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Abstract

The method for estimation and testing for cointegration put forward by Johansen assumes that
the data are described by a vector autoregressive process. In this article we extend the data
generating process to autoregressive moving average models without unit roots in the MA
polynomial. We first extend some matrix algebraic relationships for I(1) processes and derive
their implications for the structure theory of cointegration. Specifically we show that the
cointegrating space is invariant to MA errors which have no unit roots in the MA polynomial.
The above results permit to prove the robustness of the Johansen estimates of the
cointegrating space in a Gaussian vector autoregressive framework when the true model is
vector autoregressive moving average, without unit roots in the MA polynomial. The small
sample properties of the theoretical results are examined through a small simulation study.
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1 Introduction

The estimation and testing procedure for cointegration in a vector autoregressive frame-
work put forward by Johansen [11, 12, 13] is probably one of the most important de-
velopments in time series econometrics during the last decade. Due to its simplicity,
and also because of the elaborate possibilities to test hypotheses on the cointegrating
space, this method is the most popular in the literature.

One issue that has — to the author’s knowledge — only been addressed by means of
simulation studies (e.g. Bewley and Yang [1], Podivinsky [16] or Toda [19] ) is the be-
haviour of the Johansen estimates under misspecification. This is an important question
because the data might not be perfectly described by a low order autoregression.

In principle one could always overcome this problem by adding a sufficient number of
lags. Saikkonen [18] has shown that, generalising the work of Said and Dickey [17] to
the multivariate case, one can consistently estimate the cointegrating space of a gen-
eral I(1) process by increasing the lag order of an autoregressive approximation with
an appropriate rate for increasing sample size.

For the sample sizes usually provided by macro-econometric applications this result is
probably of limited relevance. Due to the short sample sizes one is usually restricted to
etimating simple models like low order autoregressions, although on principle one can
use the maximum likelihood approach to estimation and testing in cointegrated vector
ARM A models developed by Yap and Reinsel [21]. For small samples however, it may
be difficult to discriminate between a pure autoregressive model and an autoregressive
moving average model. Beside the more empirically oriented questions, the issue of the
robustness of the Johansen procedure is also interesting from a purely statistical point
of view.

In Section 2 we start with a review of some basic concepts and relationships for inte-
grated processes, like Error Correction Model and the structure theory for I(1) processes
related to issues of (co-)integration. In this section we will show that although I(1)-AR
processes always have an error correction representation, this does not hold true for
I(1)-ARM A processes. We formulate several sets of sufficient conditions on the matrix
polynomials of a vector ARM A process to allow for an error correction representation.
In Section 2 we also show that the AR process a(z)y; = €; and all left co-prime ARM A
systems given by a(z)y; = b(z)e; have the same cointegrating space of order 1, if
det(b(1)) # 0.

This result forms the basis for the possibility that the Johansen procedure yields con-
sistent estimates of the cointegrating space also under misspecification. In this paper
we restrict ourselves to the type of misspecification, following from the above result,
where the true model is a left co-prime ARM A system with unit roots only in the AR
polynomial, but where a pure AR system is estimated. The above result shows that
the cointegrating space is determined by the AR part of the model, which is intuitively

clear because the allowed moving average dynamics have a short run.
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In Section 3 we prove that the Johansen procedure yields consistent estimates of the
cointegrating space under the considered type of misspecification. We also show that
the adjustment parameter matrix, a in Johansen notation, and the variance-covariance
matrix of the noise process ¢; are generally not estimated consistently when the system
is misspecified.

In the course of proving the consistency of the estimates for the cointegrating space we
will, as a by-product, see that the power for fixed alternatives of the trace and max
tests is tending to one also under misspecification.

To assess the empirical relevance of the results above we report the results of a sim-
ulation study in Section 4. The aim of this small simulation study is to analyse the
effects of the misspecification for different sample sizes on the estimated cointegrating
space and on the size of the tests. The sample sizes we use are T' = 50,100,150 and
200 observations. It turns out that the Johansen method is remarkably robust for the
larger sample sizes with respect to the discussed misspecifications, with regard to the
size of the tests, to the distribution of the estimated cointegrating vectors and also to
the quality of the approximation of the true cointegrating space by the estimated coin-
tegrating space. The quality of approximation is measured by the Hausdorff distance
between the estimated and the true cointegrating space.

The results of the simulations carry two messages: The first one is already well known,
for small sample sizes the size and power of the tests is rather poor, although for small
systems the quality of the estimates is good. The second message is that somebody only
interested in the cointegrating relationships can restrict himself to pure autoregressive
models instead of using ARM A models or non-parametric methods, when there are no
unit roots in the un-modelled MA polynomial.

In Appendix A we present the proofs of some of the lemmata of Section 2. In Appendix
B the proofs of some lemmata of Section 3 are given. In Appendix C we show, by means
of a simple example, what may happen to the test statistic when the M A polynomial
has unit roots, too. In this appendix some tables and figures related to Section 4 are

also presented.

2 Some Matrix Algebra of I(1) Processes

In this section we will first review the matrix algebraic properties of integrated pro-
cesses. We will first discuss the general case of processes integrated of order d and will
then go on to look at the specific properties of I(1) systems. The results of the first part
are taken from Johansen [10]. The case of variables integrated of order 2 is discussed
in Haldrup and Salmon [7], a discussion of general orders of integration is given by
Gregoir [5, 6].

Let y; be an m-dimensional stochastic process integrated of order d (y; € I(d)), i.e. y;
is stationary after differencing d times but not stationary after differencing d —1 times.
We start with the definition of a Generalised Error Correction Model
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Definition: A time series model of the form
D_ Ay, + -+ + Dk,lAkflyt + Dk(z)Akyt = f(2)AP¢

is called Generalised Error Correction Model (GECM) of order k, if the following con-
ditions hold:

1. Dy(z) is holomorphic for |z| < 1+ p and Dg(1) # 1,

2. D;A'y,; is stationary for i = —s,...,k — 1,

3. y; is integrated of order k, i.e the integration order d has to equal k,
4. f(z) Z0V|z| <1+ p.

where A denotes the difference operator. The terms D;A'y; for i = —s,...,—1 are
called integral correction terms, the terms D;Aly; for i = 0,...,k — 1 are the error
correction terms and Dy AFy; is the autoregressive part of the model. The rows of Dy
give the linear combinations of y; that are stationary. The rows of D; are those linear
combinations of Ay, that are stationary, etc.

For s = p = 0 the above reduces to an Error Correction Model.

From our assumptions it follows that A%y, is stationary nd therefore it has a Wold
representation A%y, = > 7=0 Cj€t—j, where the function C(z) = 3772, cjz’ is existing
and finite on the set |z| < 1+ e. We now develop the function C(z) in its power series

around the point z =1

o
Z (1 — z)? 1—z|<p
7=0
and let C),(z) denote
o0
Z 1 — Z j—l—na
7=0
then
n—1 )
Clz) = Y (1-2)Cj+ (1 = 2)"Cul2).
j=0

Also C(z), the adjoint matrix function of C(z), is developed as a power series around

z=1.

o
Z (1—2)
Next, define the following subspaces of IR™

Nj: = {zeR™:4'C; =0} Vi=0,1,...
Mj: = NoﬂNlﬂ...ﬂNj Vi=0,1,...
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and m; := dim(M;). So M; is the space of all left null vectors of the matrices Cy, ..., C;.
Since C(0) = I, there exists no vector z, for which z'C; = 0 Vj holds, i.e. there is a
smallest k so that M; = 0 Vj > k holds.

Let n furthermore denote the sum of the dimensions of all the M;, i.e.

o
n = Z m;j.
=0
For all z € M; the following holds:

Ay, = C(2)e
oAy, = 2'C(2)e

g Aly, = A0 (2)e

Thus the space M; contains all cointegration vectors of order greater or equal to j + 1.
The cointegrating vectors of order j are contained in the space V; which is given by
Vo = My and V= Mj,lﬂMjL for j =1,...,k. Consequently, R =1V, ®...®V} has
to hold.

In Appendix A some of the results given in Johansen [10], which form the basis of the
results of Section 2, are briefly stated. (Theorems (A.1) to (A.5))

Against the background of the material summarised in the appendix in the sequel
we look at the case of processes integrated of order 1. We will need some results for
representations of matrix polynomials and rational functions of matrices, notably the
Smith and the Smith-McMillan representation. A discussion of these concepts can be
found e.g. in Hannan and Deistler [8]. Let us start with an AR process integrated of

order 1
a(z)ys = €, (2.1)

where we assume det(a(z)) = 0 implies z = 1 or |z| > 1. Then we also have
Ay = c(2)e, (2.2)

with ¢(z) = 3525 ¢; and Y22, [I¢;[1* < oo.
The Smith representation of a(z) is given by

Al (Z) 0

a(z) = u(z) v(z)
0 Am(2)

where u(z) and v(z) are unimodular matrices, i.e. they have constant determinants # 0.
Thus we see that o !(z) is given by

A (z) 0

al(z) =v7(2) u(2)
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The assumption that y; € I(1) implies that c¢(z) = (1 — 2)a '(z) = Aa () exists on

the closed unit circle. Therefore

(1—2)A\'(2) 0

has to be finite at z = 1.

Since u and v are unimodular, it suffices to analyse (1 — z)A~1(z).

The expressions (1 — 2)\; ' (2) exist for z = 1 finitely only if the multiplicity of the zero
z =1 of \j(z) is 0 or 1. This means d = 1 is equivalent to the existence of a number ¢,
with 1 < g < m, so that Aq,..., ), are not equal to 0 at z =1 and Ag11,..., A, have
a zero of order 1 at z = 1.

For I(1) — AR processes we can prove the following strengthening of Theorem A.5
Lemma 2.1 Ify; is an I(1)-AR-process, then r =n and k =1 hold.

Proof: See Appendix A

From Theorem A.5 we only know that 7' = n' implies d = k'. Lemma 2.1 shows a
stronger relationship for the case d = 1, where the matrix function is always balanced.
For having a representation as an error correction model in Theorem A.4 d = k was a
necessary condition. Since we are especially interested in I(1)-systems, i.e. d = 1, we
want to know when k£ = 1.

A characterisation in terms of the matrix function c(z) is given in the next corollary

Corollary 2.2 Under the assumption d = 1, the following four statements are equiva-

lent
1. k=1
2. N C Ny

3. lker(L(c(1))) C (ker(c(1)))"
4. lker(Cy) C (Iker(Co)t

Proof:
It is only necessary to prove the equivalence between the first two statements, because
the last two are only re-formulations of the second.

Since k = 1 the space IR can be represented as
R™=V,oW

and all other V; ,j =2,3,... are equal to the empty set, denoted by 0.
By construction we also have Vo = M- = N3~ and therefore

IR™ = Vp & No.
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This shows that Vi = Ny.
By definition V; = Ny N Ni-, which directly implies that Ni* D Ny. All implications
also hold in the other direction.

qed

This corollary shows that a regular derivative matrix of c¢(z) at the point z = 1 is
sufficient for k = 1.

We will now see that for I(1)-ARM A-systems k = 1 and r = n do not have to hold
necessarily. We start from a left co-prime ARM A(p, q) system

a(z)yr = b(2)er (2.3)

integrated of order 1. Again we have an M A(oco) representation for the first differences
of y
Ayt = c(2)eq (2.4)

with c(z) given by Aa=1(z)b(z). Let the Smith representations of a(z) and b(z) be given
by

then
c(z) = (1 = 2)v " (2)A™ ! (2)u” ! (2)0(2)T(2)p(2)

Therefore the determinant of ¢(z) is given by
det(c(z)) = e(1 — z)™ ﬁ 7:(2)
- i1 Mi(2)

where e is the product of the determinants of the unimodular matrices.

Next we denote by d,,(f(z)) the multiplicity of the zero z = zy of the function f(z).
The index r of the matrix function ¢(z), which we will now denote with 7., is, using
the above notation, given by

m

re=m+ Y [61(7(2)) — 81X ()],

i=1
because the system is left co-prime.
As for the AR case we will again answer the question of the implications of the system
to be I(1) on the matrices a(z) and b(z).
We start with

(1=2)e1(2)
¥1(2)

Ay, = u(z) v(2)es
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Here the ¢; and 1); shall be the polynomials from the Smith-McMillan representation®.
Because the ¢; and v; are relative prime, i.e. they have no common zeros, d1(1;(z)) has
to be 0 or 1, because in the case of multiple zeros at z = 1 ¢(z) would have a pole at
z = 1 which would imply y; ¢ I(1). Thus there exists a set T'={1,...,t} C {1,...,m}
for which we have 9;(1) = 0 Vi € T.. The relative primeness implies ¢;(1) # 0 Vi € T'.
Independently of 61 (€;(2)) ,t <4 < m the following holds

0

because the factors (1 — z) in the columns ¢ + 1,...,m cannot be cancelled by a zero
of the corresponding ;(z).
So for y; € I(1), independently of €;(z),

rank(c(1)) =m — ) 61 (4i(2))
i=1
holds. By simple enumeration one also sees that
re=m—Y8Wi(2) + Y i (a(2). (25)
i=1 i=1

For the indices k. and n. the following relationships hold.

Lemma 2.3 Under the assumption that k. = d = 1 ¢(2) is balanced, i.e. ¢ = ne, if
and only if Y i~ 01(ei(2)) = 0.

Proof:
k. = 1 implies n. = mg, because all M; = QVi > 1.
That implies

m

ne=mo=m— Y 01(1h;(2))

i=1
If one now uses (2.12) one sees that equality of r. and m. holds exactly when
2iz161(€i(2)) = 0.

qed

YTf a(z)y: = b(2)e: is a left co-prime ARM A system, then for the Smith representations of a(z) =
w(z)A(2)v(z), A(z) = diag(Xi(2)) and b(z) = o(2)T'(2)p(2), T'(z) = diag(v:(z)) and the Smith-McMillan
representation of k(z) = a~'(2)b(2) = w(2)A(2)5(2) with A(z) = dzag(;’z(é))) the following relationship
holds: Ai(2) = ¥Ym+1-i(2), i+ = 1,...,m and v;(2) = €(z), ¢ = 1,...,m, as has been shown e.g.

in Wagner [20]. Therefore, because of this one-to-one relationship, it is not necessary to distinguish
between the polynomials from the ARM A representation and the M A(oco) representation.
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The above implies that the polynomials €;(z), which can be attributed to the M A part,
do not under the assumptions stated exert any influence, on the cointegration space of
order 1.

Under slightly different assumptions than before one obtains

Lemma 2.4 Let a(z)y; = b(z)e, be an ARM A-System and let the following assump-
tions be fulfilled

1. (a,b) are left co-prime
2.y € I(1)
3. e =g
4. det(b(1)) #0
Then it also follows that k. = 1.

Proof:
From Theorem A.1 it is known that 7. is larger or equal than n..
From assumption 3 r, = n, = > 72, m; holds and relation (2.5) is by assumption 4 now

equal to
re=m—y_ 81(4i(2))
i=1

That means

Ne =m — 251(1/11(,2)) = m,

which implies m; = 0 has to hold Vi > 1.

This is equivalent to k., = 1.
qed

Lemma 2.3 and Lemma 2.4 show the influence of the M A polynomial on the properties
of the matrix function c(z), reflected by the indices k., n. and .. We see that under the
assumptions of Corollary 2.2 and det(b(1)) # 0 the matrix c¢(z) fulfils the assumptions
of Theorem A.1.

The situation is not as simple for ARM A processes as it is for AR processes integrated
of order 1, for which Lemma 2.1 holds.

In the ARM A case either r = n or k = d and det(b(1)) # 0 have to be assumed to
guarantee that both conditions hold.

Now from the point of view of the Johansen AR based approach to cointegration we can
interpret ARM A systems as AR systems disturbed by an M A polynomial b(z). This
interpretation raises the question of the relationship between the cointegrating spaces
of the AR and the ARM A system. Although as we have seen for I(1)-AR systems we
always have k = 1 and r = n, this is not true for all I(1)-ARM A systems. The ARM A
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system can e.g. be unbalanced. If a(z) and b(z) are left co-prime then the integration
order of the AR system a(z)y; = € is the same as for the ARM A system a(z)y; = b(z)e;,
because no cancellations of zeros of a(z) can occur. We have the following lemma:

Lemma 2.5 Let
a(2)yt = e (2.6)
be an AR(p)-System integrated of order 1. Furthermore a(1) shall be singular but # Op,.
Then for all ARM A(p, q) systems
a(2)ye = b(2)e; (2.7)

with (a,b) relative left prime and det(b(1)) # O the cointegrating spaces of order 1 of
the system (2.6) and all systems (2.7) are identical.

Proof:

For I(1) processes given in the M A representation of the stationary first differences
Ay = c(z)e; the cointegrating spaces of order one are given by the left kernel of ¢(1)
denoted by lker(c(1)). This means specifically for the AR systems (2.6)

Ay = cap(2)er = (1 — 2)a H(2)e
Representing the ARM A systems (2.7) in the same way one gets
Ay = carma(2)er = (1 — 2)a L (2)b(2)e
From the regularity assumption on b(1) of course

lker(car(1)) = lker(carma(1))

follows, which finishes the proof, because under our assumptions also all the considered
ARM A systems are € I(1).

qed

The above result can also be analysed by looking at the common trends representation of
integrated systems of order 1, which is the content of the famous Granger representation
theorem, see e.g. Engle and Granger [4]. To make the argument visible we write the
ARM A system as follows:

a(z)yr = w

Uy = b(Z)Et

which is reduced to the AR case if b(z) = I. Now the Granger representation theorem
derives an M A representation of the above “autoregressive” representation, which is
given by

T
yr = B ar(1)B) 7 a1 D ur + er(2)u (2.8)
t=1
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Here for a matrix v € IR"™" with full rank 7, is defined as a matrix of full rank,
dimension m X (m —r) and 7'y, = 0. The matrices @ and 3 stem from —a(1) = af,
where by assumption a(1) is rank deficient. Furthermore a1(1) is given by a(z) =
a(1) + (1 — z)ai(z). The same derivations apply to c;(z), where ¢(z) is the inverse of
a(z)/(1 — z).

Now replace u; by b(z)e; in (2.8)

T g
gy = Brea(1)B) L)) bjer j+ ci(2)b(2)e

t=1j=0
T

= B a1 (1)B) e b(1) Z et + c1(2)b(2)es (2.9)
t=1

If we want this to be a common trends representation we need the second term on the
right hand side of the above equation to be stationary.

From the assumptions on a(z) we know that c; (z) has all its roots outside the unit circle.
Therefore we have to postulate that also b(1) has no unit roots either, to guarantee the
stationarity of that component. Now, if b(1) is regular, we see that the common trends
in the first component, in the pure autoregressive case given by o/, Zthl €;, are subject
to a coordinate transformation due to pre-multiplication by b(1) and are now given by
o (1) T &

The above lemma shows that the regularity of b(1) is sufficient, together with the
assumption of left co-primeness of a(z) and b(z), for the cointegrating space of order 1
to remain unchanged.

These assumptions, however, do not guarantee that the matrix function ¢(z) =

(1 — 2)a 1(2)b(2) is balanced, so there could be cointegrating spaces of higher order.
An important remark at this stage is, as can easily be deduced from the above, that,
for integrated processes of any order, the cointegrating space that reduces the order of
integration by 1 is invariant to MA polynomials b(z) as long as det b(1) # 0.

3 The Behaviour of the Johansen Estimates under Mis-

specification

The results from the previous section, where we have seen that the cointegrating space
of order 1 is the same for AR systems a(z)y; = ¢ and for all left co-prime ARM A
systems a(z)y; = b(z)e; without unit roots in the M A polynomial b(z), justify the
question whether we can estimate the cointegrating vectors using the Johansen method
under this form of ”misspecification”. We start with a brief description of the Johansen
method, a detailed description can be found e.g. in the monograph by Johansen [13].

The starting point is a Gaussian vector autoregressive model of order p:

a(z)ys = €, et ~ NID(0,X%)
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From Theorem A.5 and Lemma 2.1 we know that the representation
a(l)y: + a1(2)Aye = €
is an error correction model. We use the equivalent representation
Ay =T1Ayr 1+ ...+ Tp 1 Ayt—pr1 +Tpye—p + & (3.1)

where we have put the level term at lag p. The matrices I'; are given by I'; = —1I,,, +
ai+...+a;fori=1,...,p and we also have I') = —a(1). Under the hypothesis that
there are r cointegrating vectors one can rewrite I'), = o’ with @ and § € R(m*7) The
space spanned by the columns of g is then the cointegrating space of order 1.

The maximum likelihood estimation of 8 proceeds as follows: First is terminus techni-
cus the parameter matrices I'y,...,[',_1 out by running two OLS regressions: Regress
Ay; and y;_, on the lagged differences Ay;_1,..., Ay;_pr1. The residuals of these two
regressions are denoted with Ry; and R,;. The product moment matrices of these resid-

uals are then given by
1 X
Sij =7 RaRj,  i,j=0p
t=1

Using the above quantities the maximum likelihood estimates of 8 are given by the

eigenvectors corresponding to the r largest eigenvalues 5\1, ey A of
[ASpp — SPOS&)ISOP‘ =0

The likelihood ratio test statistic of Hy : dim () < r against the alternative dim(f3) =
m is given by
m ~
—2in(Q)y =T > In(1—X\)
i=r+41
This test is denoted trace or 7 test. We can also test the hypothesis Hy : dim(8) < r
against the alternative dim(8) = r+1. This leads to the max or ¢ test with test statistic

~

~2In(Q)¢ = In(1 — A1)

Let now a(z)y; = b(z)e; be a left co-prime ARM A(p, q) system, where the assumptions
concerning a(z) are as in Section 2 and det(b(1)) # 0. We can re-parameterise the

system as
Ay =T1Ay; 1 +... + I‘pflAyt,p_H + prtfp + e +bre1+...+ bqetfq (32)

The model (3.2) does not necessarily form an ECM in the sense of the definition given
in Section 2, but as we have seen in Lemma, 2.4 the cointegrating space of order one is
still given by sp(8). We denote the variance matrix of the stationary variables 3'y; by

Y35. For the model class described we can formulate the following theorem:
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Theorem 3.1 The Johansen estimation procedure for cointegrated vector autoregres-
sive models yields consistent estimates for B under the form of ARM A misspecification
discussed above .

The estimates for 3 and 11 are generally not consistent and are given by

nhm+ fpa(a'a)_lzgéﬂ'

and
& P ! N—1x—1 ot —17 1 N—1 14t
—&pa(dla) 1S5(0le) ol + & + &,
With
q
& = D b3, — Tiun o
n=1

& = T2— Tihn feo

and

q q
T = (Z b2, 1, Z bnXcl, o, - ) ;
n=1 n=2

q
T =Y bp¥dy, T}
m=p

forq > p and 9 = 0 for ¢ < p. The c, are the coefficients from the Wold representation
for Ay, i.e. from Ay = c(z)e, the by, are the coefficients from the MA polynomial
b(2) and dp—p = — 322,41 Ci-

Proof: See Appendix B.

We have seen in Section 2 that the common trends are given by o/, b(1) 7, ¢;, therefore
it is no surprise that the estimate of « is inconsistent since the loading matrix under
misspecification is influenced by the MA polynomial. The same holds for the variance
matrix of the residuals.

It would be interesting to relate these results to the literature on AR estimation of
ARMA processes in the stationary case.

The asymptotic distributions of the likelihood ratio test statistics and the estimated
cointegrating vectors remain unclear.? The derivation of the limit distribution of
(TAri1,--.,TAm) uses equation (B.11) and (B.12) from Lemma B.3 and (B.26) from

Lemma B.4 which we have seen to depend on b(z).

When the model is correctly specified the limit of the test statistic of the trace test given by

1 1 1
tr ( / dWww’ ( / WW’du) / WdW’)
0 0 0

where W is an m-dimensional Wiener process.

-1
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The derivation of the limit distribution of T[3% ' — ] uses relation (B.36) from Lemma
B.5, a relation that also depends on b(z).

From the discussion after Lemma B.4 we know that, regardless of the misspecification,
the first r eigenvalues are converging towards non-zero constants while the latter go to
Z€ero as Op(%). This directly implies that the asymptotic power of the trace test against
the alternative that there are r + s cointegrating vectors is tending to 1, because then
the test statistic —7"> 7", In(1 — i) contains s terms that are diverging.3

On the other hand, since no analytical derivation of the limit distribution is available,
it is unclear how much influence on the asymptotic distribution is really exerted by the

M A polynomial b(z). To deal with these issues a simulation study has been performed.

4 Results of a Simulation Study

The aim of this section is to report some results of simulations that have been per-
formed to analyse the finite sample implications of the above results. Naturally any
simulation study can only be interpreted with caution, but it may have some indicative
value.?

We want to study several aspects. First we want to see whether the actual size of the
test statistics really approximates the nominal size under the discussed type of mis-
specification. Then we want to analyse the behaviour of the estimated cointegrating
space, i.e. the distribution of the estimated cointegrating space and the distance of the
estimated vectors to the true cointegrating space.

Both of these aspects are investigated in reference to different sample sizes to see
whether the established consistency of the estimated cointegrated space under mis-
specification is of empirical relevance.

As a distance measure between the estimated and the true cointegrating space we use
the Hausdorff distance, which is defined thus:

Let ¢ and 7 be two subspaces of IR™. The intersection of a subspace 6 of IR™ with the
closed unit circle in IR™ is denoted by C(6),

CO)={z€0] |zl <1}

where || z || is the Euclidean norm of z. Using this notation the distance d of { and 7
is given by the Hausdorff distance dg of C(¢) and C(n), i.e.

d(¢,n) = du(C(¢), C(n)) = maz(p(C(¢), C(n)), p(C(n), C()))
where p(C1, Cs)is given by

p(C1,Cy) = sup inf ||z —y | .
ze€Cy YEC2

3 Analogous reasoning also works for the max test.
“The simulations have been performed using GAUSS 3.2, the programmes and further results are

available from the author upon request.
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The simulations have been performed as follows: We have generated 1000 time series of
the system(s) of length 250, then we skipped the first 50 observations and constructed
four samples of lengths T' = 50,100, 150 and 200, by taking the first 50, first 100 etc.
observations. This setup is used to see the effects of increasing sample size on effectively
growing samples. Then the Johansen procedure was run for an AR(2) model.?

The first set of models that has been simulated are 2 dimensional ARM A(2,1) system

with one cointegrating vector adopted from Hargreaves [9]:

B R R

=05 0 Uit-—2 €1¢ 7 0 €1¢-1
A e @y
0 0 U2 €2t 0 7 €2t—1
The parameter values of the M A polynomials that we have chosen are v; = —1 and

9 = —.9, systems with
v1 =y = —0.8,—-0.5. — 0.2,0,0.2,0.5,0.8

and y; =1 and 2 = 0.8.
The first system has a unit root in the MA polynomial, so it does not fulfill the con-
ditions of Theorem 3.1. Still, it is interesting to see the behaviour of the Johansen
estimates in the case of the presence of an MA unit root. The fifth system, the pure
AR(2) system, serves as a point of reference.
The true cointegrating vector of the above system(s) is, suitably normed, given by
(1,-3), it is in fact the space spanned by the second row of the matrix in the beginning
of the first line of (4.1).
Table 1 shows some characteristics of the distribution of the estimated cointegrating
vectors. After normalising of the first coordinate to 1 in this example only one element
of the estimated cointegrating vector is undetermined. Thus we only have an empirical
distribution for the second coordinate which is described by its mean, standard devia-
tion (S.D.), median, skewness (skew.) and kurtosis (kurt.).® Our measure of skewness
is
997.5 — 9500 _ 4
g50.0 — 92.5
where g¢; is the i-th quartile. As a measure of kurtosis we use
Q975 —q2.5  1.96
Q9.5 — Qo5 2.575

5One issue that has to be mentioned here is that on principle one must look at the problem of
lag length selection. Especially for small sample sizes and intermediate values of the MA parameters
of order 1, information criteria do not reject this choice of the lag length. For large sample sizes the
MA misspecification leads to a tendency to choose a higher autoregressive order and this makes the

Johansen procedure more robust.
5The empirical distribution is calculated by taking the first solution vector of the eigenvalue problem

in each repetition of the simulation.
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Both measures are equal to zero for a normally distributed random variable.

In Table 1 (and also in Table 4 in Appendix C) HD-mean indicates the Hausdorff
distance between the true cointegrating vector(s) and the vector(s) composed of the
mean elements, over all replications, of the estimated cointegrating vector(s). The same

holds true for HD-medi., of course with the median replacing the mean.

The behaviour of the estimates is very similar for all nine systems, the quality of ap-
proximation of the true cointegrating space by the estimated cointegrating space is
already very good for only 50 observations. It is merely for sample size 50 that the
standard deviation of the estimated cointegrating vector is smaller for the correctly
specified AR system than for the misspecified systems.

This means that the (empirical) distribution is almost unchanged under the misspeci-
fication discussed in this example for sample sizes that are usually available in macro-
econometrics.”

In applications we naturally do not only want to estimate a potential cointegrating
space usually also determine the dimension of that space.® The probabilities of accept-
ing a specific dimension of the cointegrating space for our examples, using the sequential
test procedures with the trace or max test, are given in Tables 2 and 3 in Appendix C.
The probabilities of choosing the correct dimension are given in Figure 1 for the trace
test and in Figure 2 for the max test.’

All test results reported in this paper are at the 95 % level, they are unchanged for

other significance levels. Looking at the figures and the tables one sees that the results

Figure 1: Acceptance probability of the correct number of cointegrating vectors for

systems (4.1) using the trace test

"The differences, although only minor, do not vanish if one looks at sample sizes up to 400 observa-
tions.

81f one runs the above described sequential test procedures, based on the trace and max test respec-
tively, in the reversed order, one gets the same results as in the original order in more than 99.5 % of

the cases, for all systems and also for the 3 dimensional systems described later.
9The critical values have been taken from Osterwald-Lenum [14].
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Table 1: Some features of the empirical distribution of the estimated cointegrating

vectors of systems (4.1)

T 50 100 150 200

MA1 Mean -2.9828 -3.009 -3.0006 -2.9998
S.D. 0.9723 0.1436 0.0755 0.059

Median -2.9949 -2.9962 -2.9975 -2.996

Skew. -0.4436 -0.3424 -0.2023 -0.2568

Kurt. -0.4953 0.7186 0.7903 1.0114

HD-mean 0.0012 0.0006 0 0
HD-medi. 0.0004 0.0003 0.0002 0.0003
MA2 Mean -2.998 -3.0012 -3.0006 -3.0005
S.D. 0.1861 0.024 0.0152 0.0114
Median -3.0012 -3.0004 -3.0003 -3.0007
Skew. -0.1419 -0.0483 -0.0662 -0.0625
Kurt. 0.2717 0.4251 0.6762 0.3711
HD-mean 0.0001 0.0001 0 0
HD-medi 0.0001 0 0 0
MA3 Mean -3.0031 -3.0009 -3.0007 -3.0002
S.D. 0.0888 0.0226 0.0135 0.0101
Median -3.0004 -3.0004 -2.9999 -3

Skew. -0.1662 -0.1096 -0.2304 0.0488
Kurt. 0.1543 0.4006 0.6506 0.5331

HD-mean 0.0002 0.0001 0.0001 0
HD-medi. 0 0 0 0
MA4 Mean -2.9972 -3 -2.9997 -2.9997

S.D. 0.2221 0.0267 0.0165 0.0121
Median -2.9974 -2.9991 -2.9996 -2.9998
Skew. -0.1674 -0.0325 -0.2083 -0.0019

Kurt. 0.357 0.6263 0.6871 0.5639
HD-mean 0.0002 0 0 0
HD-medi. 0.0002 0.0001 0 0

MAS5 Mean -3.0036 -2.9997 -2.9997 -3.0001

S.D. 0.1024 0.0252 0.0156 0.0111
Median -2.9997 -2.9999 -3.0002 -3.0001

Skew. -0.2294 -0.0229 0.0518 -0.081

Kurt. 0.1918 0.6474 0.4198 0.5099
HD-mean 0.0003 0 0 0
HD-medi. 0 0 0 0

MAS6 Mean -3.007 -3.001 -2.9995 -3.0001

S.D. 0.2089 0.0341 0.0172 0.0124
Median -2.9988 -2.9993 -2.9995 -3.0001

Skew. -0.1599 -0.2015 -0.0451 -0.07
Kurt. 0.3059 0.4118 0.3297 0.4186
HD-mean 0.0005 0.0001 0 0
HD-medi. 0.0001 0.0001 0 0
MA7 Mean -3.0108 -3.0004 -2.9992 -2.9998

S.D. 0.4899 0.0285 0.0305 0.0121
Median -2.9977 -2.9991 -2.9997 -2.9996

Skew. -0.0736 -0.2603 -0.2144 -0.0562

Kurt. -0.3618 0.342 0.4373 0.4654
HD-mean 0.0008 0 0.0001 0
HD-medi 0.0002 0.0001 0 0

MAS8 Mean -3.0067 -3.0034 -3.0012 -3.0007

S.D. 0.4396 0.0769 0.0169 0.0135
Median -3.0009 -3.0002 -3.0007 -3.0006
Skew. -0.1716 -0.189 -0.2558 -0.0474
Kurt. -0.2519 0.5242 0.553 0.4218

HD-mean 0.0005 0.0002 0.0001 0
HD-medi 0.0001 0 0 0

MA9 Mean -3.0043 -2.9996 -3.0011 -3.0007

S.D. 0.2944 0.0306 0.0163 0.0105

Median -2.999 -3 -3 -3.0005

Skew. 0.1221 -0.0114 -0.2113 -0.1696

Kurt. 0.1158 -0.1153 0.4662 0.8067

HD-mean 0.0003 0 0.0001 0.0001

HD-medi. 0.0001 0 0 0
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are similar in both tests and that for all the systems without a unit root in the MA
polynomial (MA2 to MA9) the actual acceptance probabilities of the correct dimension
are approaching the nominal value. This happens irrespective of the MA polynomial,
only in the case of MA2 the value is only 86 % for 200 observations. In the figures the
results for the correctly specified system are drawn in black.

Something completely different happens for the system with the unit root in the MA

Figure 2: Acceptance probability of the correct number of cointegrating vectors for
systems (4.1) using the max test

polynomial. Here the probability of choosing a cointegrating space of maximal dimen-
sion is going to 1 (see Tables 2 and 3). A simple algebraic example analysed in Appendix
C is used to explain why this kind of behaviour occurs. There we show that each ele-
ment of the trace of the matrix product that forms the basis for the testing procedure
is diverging to infinity when the MA polynomial is converging to b(z) = diag(1 — z).
Take a look at equation (2.9),

Y = B/ ar(1)BL) o/ b(1 Z € +ci(z

which we have seen to be a common trends representation for regular b(1). The first
part of the right hand side of this equation is still composed of the same number of
linearly independent random walks as for regular b(1) if the rank of o/, b(1) is the same

as the rank of o, . For the system at hand o/, = (3,—1) and

L
b(l)zlj g]

therefore o/, b(1) = (0,0).
What can also be clearly seen from the tables and figures is the fact that for 50 obser-
vations the actual size is very far from the (asymptotic) nominal size. Therefore, and

this is a well known fact, using the tables with the asymptotic critical values for just
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50 observations is not a good idea.

Since we have also seen before that the quality of the estimated cointegrating vectors
in terms of e.g. mean and standard deviation of the estimates is not bad, this implies
that the estimation of cointegrating vectors for small systems and few observations is
feasible if one uses corresponding tables with critical values for small samples, at least
for 2 dimensional systems.

The second set of simulated systems are 3-dimensional ARM A(2,1) systems with a

two dimensional cointegrating space.

1 10 Y1t U7t 08 O 0 UL—1
1 01 yor | = | uee | =1 0 1.2 0 Ugp—1 | +
11 3 Y3t U3t 0 0 1.5 Ugp_1
0 0 0 ULp—2 €1t 7 0 0 €141
+10 -0.7 0 Ugg—o |+ | € |+ 0 2 O €21
0 0 —0.5 U3t—2 €3¢ 0 0 ~3 €3t_1 (4.2)

The MA polynomials used for simulation are y; = —1,v3 = 3 = —0.9 and the following

systems with identical entries vs
Y1 =y =7v3=-0.5, 0, 0.6, 0.8.

Again the first system, MA1, has a unit root in the MA polynomial.

The true cointegrating space is two-dimensional now, and a basis is given by

_ o =
S = =

With a 2-dimensional cointegrating space after normalisation 4 elements are undeter-
mined. We normalise the first element of the first vector to 1 and the second element
of the second to 1.

Table 4 in Appendix C describes some features of the empirical distribution of the
normed basis of the estimated cointegrating space.

The results are comparable to the results from the simulation of 2-dimensional systems
before. The behaviour of the estimates is again similar for the different MA polynomials,
but the standard deviations for 50 observations are now much larger than before. Also
the Hausdorff distance between the spaces spanned by the mean and median vectors
and the true cointegrating space are now much larger for T' = 50.

The large standard deviations imply that for small sample sizes hypothesis testing on
the cointegrating vectors is not useful; at least 100 observations are required for that
task.

As before the actual probabilities of choosing the correct dimension of the cointegrating

space are shown in two figures, again the corresponding tables show the probabilities
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Figure 3: Acceptance probability of the correct number of cointegrating vectors for

systems (4.2) using the trace test

of all dimensions given in Appendix C. In Figures 3 and 4 we see that the actual size of
the test is not as close to the nominal as before, the behaviour also varies more between
the different systems. As a rough guideline it seems to be the case that 150 observations
are now required for making the use of asymptotical tables a useful exercise. For MA1
(the system with the unit root) the actual size is decreasing from 100 observations
onwards, in Tables 5 and 6 one sees that the probability of deciding for a 3-dimensional

cointegrating space is increasing with the sample size.!?

Figure 4: Acceptance probability of the correct number of cointegrating vectors for

systems (4.2) using the max test

100

80

-60

-40

-20

10For 400 observations and for the trace test the probabilities of choosing a 2- or 3-dimensional space
are 50.2 and 49.8 %. For this system, although b(1) is singular, the rank of o/, and o/, b(1) coincide.
This could be a reason for the less rapid divergence of the test statistic compared to the behaviour of

the 2-dimensional system with a unit root in the MA polynomial.
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In the following figure we try to combine the results from the estimation and the testing
step of the simulation. Then we show the Hausdorff distances between the estimated
and true cointegrating space. We only show the cases where the trace test indicates the

correct number of cointegrating vectors.!!

From the front to the back we see the results for the 6 systems, first for 50, then for
100 observations. We only show the interval of Hausdorff distances smaller than 0.05,
thereby we exclude those cases with a correct decision about the cointegrating rank
but a bad quality of the estimates and all the cases with a wrong decision about the
cointegrating rank. The latter would appear as spikes in the “front” of the picture,
because the Hausdorff distance between spaces of different dimensions is 1. In other
words, the mass, for fixed MA polynomial and sample size, under the curve is equal
to the number of cases in which the sequential test procedure based on the trace test
indicated the correct dimension of the cointegrating space and the Hausdorff distance
of the estimated and true cointegrating space is smaller than 0.05.'2

The picture shows two things. Only for sample size 50 the (unnormalised) distribution
is higher for MA1 than for the others. This stems from the fact that in this case the
test statistic diverges for increasing sample size, producing an “upward bias” compared
to small sample sizes.

From 100 observations onwards the distribution corresponding to MA1 is very flat and
due to the divergence of the test statistic, is having less and less mass. For the other
systems we see that the distribution for 100 and 150 observations is higher and the more
negative are the coefficients in the MA polynomial.!3 Finally, for 200 observations the
distributions are quite similar, and they are all shifted to 0. The last aspect means that
the quality of the approximation is getting better for larger sample sizes, as has to be
expected from consistent estimates.

The simulation study indicates that the Johansen procedure is quite robust with re-
spect to MA disturbances for sample sizes that one may have in macro-econometric
applications. An important question that remains to be answered is the asymptotic
distribution of the estimates and the test statistics in the case of moving average struc-
ture in the errors. This question is even more interesting in the light of the results of Yap
and Reinsel [21], who have shown that the asymptotic distribution of the test statistic
is the same for correctly specified cointegrated ARM A models as for AR models.

5 Conclusions

The results of this paper can be summarised as follows. The Johansen procedure for

estimation and testing in cointegrated vector autoregressive systems is quite robust with

The corresponding figure for the max test is given in Appendix C.

?Extending the picture to include a larger range of Hausdorff distances just produces an almost flat
area in the front of the picture.

13This kind of monotony is also seen in Figures 3 and 4.
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Figure 5: Hausdorff distances between the true and estimated cointegrating space of

systems (4.2) using the trace test

respect to misspecification in the form of un-modelled moving average error dynamics.
This robustness has been established theoretically and it has been shown to be of
practical relevance by means of a small simulation study carried out with sample sizes
that are usually available in macro-econometric applications.

In the case of proving the comsistency of the estimates of the co-integrating space
under the discussed form of misspecification we have derived some matrix algebraic

relationships for (1) — ARM A systems that may be of some interest in themselves.

Once again it has to be noted that the misspecification leads to biased estimates of
the short-run adjustment parameters and the variance-covariance matrix. This is as
expected, because we have seen that the MA polynomial leads to a coordinate transfor-
mation of the common trends, and the variance matrix estimated by assuming a VAR
structure for the likelihood is generally biased.

As long as there are no unit roots in the errors, the procedure appears very robust.
The result is especially intended to cover cases where the misspecification is “small”,
i.e. there are only minor deviations from white noise behaviour of the errors. This is a
situation that especially in small samples may be hard to be distinguished from a pure
VAR by model selection procedures, like AIC, BIC or the like. For cases like this the
results of the estimation and testing procedure are not affected to a big extent.

The results also show that when one is interested only in the long-run relationships,
one can estimate then with a high degree of precision by a VAR model. This has the

advantage that one does not have to use VARMA models or non-parametric methods.
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The relative performance of several different methods is currently investigated.'*

Still unresolved issues are the asymptotic distributions of the estimators and test statis-
tics under misspecification as in Theorem 3.1. The simulations, and also the super-
consistency of B, suggest that, if there is some influence of the MA polynomial at all,
the effects seem to be rather small.

Although already known in (part of) the literature it should be stressed once more
that the estimation of cointegrating spaces requires some minimum sample sizes to al-
low for the sensible use of the tabulated critical values and also for a good quality of

approximation of the true cointegrating space by the estimated cointegrating space.

4The author is currently comparing Johansen’s method and Bierens’ [2] nonparametric cointegration
method. The latter uses Chebycheff polynomials to approximate VARMA models. For a very brief
comment comparing the two approaches see Deistler and Wagner [3].
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A Appendix to Section 2

The following Theorems A.1 to A.5 are derived by Johansen [10].

Theorem A.1 The multiplicity r of the zero z = 1 of det(C(z)) is larger than or equal to n.
Thus there exists a function f(z) # 0 so that

det(C(2)) = (1-2)"f(2), r=n

holds.

Theorem A.2 For the coefficients of the adjoint matriz function

o0

C(z) =Y (1-2)C;
j=0
Ci=0 j=0,....,n—-k—-1 (A.1)
therefore: C(z) = (1 — 2)" *Cp_1(2) (A.2)
CriCi=0 0<i<j<k (A.3)
CrnjC(z) = (1= 2)1Cn_jCi(2) j=1,....k (A.4)
and C(2)C; = (1 —2)"'Cp,_s(2)C;  i=0,...,k—1 (A.5)

holds.

Relation (A.3) shows that the rows of C,,_; are contained in the left null spaces of the matrices
C;, for i < j. This means that the space spanned by the rows of C, g, ...,Cn_;_1 is contained
A sufficient condition for these two spaces to coincide is formulated in the next theorem.
Theorem A.3 Ifr =n, then:

1. Z?:o Cn—;Cj is proportional to the identity matriz.

2. 19(Cr—;Ci) =mj_1 —mj =dimV; j=0,...,k.

3. The rows of Cp_p,...,Cn_i_1 span Mj.

The following theorem shows when the process A%y; = C(z)e(t) has an error correction repre-

sentation.

Theorem A.4 The process y;, satisfies an error correction model of the form
Crcie + .o+ Crl 1 AF Ly + Cr(2) APy, = f(2)e, t=0,1,... (A.6)
if:
1.d=k
2. C(z) is balanced, i.e. r = n.

Where the indices k,r,n are defined from C(z).
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If the assumptions of the preceeding theorem are not fulfilled y; satisfies a GECM of order d,
which may for » > n contain a non-invertible stationary process on the right hand side and
integral correction terms on the left hand side for d < k.

For the process given by its autoregressive representation A(z)y; = €; the corresponding theorem

is
Theorem A.5 The equation A(z)y; = €, satisfies an error correction model of order k'

Aoy + -+ Ap 1 A Ly + Ap (2)AF gy = €. (A.7)
if A'(2) is balanced, i.e. ' =n'.

In the above theorem A'(z) denotes the transposed matrix function of A(z) and k',r' and n’
its indices.

As with error correction models in M A representation, for the AR representation one sees that
the cointegrating vectors of order ¢ are contained in the space formed by the rows of the A;.

Proof of Lemma 2.1:
We can represent the determinant of ¢(z) from the M A(oo)-representation of Ay, by det(c(z)) =
(1-2)"f(2)

So we can write ¢(z), where A(z) shall be given in Smith form, as

A ()
0
At (2)
ce(z) = (1-2)v Y(2) AL () u ' (2)
(1-2)
0
At (2)
(1-2)
therefore
A 2)(1-2)
0
At 1—
o() = v (2) (D=2 i (2)
m7r+1(z)
0
AR (2)
Now inserting z = 1 results in
0
0
(1) =o' (1) . (1)
/\m—r—i-l(l)
0
AL

This means that the rank of ¢(1) is m —r, because \;(1) # 0 has to hold for i = m—r+1,...,m.
This directly implies that the dimension of the space My denoted by mg = r.
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From theorem 2.1 we know r > n = Y ;2 m;.
Combining this and mg = r we obtain r = n = myg.
From this one also sees that all m; for ¢ > 1 have to equal 0, which shows k = 1.

qed

B Appendix to Section 3

This appendix is devoted to proving Theorem 3.1. The structure is thereby taken to parallel
the proof sequence in Johansen [11], with the advantage that one clearly sees where the mis-
specification exerts influence on the results.
We write y; as the sum of lagged differences

t
yt:Zij+y0 t=1,2,...
Jj=1

and, to simplify notation, we will assume yo = 0.
We denote, following the notation in Johansen [10], by

V(i) == EAy Ay,

and

P(i -
Bpi = Zw(]) 7::0,1,...,])—1

j=k—1i
pop = — > lilvG)
j=—o0
o= > ()
j=—00

From Ay, = 3777 ¢je;—; one immediately obtains
o0
(i) = Z B,
=0

and using the notation C' = ¢(1) = 372 ¢; yields

o0 o0
T=>) ¢T) d=05C
j=0 j=0

Also "
var(ye—p) = Y (t—p—[iD¢Q) (B.1)
j=—t+p
and o
cov(ye p, Aye i) = D (). (B-2)

Jj=p—i
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Asymptotically (3.3) and (3.4) have limits

o

var(T~2y,) Topo Z P@E) =" (B.3)
i=—o00
T o0
cov(yr—p, Ayr—i) =D (i) =pp;  i=0,1,...,p—1 (B4)
p—i
For the variance of §'yr_, one gets from
T—p T—p
var(Byr—p) = (T —p) Y, BY@B— Y. lilB'¢3)s
j=-T+p j==T+p
for the limit
Ilim var(B'yr—p) = B' tppB = wsp, (B.5)
—00

because §'C = 0 implies that 3'® = 0, for that reason the first term vanishes asymptotically.
All the above relations hold for general y; € I(1).
We, furthermore, define the following sample moment matrices:

T
1 .
Mij = Tt_zlAytfiAyé_j %,) = 0717' - P 1
1 T
M, = f;yt_pAy;_i i=0,1,...,p—1
1 T
Mpp = fzyt—pyé—p
t=1

The asymptotic behaviour of these is given by

Lemma B.2 For T — oo the following holds

—btrn S CW () (B.6)

My Y ;. 4,j=0,1,...,p—1 (B.7)
A@rﬂleWﬂchﬁw i=0,1,...,p—1 (B.8)
B' MppB =3 s (B.9)
%mﬁﬂqfwwwmmﬂ (B.10)

where W is an m-dimensional Brownian motion with covariance matrix .

For the matrices S;; defined in the preceeding description of the Johansen procedure the fol-
lowing relationships hold

Sij = Mij — My MM, i, =0,p

where
M(]* = (M()l,...,M()p_l)
Mp* = (Mpl,...,Mppfl)
M11 e Mlp—l
M,y = . :

My 1y ... My_1py
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and M*] = (M] )I.

In exactly the same way we introduce for the matrices p;;
-1
ij 1= Mij — Wik M

Using this notation one obtains the following lemma, which already shows effects of the mis-
specification

Lemma B.3 The following identities hold

Yoo = FIJEIJO +X+& (B-ll)
0,7, = a¥gpa’ + &, (B.12)

and using T'p = —af’,
Eoo = OLEggal +X+ €0 + fp (313)

where & and &, depend on b(z) and are defined in the proof.

Proof:

The stated relations are reduced to the relations given in Lemma 2 in Johansen in the case that
the true model is AR. The derivation there exploits the AR structure, therefore here one has
to expect changes. From the defining equation for y;

Ay =T Ay 1+ ...+ Fp—lAyt—p+1 + prt—p + e +breg—1+ ...+ b

one obtains by multiplication with Ay;_; for i = 0.1..... p — 1. division by % and summation
over t = 1,...,T the following equations
1 Z
Mo; =T1My; +...+ Fp_lMp_li + FpMpi + T Z b(z)etAy,'g_,’ (B.14)
t=1

fori=0,1,...,p—1
and by multiplication with y;_,

T

1
Mop =T1Mip + ...+ Tp 1 My 1p + TpMpp + > b(2)ewi—, (B.15)
t=1
If one now solves equations (B.14) for 4 =1,...,p — 1 for (I'1,...,T,_1) one gets
(T1,...,Tp 1) = Mo, M — T, M, M} — 2, M} (B.16)
with Z; = (% Y b)Y, = T b(2)e Ay, +1).
Inserting this solution in (B.1) for ¢ = 0 yields
1 I
S0 = TpSpo + 7 > b(2)e Ay — Zi ML Mg (B.17)
t=1

By inserting in (B.15) und multiplication from the right with I}, one gets

T
1
SopTy = TpSpply + > b(2)ey; ,Th — Z ML M,T, (B.18)

P
t=1
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-IHS

Let
T = hm Z1

T—o0

i.e.
q q
™ = (Z bnzclnfla Z bnzclnfw ot ) )

n=1 n=2

and
1 T
Ty 1= qll_I}éo T t—z1 b(z)et(Tpyi—p)

For g < p 7 = 0 holds and for ¢ > p the result will be derived now by

Ayip = c(2)e—p
= [C+ A (@)
oAy, = [[pAC*(2)]er—p

Since I', = af', we have I',C = 0 and after cancellation of A
Lpyi—p = Lpc”(2)€r—p

remains. By straightforward calculation one sees that

c*(z) = Z(— Z ).
=0

i i=j+1

Using this representation for ¢*(z) for 73 in the case ¢ > p one derives
q
= bnYd, T}
m=p

with dp—p = — 30251

The limits for T' — oo of egs. (B.17) and (B.18). using by = ¢g = I, are given by:

q
So0 =TpSp0 + A+ D buBc), — Tupz piwo

n=1

and
EOpF; = aEgﬁa' —+ 10 — 7'1#;*1#*0

Now using the following notation

q
o = Z bnEc'n - Tlﬂ;*l,u*ﬂ
n=1
§p = T2— Tl s

one obtains
Yoo = szpo +X+&

EOPF; = aXgga' + &

Combining the above two equations one also obtains

Yoo = aE,gga' +X+&+ 6;,

¢;- Here b, denote of course the coefficients from the M A polynomial.

(B.19)

(B.20)

(B.21)
(B.22)

(B.23)
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If the true model coincides with the estimated model, one additionally gets the following identity
a = —%0,0% 5.
For this relation we find no analogon under ARM A misspecification, we obtain

a =T,fA%5; — Lala'a) 5] (B.24)
where « is only defined implicitly.
qed

The next lemma discusses the asymptotic behaviour of the matrices S;;, only the second rela-
tionship changes under the presence of an unmodeled MA part.

Lemma B.4 For T — oo and § chosen so that 8'a =0

Soo =3 Too (B.25)
1 q s—p
5'Sop % 5'b(1) / AWW'C +8(S 5,53 ) = 71zt e (B.26)
0 s=p h=0
B'Spo =3 B'Ero (B.27)
1 w !
TS,,,, = C/o W (u)W' (u)duC’ (B.28)
B'SppB =3 B'S,,8 (B.29)

hold. 71 is the limit of Z1 = (% ST byl 4y, YT b(z)etAyg,pH)

Proof: Only relationship (B.26) has to be shown, because it is the only one that has changed.
Use the solution for (T';..... I'p—1) given in eq. (B.17) and insert in eq. (B.16) to get

T
1
Mop = Moy M Myy — Ty My M My — Zi M My + Tp M,y + 7 > b(2)ewi -
t=1

which we rewrite as

T
_ 1
Sop = TpSpp — Z1 M, M + 7 ; b(2)eryh_p.- (B.30)

Multiply with ¢’ to get
1 I
8" Sop = 5'; ,5:21 b(2)ew;_,, — 0' ZL M, M,

The difference for the asymptotic behaviour between the AR case where b(z) = I and the
ARM A misspecified case is that in the first term on the right hand side for ¢ > p correlated
random variables appear. To derive the limit of this expression we use the results obtained in
Phillips and Solo [15] and find

1 q s§—p
5'Sop % 5'b(1) / AWVWC' +8(3 553 ) = 11z rap).
0 s=p h=0

qed
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We see that as soon as the M A order is > 1 71 is not equal to 0.

Regardless of the nature of the M A part the ordered eigenvalues of

IASpp — Sp0Sao Sop| = 0 (B.31)
still converge in probability to (A,...,Ar.0,...,0),
where Ay, ..., A, are the ordered eigenvalues of the equation
AZg5 — B'Sp0Zog SopBl = 0 (B.32)

This is true because the matrices S;; and ¥;; are defined "model-free”, as they are moment
matrices resp. limits of moments matrices. This implies that there are still r eigenvalues positive
in the limit and m —r are converging to zero. The above means that also under misspecification
Thi diverges for 1 <i <r.

As in Johansen [11] the eigenvectors Bi, i = 1,...,r are decomposed into two orthogonal
components.

Let B = (Bi..... Br) denote the matrix of the eigenvectors. Then using

& = (B'B) BB
i = ()b

where 7 is the matrix spanning the orthogonal complement of the space spanned by (3, the
vectors Bi are decomposed as:

Bi = BZi + 7Y
With & := (21, ...,4,) we have 2 = (8'8)~'3'B, so 3% is the projection of 3 on the column space
of 3. For the vectors §; the matrix § is defined accordingly. Finally S()\) := AS,p — Sp0Soq Sop»
then

Lemma B.5 Fori=1,2,...,7

1
'S\ )v/T 5 )\{7'0/ WW'duC'~ (B.33)
0
1
gi € O,,(?), #€0,(1), 71 € 0,(1) (B.34)
< 1
B'S(N\i)BiE; € Op(f) (B.35)

~'S(\i)BE; = =+ Yol SopBii + Za M Moy Sag! SopBiii —

7 2 v 0E)e)

—'SppB(B' Spp) ™ (ala)_la’g)s&)ls%ﬂji +0p(1) (B.36)

hold

Proof: Up to the last equation all the relationships are invariant under ARM A misspecifica-
tion. This directly follows from the essentially unchanged behaviour of the moment matrices
M;; and S;; and the fact that the cointegrating space is invariant under the assumed class of
misspecification. The last relationship follows from straightforward but tedious calculations.

qed
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The essential point of the last lemma is the fact that relation (B.34) holds regardless of b(z),
this implies

Bat = =i € Oy(7)

which shows that £ is still a consistent estimate of §3.
Using relations (B.13) and (B.24) the asymptotic behaviour of II and ¥ is found to be

5+ ga(a'a) 'S80 (B.37)
and
555 - Ga(0'a) T 855 S0 — S8 (a'a) g -
~&a(a'a) ' T5s(da) TG + & + &,
(B.38)
This completes the proof of Theorem 3.1.

C Appendix to Section 4

We analyse the behaviour of the test statistic in the conceivably simplest case of misspecification.
We start with the following model
Ay; =TIy 1 + € + Oe; 1

where we furthermore assume that Var(e) = I and the matrix © is a diagonal matrix with
identical entries 8. We want to test the hypothesis that IT = 0, i.e. the case that y; is a vector
random walk of dimension dim(y;) = n. The test statistic for this hypothesis is given by

tT{S&)lSm SI_IISH)}

using the notation of the previous appendix and p = 1.
The limits of the above matrices are given by

S()(] - I+066
1

Soi % (1+@)/ AWW'(I +0)—©
0

1 1
Tsn = (I+®)/ WW'du(I + ©)
0
The asymptotic test statistic is therefore given by

T, = tr{(I+60)! ((I+®)/01dWW’(I+®)—®>*

((I +0) /01 WW du(I + @)) ((1 +0) /01 Waw'(I + ©) @)}

Multiplying yields
1 1 1
To = tr ((I+®®)_1(I+®)2)(/ dWW’[/ WW'du]—l/ WdW’)) +
0 0 0
1
+tr ((I +00)1e?(1+ @)*2[/ WW’du]l) -
0

—2xtr ((I + @@)—1@([/01 WW'du]™" /01 WdW’))
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Table 2: Acceptance probabilities of the different dimensions of the cointegrating space for
systems (4.1) using the trace test

dim(B) 0 1 2

T 50 100 150 200 50 100 150 200 [ 50 100 150 200

MA1 | 0.3 0 0 0 216 0.1 0 0 781 99.9 100 100
MA2 || 104 O 0 0 81.3 89.1 &6.5 86.2 | 83 109 135 13.8
MA3 || 386 1.7 0 0 54.6 921 93.7 93.7| 68 62 63 6.3
MA4 || 534 101 04 O 411 835 93.7 942 | 55 64 59 58
0
0

MAS5 || 549 13.1 0.9 39.3 81.8 931 929 | 58 51 6.0 7.1
MAG6 || 57.3 201 1.8 36.7 734 90.0 927 | 60 65 82 7.3
MAT7 || 65.6 29.7 43 0.2 || 286 641 89.5 922 | 58 62 62 76
MAS || 642 273 41 04 || 286 665 8.7 936 | 7.2 62 72 6.0
MA9 || 61.2 251 47 06 || 33.5 67.5 8.4 938 53 74 69 56

Table 3: Acceptance probabilities of the different dimensions of the cointegrating space for
systems (4.1) using the max test

dim(p) 0 1 2

T[] 50 100 150 200 50 100 150 200 | 50 100 150 200

MA1 || 10.2 0 0 0 190 0.1 0 0 70.8 99.9 100 100
MA2 || 23.1 0 0 699 89.1 &6.5 86.2| 7.0 109 13.5 138
MA3 || 581 5.9 0 39.0 88.2 937 93.7| 29 59 63 6.3
MA4 || 721 194 1.5 25,5 752 926 942 24 54 59 58
MAS5 || 73.1 258 24 245 702 918 929 | 24 40 58 71
MAG6 || 75.7 33.0 53 0.1 ||223 619 86.7 926 | 20 51 80 7.3
MA7 || 82.7 499 124 1.2 ||155 462 822 913 | 1.8 39 54 75
MAS || 82.0 473 101 1.3 || 15.7 493 834 927 23 34 65 6.0
MA9 || 80.1 46.3 106 1.4 || 183 498 828 931 16 39 66 55

o O O O

In the case of an AR (1) model, where © = 0, the expressions in the second and third line above
vanish and the expression in the first line is reduced to the known asymptotic test distribution.
If © —» —I one can easily show that the expression in the first line above goes to 0 while
the expression in the second line explodes and the limit of the expression in the third line is
—tr ([fo1 WW'du)™ fol WdW’). So for ® — —I we have Ty — co. Applying the trace or max
test in that situation always yields a decision for a cointegrating space of maximal dimension,
regardless of the true dimension of the cointegrating space.

In the case of the true II being 0 the limiting system is

Ayt = Aet,

which is naturally not left co-prime and observationally equivalent to y; = €;. This shows once
more that left co-primeness is an essential condition for all the results.
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Table 4: Some features of the empirical distribution of estimated cointegrating vectors of
systems (4.2)

T 50 100 150 200

MA1 Mean 1 -4.7645 1 0.9317 1 1.0093 1 0.9979
-0.1302 1 -0.1069 1 0.119 1 0.0009 1

0.9208 -5.8312 1.0845 -0.0717 0.8814 0.0075 1.006 -0.0035

S.D. 0 178.473 0 1.5574 0 0.2041 0 0.4094
62.4964 0 10.4604 0 4.8088 0 2.9762 0

51.4689 179.0993 10.6493 1.5612 5.0821 0.2165 2.8089 0.4096

Median 1 1.0026 1 0.9962 1 1.0024 1 1.0012
0.1168 1 0.0333 1 0.0014 1 -0.0114 1

0.8751 -0.0043 0.9773 0.0014 0.9977 0.0015 1.0084 -0.0024

Skew. 0 -0.2538 0 0.0534 0 0.2945 0 0.0789
0.2681 0 -0.6341 0 -0.682 0 -0.7116 0

-0.0325 -0.3141 1.4168 -0.1235 1.8883 0.2167 2.4167 0.1993

Kurt. 0 0.0782 0 -0.0447 0 0.3478 0 0.5428
-0.4822 0 -0.2682 0 -0.4554 0 -0.233 0

-0.3499 -0.1778 -0.3444 0.2115 -0.3967 0.3863 -0.3466 0.5689

HD-mean 0.4865 0.0063 0.0008 0.0025

HD-medi. 0.0025 0.0031 0.0003 0.0011
MA2 Mean 1 0.9364 1 1.0163 1 1.0044 1 1
0.5847 1 -0.2907 1 -0.0439 1 -0.019 1

0.5104 -0.167 1.3393 -0.0098 1.0447 0.0233 1.0218 -0.0027

S.D. 0 6.5859 0 0.322 0 0.1827 0 0.1318
29.6418 0 6.6972 0 0.2313 0 0.1634 0

29.4721 6.6181 8.0749 0.4456 0.2272 0.7508 0.163 0.1644

Median 1 1.0271 1 1.0142 1 1.0019 1 1.0006
0.0472 1 -0.0023 1 -0.001 1 0.0114 1

0.9579 0.0238 1.0072 0.0082 1.0001 0.0068 0.9965 0.0016

Skew. 0 0.0862 0 -0.0705 0 -0.0245 0 -0.0686
-0.6408 0 -0.6641 0 -0.5797 0 -0.5159 0

1.3065 0.2274 1.5433 -0.1361 1.1882 -0.0471 1.0121 -0.0802

Kurt. 0 -0.5139 0 0.2149 0 0.4511 0 0.8407
0.1567 0 1.1518 0 1.7484 0 1.5825 0

-0.5778 -0.3777 -0.2459 0.617 0.1498 0.5317 0.1956 0.5339

HD-mean 0.1029 0.0164 0.0061 0.0015

HD-medi. 0.0026 0.0032 0.0018 0.0025

MA3 Mean 1 -1.8677 1 1.0217 1 0.9863 1 0.9906
0.8576 1 -0.0557 1 -0.0138 1 -0.0386 1

-0.1601 -1.0891 1.0651 0.0206 1.0049 -0.0121 1.0381 -0.0097

S.D. 0 78.3003 0 1.0687 0 0.3253 0 0.2449
25.0464 0 2.8433 0 1.4743 0 0.2594 0

33.2683 36.7729 2.7467 1.1198 1.6811 0.3509 0.2602 0.2593

Median 1 0.9719 1 0.9781 1 1.0038 1 0.9885
0.0867 1 0.0192 1 0.0068 1 0.0069 1

0.9261 -0.0334 0.9837 -0.0008 0.9894 -0.0036 0.9916 -0.0087

Skew. 0 -0.1624 0 0.2379 0 -0.0301 0 -0.0825
-0.2821 0 -0.6072 0 -0.5696 0 -0.5236 0

0.2572 -0.22 0.8004 0.1046 1.2833 -0.1095 0.9656 -0.0493

Kurt. 0 -0.1995 0 -0.2755 0 0.573 0 0.6127
0.0608 0 -0.2122 0 1.5659 0 1.355 0

-0.1487 -0.1751 -0.3966 -0.2273 -0.3079 0.7129 -0.2076 0.6364

HD-mean 0.3129 0.0032 0.0032 0.0002

HD-medi. 0.0057 0.0067 0.0021 0.0013

MA4 Mean 1 0.917 1 1.2888 1 1.0465 1 0.8986
0.1417 1 0.9382 1 0.8949 1 -0.0801 1

0.7644 -0.1887 -0.0169 0.2797 0.1282 0.0448 1.0774 -0.0991

S.D. 0 6.0993 0 6.7119 0 0.9709 0 3.0072
6.1892 0 25.3395 0 26.6638 0 0.4484 0

7.9185 6.6347 27.0235 6.2599 25.6941 0.9483 0.437 2.935

Median 1 1.0084 1 1.025 1 1.0169 1 0.9989
0.1221 1 0.0205 1 -0.004 1 -0.0083 1

0.8683 0.0176 0.9853 0.0053 1.0053 0.0191 1.0067 0.0057

Skew. 0 0.0361 0 -0.2344 0 0.0986 0 0.0637
-0.2384 0 -0.2439 0 -0.5774 0 -0.6637 0

0.4446 -0.1213 0.2345 -0.1727 1.1373 0.0469 1.7094 -0.0923

Kurt. 0 -0.0936 0 -0.5632 0 -0.0227 0 0.37

-0.167 0 -0.5228 0 -0.4303 0 1.8606 0

-0.076 -0.1287 -0.2125 -0.5431 -0.3653 0.0291 -0.413 0.4309

HD-mean 0.0354 0.1048 0.104 0.0013

HD-medi. 0.0063 0.0078 0.0006 0.0026

MAS5 Mean 1 2.4747 1 -2.3344 1 0.0879 1 1.0727
-0.2808 1 0.1148 1 -0.0774 1 -0.0244 1

1.3723 4.2858 0.8878 4.4001 1.078 -0.7767 1.023 0.0667

S.D. 0 51.552 0 108.1061 0 31.7429 0 1.792
10.1732 0 8.8484 0 2.0635 0 1.2356 0

11.0552 101.9289 7.8397 138.5419 2.1708 29.2832 1.2358 1.8254

Median 1 0.9994 1 0.9908 1 0.9978 1 1.0057
0.1556 1 0.0396 1 0.0066 1 0.0026 1

0.8508 0.0495 0.9635 -0.0188 0.9963 -0.003 0.9947 0.0019

Skew. 0 0.0218 0 -0.2894 0 -0.0554 0 0.263
-0.5202 0 -0.5244 0 -0.5414 0 -0.5794 0

0.6308 0.1276 0.6851 -0.2663 1.0794 -0.1359 1.3144 0.1403

Kurt. 0 -0.4849 0 -0.1801 0 -0.3684 0 0.0175
0.0427 0 -0.3899 0 0.075 0 -0.0437 0

-0.4501 -0.4769 -0.4626 -0.3713 -0.28 -0.37 -0.3036 0.0328

HD-mean 0.6259 0.7941 0.0487 0.0018

HD-medi. 0.0173 0.0039 0.0011 0.0011

MA6 Mean 1 1.5665 1 1.0718 1 0.9777 1 0.9992
-1.9878 1 0.0371 1 -0.2 1 -0.0557 1

3.2101 0.2257 0.9138 0.0327 1.1968 -0.0233 1.0571 -0.0003

S.D. 0 17.3353 0 2.7331 0 0.8307 0 1.3406
46.8113 0 3.3643 0 2.5274 0 0.4929 0

54.9452 12.0668 3.8546 2.8652 2.4711 0.8619 0.4972 1.3267

Median 1 1.0333 1 0.9834 1 0.9762 1 0.985
0.1207 1 0.0364 1 0.0183 1 0.0127 1

0.8801 0.0738 0.9655 -0.0014 0.9774 -0.0281 0.99 -0.0151

Skew. 0 0.7179 0 0.1718 0 -0.155 0 0.0389
-0.5251 0 -0.1726 0 -0.634 0 -0.6467 0

1.2522 0.3256 0.0142 0.1052 1.6833 -0.1525 1.5622 0.0669

Kurt. 0 -0.3433 0 -0.3024 0 -0.0448 0 0.1733
0.3805 0 -0.2724 0 0.419 0 0.9293 0

-0.1683 -0.2497 -0.2525 -0.3285 -0.4773 -0.0386 -0.3414 0.1316

HD-mean 0.079 0.0151 0.0008 0.0004

HD-medi. 0.0146 0.0049 0.0015 0.0009
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Table 5: Acceptance probabilities of the different dimensions of the cointegrating space for
systems (4.2) using the trace test

dim(0) 0 1
T 50 100 150 200 50 100 150 200
MA1 0 0 0 23.4 0 0 0
MA2 || 3.9 0 0 74.0 425 104 14
MA3 || 10.8 0.1 0 66.5 524 21.6 4.8
MA4 || 139 0.6 0 65.7 61.2 32.7 115
MAS5 || 178 1.5 0.1 65.2 66.3 39.7 164
MAG6 || 180 1.6 0 66.0 67.5 41.6 20.2
dim/(3) 2 3
T 50 100 150 200 50 100 150 200
MA1 || 60.8 71.6 64.3 585 || 15.8 284 35.7 415
MA2 18 51 829 922 4.1 6.5 6.7 64
MA3 || 188 424 719 869 | 3.9 5.1 6.5 83
MA4 || 15,5 323 62.1 829 || 4.9 5.9 5.2 5.6
MA5 || 12,5 27.3 551 759 | 4.5 4.9 5.1 7.7
MA6 || 12.3 26.5 52.3 754 || 3.7 44 6.1 4.4

O O O O O O

Table 6: Acceptance probabilities of the different dimensions of the cointegrating space for
systems (4.2) using the max test

dim(B) 0 1
T 50 100 150 200 50 100 150 200
MA1 || 35.2 0 0 0 259 0.3 0 0
MA2 || 722 7.0 0 0 23.5 583 229 3.8
MA3 || 82.2 418 3.0 0.1 14.7 39.6 385 14.6
MA4 || 84.8 67.1 176 0.5 12.1  25.1 434 245
MAS5 || 86.8 76.2 324 39 | 109 188 387 32.1
MAG6 | 87.6 771 348 5.8 || 10.3 182 418 33.6
dim(3) 2 3
T 50 100 150 200 50 100 150 200
MA1 || 30.7 714 643 585 | 82 28.3 35.7 41.5
MA2 | 3.5 31.6 71.6 90.0| 0.8 3.1 5.5 6.2
MA3 || 3.0 169 544 783 | 0.1 1.7 41 7.0
MA4 || 2.3 71 365 704 | 0.8 0.7 2.5 4.6
MAS5 || 2.1 4.6 26.7 589 | 0.2 0.4 2.2 5.1
MA6 1.8 43 21.6 576 | 0.3 0.4 1.8 3.0
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Figure 6: Hausdorff distances between the true and the estimated cointegrating space

of systems (4.2) using the max test
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