating spaces. The dashed line corresponds to Bierens’ procedure, the

solid line to Johansen’s procedure.
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MA1 MA2 MA3 MA4 MA5 MA6
50 2 2 2 3 2 3
100 2 2 2 3 4 3
150 2 2 2 3 4 4
200 2 2 2 3 4 4

Table 2: Selected autoregressive order of an autoregressive approximation of
systems (4.1) for different sample sizes using AIC.

The true cointegrating space is now two-dimensional, and a basis is given by

11
01
1 0

With a two-dimensional cointegrating space after normalization 4 elements are
undetermined. We normalize the first element of the first vector to 1 and the
second element of the second to 1.

Table 2 shows the chosen lag lengths for an autoregressive approximation of
the different systems.

Figure 4: Acceptance probabilities of the correct number of cointegrating vectors
for systems (3.2) using the Johansen trace test.

We start as before with looking at the acceptance probabilities for the correct
dimension of the cointegrating space, which is 2 now, using both the Johansen
and the Bierens test. For the Johansen method we see essentially the same pic-
ture as before. For samples of sizes 150 and 200 the acceptance probabilities tend

17



to values around 90 %. For smaller sample sizes the evidence is mixed. This was
expected since the larger systems require the estimation of more parameters. On
the other hand the picture for the Bierens procedure is quite surprising. Here
for all systems but MA1, the system with a unit root in the MA polynomial,
the acceptance probabilities for a two-dimensional cointegrating space are es-
sentially 0. As can be seen from Figure 6, the Bierens procedure tends to accept
no cointegration at all in most of the cases, with a frequency of about 80 to
90 %. This means that for systems as the ones used in the simulations the use
of Bierens’ cointegration procedure gives results that have to be taken with a
great deal of caution.

For completeness’ sake we will include the results of Bierens’ method in the dis-
cussion of the distribution of the estimates of the cointegration space.? Again,
the Johansen procedure outperforms the Bierens procedure substantially. E.g.
the standard deviations of Johansen estimates are smaller than the standard
deviations of Bierens estimates. For both procedures the standard deviations
are larger than for the two-dimensional systems.

—

Figure 5: Acceptance probabilities of the correct number of cointegrating vectors
for systems (3.2) using Bierens’ non-parametric cointegration test.

The following Figure 7 shows the Hausdorff distance between the mean vectors
and the true cointegrating space, again for all the sample sizes and the true
number of cointegrating vectors. It can be clearly seen that the Johansen method
is again achieving a good approximation of the true cointegrating space for
all systems for 100 or more observations. The Bierens procedure only yields
unsatisfactory results.

Now, since all the systems above have been artificial examples, we will look at
some real data in the next section. This shall give some indication concerning

20Tables describing the features of the distributions can be obtained from the author upon
request.
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Figure 6: Acceptance probabilities of zero cointegrating vectors for systems (3.2)
using Bierens’ non-parametric cointegration test.

the relative performance of the two methods on actual data, especially whether
Bierens’ procedure achieves a more reasonable performance there.

4 An empirical example

In Figure 8 the data, quarterly consumption and output for Austria are dis-
played. The data are in real terms, seasonally adjusted and transformed to logs.
The range is from 1976:IV to 1999:1.

The two series obviously exhibit very close co-movement, they are also from
an economic point of view prime candidates for being cointegrated. As is well
known, the permanent income hypothesis implies a cointegrating relationship
between consumption and (permanent) income.

The first step of the analysis consists of testing whether the series can individ-
ually be regarded as being integrated of order one. The null hypotheses of ran-
dom walk with drift cannot be rejected for both series for a battery of tests (like
Augmented Dickey Fuller, Phillips-Perron, Bierens HOAC, Bierens NLADF). In
conducting the Johansen procedure for cointegration the next decisions to be
made refer to the choice of the lag length and the specification of the determin-
istic part. The deterministic component employed is an unrestricted vector of
drifts. The optimal lag length, again chosen according to AIC, is 6.2

21BIC indicates an optimal lag length of 2. The results concerning cointegration are very
similar to the model with 6 lags. The model with 2 lags suffers from some serial correlation of
the residuals. The computations in this section have been performed using own GAUSS code,
the package CATS in RATS and Bierens’ EASYREG programme, which can be downloaded
from Herman Bierens’ home page. The results are the same across packages, so the surprising
results of Bierens’ procedure are not due to programming errors in the GAUSS programmes.
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Figure 8: Austrian GDP (dotted line) and Austrian Private Consumption (solid
line). The data are transformed to logarithms.

Eigenval. | ¢ n | Ho:r nrt|&—90% n—90%
0.2221 21.1 21.2 0 2 10.60 13.31
0.0012 0.1 0.1 1 1 2.71 2.71

Table 3: The output of the Johansen cointegration analysis.

The output of the cointegration testing procedures is as follows. The Johansen
procedure clearly indicates a one-dimensional cointegrating space (see Table 3).
The estimated cointegrating vector is (1, —1.024).22 The corresponding station-
ary component, i.e. the disequilibrium, can be seen in Figure 9.

Although the second entry in this vector is very close to -1, the hypothesis of a
unit income elasticity of consumption (Hp : 8’ = (1,—1)) can be rejected.

The Bierens procedure gives a test result of a two-dimensional cointegrating
space. This stands in clear contrast with both series being individually random
walk with drifts.2?

Taking the first solution vector of the Bierens eigenvector procedure to see the
cointegrating vector estimated by this procedure, gives the vector (1,—0.91).
With the corresponding hypothesis test the hypothesis of a unit elasticity cannot
be rejected here. Although -0.91 is further away from -1 than -1.024, the null
hypothesis cannot be rejected now, contrary to the Johansen hypothesis test.

The data and detailed results of the estimation procedures are available upon request.
22The ordering of the variables in the estimated VAR is log-consumption and log-output.
23Bierens [2, 3] also describes a method to estimate the dimension of the cointegrating

space instead of testing for it. In the present example also the estimated dimension of the

cointegrating space is equal to 2.
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Figure 9: The cointegrating relationship estimated by the Johansen method. The
upper panel displays the actual disequilibrium (3'z; in the notation of Section
2) and the lower panel displays the disequilibrium corrected for short-run effects
(B'Rpt, using again the notation of Section 2).
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This fits to our observations made in Section 3, where we have seen that the
standard deviations of the Bierens estimates are larger than those obtained by
using the Johansen method.

Thus, our example also does not really provide support for the method presented
by Bierens.

5 Conclusions

The above results do not provide much support for using the Bierens cointegra-
tion procedure. One might argue that the systems analyzed in the simulation
studies are probably too well described by low-order autoregressive systems,
so that the Johansen method is working well in these cases. Still, the Bierens
method should as well be reasonably applicable in these cases. But what we have
seen cannot be regarded as promising results.?* Another possible reason for the
bad performance of the Bierens procedure could be related to the fact that we
have used only samples up to 200 observations. However, since cointegration
has found most of its applications in macroeconomics, these are the relevant
sample sizes.?® As we have seen the main drawback of the Bierens procedure is
the power of the tests, maybe also the critical values could be re-examined.

A conclusion that can be drawn from this comparison is that the Johansen pro-
cedure on the other hand is remarkably robust already for small sample sizes.26
Taking also into account, as mentioned in the introduction, that the Johansen-
VAR framework allows for a wide variety of hypotheses to be tested, as well as
an extension to the I(2) case, it seems to be the method that should be used
preferably, at least until some further understanding concerning the properties
of the method developed by Bierens has been achieved.

One thing that remains to be done is to analyze in more detail conditions under
which the Bierens procedure is delivering results that are in terms of their qual-
ity comparable to the ones obtained by Johansen or other ‘standard’ methods.
For the time being the question raised in the title of this paper can only be
answered as follows: The two methods are up to now neither complements nor
substitutes, but?? the Johansen method dominates the method proposed by
Bierens. A conclusion that can be drawn from this result is that it is necessary
to gain further understanding of the Bierens procedure since there is the need
to have methods for estimation and testing in cointegrated systems also in such
cases when the systems are not pure autoregressive systems. Having reliable

24 As discussed in Section 2, the Bierens procedure is applicable to ARMA systems integrated
of order 1, so for the relatively simple systems analyzed above the results could have been
expected to be better.

25Furthermore, in the figures there is no tendency for an improvement with growing sample
sizes visible.

26 One point that should be regarded with caution however is that we have ignored determin-
istic parts in the simulation. But the most plausible candidates for deterministic terms, like
unconstrained drift or trend, are concentrated out in the first steps of the procedure anyway,
so from this point of view not too much changes should be expected.

27For the systems and data set analyzed, to be careful.
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methods for this problem at hand, one can at least validate the results gained
e.g. in a VAR study using the Johansen procedure.
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