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l. Introduction

1,1 Purpose, The pﬁrpose of this paper is to explain in statistical
terms how the algorithm works which is used in computer programmes
for Stepwise Regression, Stated more precisely, the purpose is to do
this for one of several possible, closely related variants of the
algorithm, The paper will contain nothing substantially new but may

yet perhaps shed some new light on well-known facts,

1,2 Motivation, There are twé reasons why the author has thought
it worthwhilelwriting this paper., One is that Stepwise Regression
programme descriptions are usually written by computer people who
tend to use flow-chart terminology rather than statistical terminology.

An example in case is the standard reference, Efroymson (1960),

The other reason for writing the paper is the author’s belief
that the computer algorithm may serve as a vehicle for teaching
students some important aspects of Multiple Regression, Section 7

below is written with this latter point of view in mind,

1,3 Acknowledgements, The particular variant of the Stepwise

Regression algorithm which will be presented and analysed in
sections 5 and 6 below, was introduced to the author in London in
1961, by Mrs., P, Harris of the Operational Research Branch of
British Petroleum,

An earlier version of the present paper was written in 1964
and circulated internally in the Institute of Statistics of Stockholm

University,

The present paper was written in 1967 during a visit to the
Institute for Advanced Studies in Vienna, Thanks are due especially
to Dr, H, Winter of the latter Institute for encouragement and for

a number of suggestions of improvements and clarifications.




2, A Matrix Algebraic Theorem

2,1 Introduction and Reference. The Stepwise Regression

algorithm can be considered to be based fundamentally upon one
particular theorem concerning the inversion of a certain class of
partitioned matrices. This goes for all variants of the algorithm,

one of which will be analysed in this paper,.

The matrix algebraic theorem in question is found i,a.
in Hohn (1958), section 3,9.

242 Assumptions and Notation for the Theorem, The theorem will

be presented here in no greater generality than that needed for the
present purpose. Some of the assumptions are therefore unnecessarily

restrictive, judged by a mathematician’s standard,

Let M be a sy mmetric positive-definite matrix of order p + g
Let the rows of M be partitioned into a subset of p> 1 rows plus a
subset of .q> 1 rows, and let the columns of M be partitioned in the

same way. The four sub-matrices are double-indexed as follows.

My My

Moy May

The inverse matrix of M is partitioned in the same way as M, .

and its four sub-matrices are double~indexed by top indices as follo~~

M11 MIZ

M

[H

For example, the order of MIZ and of MIZ is pxq, and

= ]
M,y = My,




2.3 The Theorem, The four sub-matrices of M—l can be

expressed in terms of the four sub-matrices of M as follows,

11 21, -1 Sl -1 -1
MU= My My My, (M, - Myy Myy Myo)T0 My, My
12 -1 | Sl -l
M= - My My, (M, - My, My, M)
21 -1 -1 -1
MU= (M, - My My M)t My, My
22 -1 -1
MET = (M, = Moy My M)
2.4 Proof., The positive-definiteness of M is sufficient to
— -1

guarantee the existence of inverses of Mll and (MZZ - M21 Mll M12)°

A hint of a proof of this statement will be given in the next subsection.

The inverse of a matrix is unique, It therefore suffices as a
proof of the theorem to multiply out MM-I in partitioned form and

see that the result is the unit matrix of order p + q., This is easily done,

2.5 Hint of Auxiliary Proof, The positive~definiteness of M mean~,

by definition, that for any (p + q)-vector v # 0, v’ Mv > 0, Hence
in particular for any (p + q)-vector v # 0 whose last q elements are
all zero, v'Mv =w’ Mll w> 0, where w is the p-element subvector

of v coming before the q zeroes, Thus Mll is positive-definite,

Define an auxiliary square matrix H as follows,

i

|1 o

H = | P Pq
-1
MMy q

The determinant of this triangular matrix is unity, Further

one easily finds that

HMM =




This latter matrix is black~diagonal, It follows from that
and from det(H) =1 that

-1
— 7172 —_ -
det (M) = det (HMH’) = det (M) x det (M,, -~ M, M| M,,)

But by assumption, det (M) > 0, and the assumption has beex
shown to imply also det (Ml 1) > 0, Thus it also implies that

-1
- B i
det (MZZ iszIM”mlzb 0.

The positive-definiteness of M implies the positive-definiteness

~1
both of Mll and of MZZ - MZIMUMIZ’




3, A Set of Multiple Regressions

3.1 Introduction and Assumptions, In this section, matrix algebraic

formulas for a set of multiple regressions, each with 2 separate
dependent variable but all with 2 common set of independent variables,
will be presented, The reason for regarding such sets of regression

will become apparent later, in section 4 below, especially subsection 4, 2,

Let there be an nx(p + q) data matrix Z = [X Y] . Each
row corresponds to an observation and each column to a.variable.
The multiple regression will be computed of each of the gq> 1
variables Y with respect to all the p.> 1 variables ¥. The rank of
the sub-matrix X is assumed to be p, All the variables are assumed
to be measured from their respective averages over the n observations,

i, e, the data meatrix ie in deviation form,

3.2 Standard Formulas., The matrix of the coefficients in the

least squares regressions of each Y variable on all X variables is
(x X)"l X*Y of order px q.

The matrix of the sums of products and squares of the residuals
after the least squares regressions of each. Y variable on all X variables
is Y'Y - Y X (3¢ X)-IX’Y of order g x q.

Assume the standard multiple regression model with
uncorrelated, homoscedastic error terms and with X the set of
independent variables, for one of the ¥ variables, say y. Then the
corresponding column of the coefficient matrix, say (X'X)" X'y
contains best linear estimates of the parameter vector of the model,
The covariance matrix of the estimators of which these estimates

are an '"‘outcome'' is proportional to (T’ X)"1 of order p x p.




3.3 A Remark and a Reference, If one column of the ¥ matrix

is reserved for a dummy variable which is identically equal to
unity, the standard formulas are valid for a data matrix Z in

Uraw form! tooj

The formulas given are straight-forward generalizations
of the formulas for the case q =1 found in many text-books., The

generalized versions are given by Goldberger (1964), section 4,11,

3.4 Summarizing Regression Results, The computation of all

the regression coefficients, residual sums of products and squares,
and estimator covariances and variances (apart from a scalar
factor) mentioned in subsection 3.2 starts from the cross-product

sum matrix Z’ Z,
72’7 =

Each row and column of Z’ Z is associated with a particular variable,

All the computation results mentioned can be arranged into

a matrix R which is of the same order as Z’ Z,

(x? %)~} x*x)" 1wy

v X (% X)‘l Y'Y - Y ¥(x X)“lx'y

Each row and column of R is associated with the same variable as

the corresponding row and column of Z’ Z,

From the point of view of a computer programmer, the
essential task involved in computing a set of multiple regressions
is to transform the initial information Z’ Z into the required -

information R,
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4, Description of Stepwise Regression

4,1 Basic Data and Task, Let.there be a raw form data matrix Zﬁ

of n observations on k variables, A necessary preliminary step
in a Stepwise Regression computer programme is to read the data
and compile the matrix of sums of products and squares of

deviations Z’ Z,

By a steering parameter or in some other way the programme
user designates one of the k variables as the dependent one. All the
other variables are candidates for the role of an independent variable
in a multiple regression with the designated variable as the dependent
variable, It is the task of the computer to find a ''suitable" set of
independent variables, The selection of that set from among the
list of candidates is made according to programmed-in rules to be

indicated briefly later,

4,2 Rasic Computations., In the process of searching for "good"

independent variables, the computer passes through a sequence of .
intermediate provisory selections of a set of independent variables,
For any such provisory selection, the computer does not just
compute the multiple regregsion of the designated. dependent variable
on the provisorily selected independent variables, Rather, it
regards the total set of variables Z as partitioned into an X set

and 2 Y set as in subsection 3,1 and computes all the result
information for the corresponding set of multiple .regressions needed
to establish the matrix R of subsection 3.4 above. The X set is

the set of provisorily selected independent variables, and the Y set
is the rest of Z, i.e. the designated dependent variable and all the
U"candidate variables" not at the particular stage included in the

provisory set of independent variables,

The computation of a number of additional regressions,
meaningless in themselves, in addition to the immediately interesting
one, is motivated by the way the Stepwise Regression functions,

as will be seen in sections 5 and 6 below,
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4,3 The Stepwise Process, ©On the basis of "R information

computed at one step, the computer decides according to its
programmed-in rules what the next step will be, that is to say what
partitioning of the total set of variables Z into an ¥ set and & Y set

to try next,

The change from the partitioning used at one step to that
used at the next one always consists in the shifting over of just one
variable from the Y set to the ¥ set or in the opposite direction.

For the multiple regression with the designated dependent variable
this means either adding a new independent variable to those already
used in the regression, or removing from the regression one of the

independent variables,

4,4 Steering the Stepwise Process, Several different sets of rules

may be used for steering the process of selecting successive
partitionings of the total set of variables, One simple steering
mechanism is to start with no independent variables at all, to add
into the set of independent variables at any step that candidate
variable whose inclusion yields the greatest reduction of the residual
sum of squares, and pever to remove any independent variable from

the regression,

Another simple steering mechanism is to start with all the
variables, except the designated dependent variable, in the X set, to
throw out of the ¥ get at any step that variable whose removal causes
the smallest increase of the residual sum of squares, and never to

let a2 variable re-enter the X set.

Either of the two simple mechanisms may be modified by a
decision,for example, that a certain subset of variables must always

be in the set of independent variables,
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4,5 Refinements by Statistical Testing, The rules steering the

stepwise selection of sets of independent variables may be supplemented
by additional rules based on the computation of formal F-tests for the
"marginal contribution" or "significance' of the independent variables
in the multiple regression with the designated dependent variable,

For example, the first set of rules of the preceding subsection may

be supplemented by the rule never to enter.a variable into the
regression when it would not be significant, A further supplementary
rule might be to remove at once from the regression any variable

which is (no longer) significant in it. The levels of significance

applied may be left for the programme user to decide upon, via

steerirg parameters,

It should be noted that Stepwise Regression programmes
making a systematic use of such F-tests do not thereby yield results
firmly based on standard statistical theory. The several F-tests
made during the running of such a programme are based on a number
of different. Multiple Regression models, which are not 1égica11y
compatible, For example at some stage Xl’ X3 and Xé are assumed
to be the only variables that are allowed to occur in the true regression
model, and the hypothesis that the parameter for Xé is zero is tested,
At a later stage, similarly, the only allowed independent variables
are ¥, %) -
for X4: is zero is tested, The "maintained hypothesis" on the five

Ky & 6 and ¥, and the hypothesis that the parameter
acceptable variatles at the later stage clearly contradicts that on
only three acceptable variables at the earlier stage. Of course
this statement does not imply that built-in F-tests are useless in
practice, only that their theoretical meaningfulness is not self-

evident and may even be doubted,

4,6 References, For a more detailed description of some
specified Stepwise Regression steering mechanisms, with an
attempt at an evaluation, see Draper and Smith (1966), chapter 6,
A mathematical approach to the problem of evaluating different

steering mechanisms is found in Wiezorke (1967).
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5, A Stepwise Regression Algorithm

5.1 The Purpose of the Algorithm, A stepwise regression

computer programme deals with a given set of variables (subsection
4,1), It passes through several stages, where at each stage the variables
axrs aplit into one independent set and one remaining, dependent
set, and where the set of multiple regressions of each of the latter

with respect to all of the former is computed (subsection 4,2), The
results of the computation at any stage may be summarized in a

matrix "R", where each row and column is associated with one of

the variables (subsection 3,4).

The purpose of the Stepwise Regression algorithm is to derive
the "result matrix" for any stage from that of the preceding stage ’

ip a computationally convenient manner,

5.2 A Technical Modification, Simplicity is a highly desirable

property. of the algorithm leading from one "result-matrix" to the

next one, In fact worthwhile simplification of the algorithm may be
ob#ained by the simple device of exchanging the result registration
matrix R of subsection 3.4 above for some related, somewhat
different matrix, More than one such technical modification has been
proposed, each leading to a slightly different algorithm. The particular
modification, and the algorithm to go with -it, which will be pre sented
in this paper, were introduced to the author in 1961; see subsection

1.3 above. They are found i.a. also in Wiezorke (1967),

The modified result matrix will be denoted § (X; Y) where
X is the set of independent variables and Y the set of dependent

variables considered., The formula is following; note the minus sign,

-t ) ixy

i

S (X:Y)

YR (X X,)‘1 VY - YV XX X)"IX’Y




~
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Magrices S(X;Y) can of course also be defined for partitionings
of the total set of variables where neither ¥ nor Y is a set of variables
with consecutive indices, For simplicity, however, S matrices
Will always be written here as if the variables had been re-ordered

if necessary to let the S matrix take the simple form above,

5.3 A Generalization. The Stepwise Regression algorithm used

in computer programmes brings variables into or out of the independen?
(and thus, conversely, also the dependent set) one by one., For the

sake of theoretical interest, the algorithm that will be presented

in this paper will be a generalized version, which brings variables

into or out of the independent set by sets, where each set may

contain one, two or more variables, -Accordingly, the algorithm

will be formulated in matrix algebra.

Let there be an n x k data matrix Z in deviation form,
Let the variables be partitioned in some way into an X set and a Y set,
(Only such partitionings are considered for which X’ X is non-singular,
and in practice only partitionings where ¥ contains at least one
variable, the designated dependent variable.) Let some subset Zp
of variables be moved over from the Y set to the X set or vice versa,
The generalized algorithm serves to re-compute the § matrix to fit

the new partitioning,

5,4 Assumptions, MNotation and Terminology. The total set of

varisbles Z is assumed to be partitioned into r > 2 sets Zi , each
with at least one member, The variables are always moved between
X amd Y in whole :Z.i sets. For any partitioning with a non-singular

X set, the corresponding S matrix exists, One example may be
3 (le Zr; ZZ’ Z3p *s ey Zr—l)

whe re the independent set is the union of the sets Z1 and Zr.
Dencoting the empty set @ one may extend the S notation to the
"extreme cases" S(¢; Z) = 2'Z and S(Z;0) = - (2’ Z)-l, provided

the latter exists,
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Consider an arbitrary S matriz, For ease in writing, an
abbreviated notation is introduced. The-§ matrix chosen is denoted M,
with r2 sub~-matrices Mij (i, = 1,25 444, ) corresponding to the
sets of variables Zi' Let one set of variables Z_ be moved over
from the ¥ set to the ¥ set or in the opposite direction, Denote the
S matrix for the new partitioning M® with sub-matrices M;?.

The algorithm defines each new sub-matrix ‘d;? as a function of

some of the old sub-matrices Mij'

The diagonal sub-matrix Mpp corresponding to the set Z
of variables which changes sides, plays a prominent role in the

algorithm, and is called the pivot sub-matrix, The algorithm is a

little different according to the way Z_ changes sides, If Z moves
from the Y set to the X set, application of the algorithm is called
pivoting on Mpp’ or for ghort pivoting on the set ZP. If Zp
moves from the ¥ get to the ¥ set, application of the somewhat

different algorithm variant for such a case may be called antipivoting

on M oron Z .
PP P

Pivoting on a set of variables brings them into the regression
with the designated dependent variable. Antipivoting on a set of

variables throws them out of that regressicn.

5.5 The Generalized Algorithm, There are three phases,

Phase 1. For all Mij with i #pandj #p

ME = M., - M
ij

. M"IM .
1j ip pp PJ

Phase 2, For all Mip withi#p
when pivoting 3 =g Mot
1p ip PP

when antipivoting M.x = - M, M .,
ip ip pp

For all M’.pj with j # p

when pivoting ME, = M-l M.
PJ PP _PJ

i

when antipivoting ME = MO M.
pi PP PJ

Phase 3. ME = - M"l.
pp PP
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5.6 The Computer Algorithm, When all the sets of variables Zi

have just one member each, all the operations of the algorithm are

operations in scalar algebra, and Mpp is a pivot element,

If the operations are taken in the order the three phases are
numbered above, each M’: may be placed in the memozry call of the
computer previously occupied by the corresponding Mij without
any information needed for completion of the computation of M*
being thereby lost, It is therefore sufficient to reserve memory
space for one S matrix, which is an attractive feature of the algorithm,
Further, due to the symmetry of the S matrices, only the upper

(or lower) half of the matrix need be stored.

5.7 Comment., So far, the generealized Stepwise Regression
algorithm has simply been presented. It remains to demonstrate
that it does in fact function as it ought to, i.e. that it always
produces the relevant S matrix, This is the subject of the next

section,
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6, Four Propositions Concerning the Algorithm,

6,1 Assumptions and Notation for the Propositions, Let A be

a symmetric positive-definite matrix of order k, partitioned.
symmetrically into 3 x 3 = 9 submatrices A _; i,j =1,2,3.
The matrix A will be pivoted on A11 and the ' resulting matrix
will be called B with sub-matrices Bij of the same orders as Ai"
The matrix B will be pivoted on B, and the resulting matrix will
be called C, Finally, minus the inverse matrix of A will be

denoted D,

The propositions will be formulated in language appropriate
for the situation where A is a cross-product sum matrix Z’ Z with
the set of variables partitioned into three sets Zi y i=1,2,3.

The concept of an "S!" matrix.introduced in the preceding section

will be appealed to repeatedly, A =8 (% Zl’ Z s Z3).

6.2 First Proposition, Pivoting A on A, leads toa matrix B

which is an S matrix with Z1 as the set of independent variables.

Direct application of the pivoting algorithm to A below

obviously yields the result B below,

Ay By A

A= Aoy Bop Bas
fay Ay Pag
1 -1 -1
- Ay £i182 Afys
N -1 -1 -1
B = AL AT AumAoATA ), ApsmBAo A8,
-1 -1 -1
AgiA1]  AgymAg Ay AagmAg fAihg
Evidently B is the § matrix referred to. B=8 (Zl; ZZ’ Z3).




6.3 Second Proposition, Pivoting B on 87? leads to a matrix
H Gl

which is an S matrix with . Zl . ,Z? ‘ as the set of independent

variables. C =8 (Zl’ Z,3 23).

i) Application of the pivoting algorithm to the four top left
PP P g aig P

sub-matrices of B yields the following sub-matrices of C,

1 -1 Sl -1 -1
Cyp = = A1y - A1, (Ay) = Ap Aq A,) T Ag Ay
-1 1 -1
Cip = AJ1A, (Ayy - AnATIA L)
_ S1. -1 -1
Cop = (Agy = Ay ATIA L) " A A
C,,= -(A_ . -A atla )'1
22 22 = BBt

Comparison with the matrix algebraic theorem of section 2

immediately verifies the following equation,

P ey o 1
! |
11 C1z2 A P
€21 C22 Ao Pz
(ii) On further application of the pivoting algorithm, the two

top right sub-matrices of C are found to turn out as follows,

RS 1 1 -1
Cig = Al A3 A A (A, = Ay ATTA) T(Ayg=AsA

= Ky1hqg T B8

— -1 -1 -1 _
Coy = (Ayy = A 1 ATNAD) T (Ayg = Ay AT 1A 5) =

= K, ,A +K?A

217713 227723

15 -

-1
11813

) =

I




~

Collecting terms, one finds that Kl =
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"Cij for all four (i,j).

Thus, by reference to the result under (i),

(1ii)

The two bottom left sub-matrices of C are the transposes

of the symmetrically placed top right sub-matrices, This is seen

from the symmetry of B and that of the algorithm,

(iv)

C

Collecting terms, one finds that L, =X,. = "Cij

Thus,

(Ags -

33

- (&3,

A -A31L11A13-A L

33

Agihifys) -

31

-1
A A A AR A A

The bottom right sub-matrix of C, finally, is

1

217711712 23 7217711771

~A_ L_.A

B e R Y Y

317127723 32722723

ij = i
A e T
. 11 12 3
31 432 | |
........... A, A, A1

The arguments (i) - (iv) together prove the second proposition.




-
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6,4 Third Proposition, Antipivoting‘ C on CZ?’ brings back B.

In terms of the sub-matrices of B, those of C can be ‘writtens

" ; | L
B11721,8558,1  B12B22 P13 B12P22P2s
C =
-1 -1 -1
BooBoy “Bss B,2Bas
B R B_lB B B'l B B ”'IB
31732522721 32022  T337F32522723

This follows from the pivoting algorithm, It is easy to verify that

antipivoting on CZ?’ replaces each Cij by the corresponding Bij'

Antipivoting ,-A,"l = D on the .
sub-matrix D33 yields the S~type matrix C. — D = S(Zl, ZZ’ Z3; D).

6.5 Fourth Proposition,

The partitioning of Z is now collapsed into Z = Zy Zo e

The new sub-masatrices A,, and A, are, consequentl
43 44 quentiys

Ays A A
Agz T Agq = g
B3 A1 Paz

By the matrix algebraic theorem, the four sub-matrices of D
can be written as follows, (The sub-matrices of D are numbered like
those of A.)

Dy

-
]

w]
I

-1

"A'Aj:é}-'

-1

= A, A

447743

- (A33

1 21, -1 -1
APy Rgg-Bayh i hys)  Bauhyy
(Aga=B o, ALLA, )7 and D, , = D’
33~ A 3Py 34 = Di3
21, -l
~AgafysPys)

Direct application of the antipivoting algorithm is seen to produce .

the C matrix, partitioned into four parts analogously with A and D,
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6.6 Conclugions from the Four Propositions, = As the partitionings '

of the initial A = Z’Z matrix are quite arbitrary, the four propositions

imply some quite general conclusions.

The first a;.nd second proposition jointly constitute a proof
by induction that émy S matrix can be arrived at by application of
the generalized pivoting algorithm in an arbitrary number of steps,
This guarantees the validity of any sequence of Stepwise Regression
steps where variables are added into the list.of independent variables

at every step and are never removed from it,

The fir st, second and third proposition jointly constitute
a proof by ind.uct’:;ton that any S matrix can be arrived at by application
of the generalized pivoting. and antipivoting algorithms in an
arbitrary numbei:’ of steps, This guarantees the validity of any
sequence of Ste}ﬁ{xrise Regression steps where variables are.put

into and thrown out of the regression in any conceivable way,

The fourth proposition is not needed in the context of
Stepwise Regression, It is included in order to complete the proof
that the generalized algorithms both work also as matrix inversion

algorithms,

6,7 On Other Algorithms., For other variants of the Stepwise

Regression algorithm, the above conclusions can be established
by means of propositions simila? to those four presented in this

section,
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7. Statistical Implications of the Algorithm

7.1 Introduction., The purpose of the present section is to show

how certain important properties of Least Squares quantities of various
kinds can be derivéd, once the algorithm is understood. The results
are well-known; the idea is just to advocate a way of .demonstrating

them which may have some advantage to speak for it,

7.2 Arithmetical Means as Ragression Coefficients. Let Z = [X Y]
be a data matrix in "raw form!" where X is the column of units '
(cf. subsection 3,3) and Y is the ""proper".data matrix, with the
observations all in their original forms, i.e. not converted to
deviations from their sample averages. Formally pivoting the matrix
7’7 on the sub-matrix X’X produces ''regression coefficients

(X’X)-’1 X’Y which are the arithmetical means of each Y variable,
The matrix of "residual sums of products” Y’Y - Y’X(X’X)-IX’Y

can be seen to be .the cross-product sum matrix of the Y variables

in deviation form,

The calculation of the arithmetical mean of a sample of
observations on a variable can in fact be regarded as an application
of the Least Squares principle, for the arithmetical mean is the constant
from which the sum of the squared deviations is the smallest. If the
"regression' model Yi' = Pyt €43 with homoscedastic and
uncorrelated random elements is assumed for the i’th Y variable,
the variance of the "regression coefficient" ;‘Zi is further equal to

=79

O‘iz (x* X)—l where o iz is the model variance and X = N

So far the algorithm has not been invoked. It is however
clear that it can be used to transform a "raw' product-sum matrix ZZ

into the corresponding deviations cross-product sum matrix.
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7.3  "Raw Form! Multiple Regression. As was said in

subsection 3.3, the standard matrix formulas of Multiple Regression,
the formulas incoporated in the S matrix in subsection 5,1, remain
valid also if Z = X Y] is a data matrix in "raw form'" where
one column of ¥ has ail its elements equal to unity., The correspond-iix:lg.
regression coefficient is the intercept of the fitted regression equatif(}p.
Hence the new "'unit'" ¥ column may be called the column of the e

"intercept variable',

All the results of section 6.concerning the S matrix computed
in a stepwise fashion remain valid, If the X set of the variables ‘
always includes the intercept variable, the statistical interpretation k
of all the elements of any S matrix are quite as before, (In fact if
the intercept variable is not in the X set, S is still interpretable .
much as before, but then it refers to regressions witht the interceptvi-

forced to be zero.)

By the properties proved for the Stepwise Regression
algorithm in section 6, the S matrix containing the information ‘
concerning any desired multiple regression may be arrived at in two .
steps as follows, First pivot the "raw' Z’Z on the intercept variablé. .
Then pivot the resulting S matrix on the "other' independent variablej%.
The first step brings about an S matrix consisting of the deviations

Z’ Z matrix bordered by the mrasan vector and a diagonal element - l/h.

Suppose the matrix formulas of Multiple Regression had been
established for "raw form" X and Y as textbooks often do. The 3
Stepwise Regression algorithm then provides an easy proof of the

validity of the similar formulas for matrices X and Y of deviations.

Further, the algorithm makes the "fitting" of arithmetical
averages to variables appear naturally as simply a special case of
regression, since it may always be made to occur as the.first step

in the stepwise computation of some multiple regression,

7.4 A Note on Computer Programmes, Computer programmes

for Stepwise Regression do not normally store the row (and/or columh)

of the S matrices corresponding to the intercept variable, as they
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do not contain useful information after the first step. Such programmes
are therefore more naturally described as starting from Z’Z in |
deviation form, as has been done here, Unfortunately the omission

of the intercept row/column also means losing the standard error of

the intercept.

7.5 Regression of Residuals Upon Residuals, Consider the set

of multiple regressions of each of the variables in a set ZS3 with respect
to all of the variables of a set of independent variables X, Let the
set of independent variables be partitioned in some arbitrary way

into two sets Z1 and ZZ’ and let Z, be called the primary independent

2
variables and Z, the secondary independent variables, (Please
accept the somewhat unhappy relation between the set indices and

the set names.,)

The results from the set of multiple regressions are
summarized in a matrix S (Zl' Z, Z3) which can be identified
with the matrix C of section 6, if the A matrix of that section is
identified with*the total initial Z* Z matrix, The matrix of sums
of products and squares of the residuals of the Z3 variables after .

regression on the Z, and ZZ variables is thus the sub-matrix C33.

Regard the two sets of multiple regressions whose dependént
sets are ZZ and Z3 and whose common independent set is Zl’ that
is the regressions of each of the primary and of the dependent
variables on all of the secondary variables, Denote the matrices of
residuals from these two sets of regressions U2 and U3 respectively,
By the standard formula for a matrix of -regression coefficients

(subsection 3,2}

-1
= ] » s
Up e 2 - 2y (z72) 2]z, i=2,3

It is easy to -show algebraically that
-1

s - ’ - 2 ] s :
USUL = 2020~ 20 2 (2)"2)) Zy° 2 i

]

2,3 j=2,3
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Identifying Z. Zj with Aij’ it follows immediately from the first

1

expressions given for C 3 and C33 in subsection 6,3 above that

2
C =(U’U)‘1U’U
23 2 YUy U Us
-1
— 2 ? ? 2
Cy3 = U U, - UFUL(USU,) "U, T,

Thus (323

regression coefficients and of residual sums of products, respectively,

and C33 can be interpreted as the matrix of

in the set.of regressions of one set of residuals on another set of
residuals, The dependent set are the residuals of the dependent
variables Z3 after regression on the secondary set Zl' The independent
set are the residuals of the primary set ZZ after regression on the

secondary set Z 1°

It is important to note that the selection of a secondary
set Z, from among the original independent variables is quite
arbitrary. The results obtained are thus very general and as it
were flexible. In any set of multiple regressions, any arbitrarily
selected subset of the independent variables may be regarded as the
secondary set, and the coefficients for the other (primary) independent
variables as well as the residual second-order moments correspondingly
re-interpreted, This is an extremely important property of Least
Squares regression, and it is proved with almost no effort by scruting

of the Stepwise Regression algorithm,

The special case where each of the three subsets Zi has
only one member is given by Johnston (1963), section 2.5. The less
restricted special case where only Z1 and ZZ are restricted to have
only one member each is given by Yule and Kendall (1950), sections

12.11 and 12,12,

7.6 The Chain Rule of Residual Variances, The partial correlation

between two variables x and vy, partial {with respect to some set of
variables z, is defined as the simple (total) correlation between the

residuals of x and y after regression of each on z, (At least, this is

one of the ways a partial correlation may be defined,)
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From the preceding subsection it follows that the residual
sum of squares of a variable Z, after regression on ZZ’ ZS’ sees Zk
may be obtained as the residual sum of squares in the (one-variable)‘
regression of the residual €y 23 ... (k-1) upon the residual '

. , .
ek.23 veo(k=1) where Yule’s notation for residuals has been used

in a slightly modified form, Thus,
27 2 2 -
Zeyas,..k= (Zef s oo (k-1)) (1-77523 ...(k-l))

using the well-known relation between residual sum of squares and
correlation coefficient in simple regression, and the definition. of

a partial correlation as a simple correlation between residuals,

The same argument can be used to express the sum of
squares in the right number as in terms of the sum of squares of
a residual of the next lower order, and so on until the result is

obtained i
2" _ 2 2 2 2 -
Teyzs,..kx = @ l-r)(1-ry50) oo (barTy o3 (ke1)

The numbering of the variables, except Z1 » is of course arbitrary,

This result is given in several textbooks,

7.7 Partial Correlations of Different Orders, By means of the

algorithm, it is also possible to derive the standard formula for the
relation between a partial correlation of some order and those of the

next lower order,

Using the notation of section 6, the procedure is to transform -
the sub-matrix of B referring to the variable sets ZZ and Z3, into
a matrix of partial (with respect to Zl) correlations, This is done
by pre- and postmultiplication by a certain diagonal matrix, The
partial correlation matrix is pivoted on Zz and the resulting C ;E:,)

is "standardized" again into a matrix with unit main diagonal,
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The result is compared with the "standardized" C33 which is
the matrix of partial (with respect to Z, and ZZ) correlations for

the variables Z3, and can be seen to agree with it,

The following formula is thereby established,

Fi501 T Ti2.1%52.1

/

5

R L
Vi-Tio0 V-t

where iandj denote any two m3mbers of Z3, and "1" is a
. ""collective index' for Zl, and Z2 has been assumed to have only

one member. The formula is found in Yule and Kendall (1950),
section 12,15,
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9., Appendix: A Numerical Example

Introduction,

The paper is complemented by a numerical example. This
was suggested to the author by Dr, A, Stanzel of the Institute for
Advanced Studies.

The interested reader is recommended to work through the
example step by step with pencil and paper, He may also check any

of the results by computing them in some other, more direct way.

The algorithm illustrated by the example is of ¢course the
computer version where the cross-product sum matrix is partitioned
maximally. The pivot element for the next pivoting has been underlined

in each '"S" matrix,

Data Matrix,

X4 X2 X3 X4 =Y

7 3 5 10

4 -4 5 5 A column "XO" with all

4 -2 7 7 elements equal to unity may
4 -1 1 6 be placed to the left of the

1 -2 -3 0 Xl column,

5 3 -3 5

4 -3 4 5

3 -2 1 2

4 -1 1 5




O

Cross Product Sum Matrix,

X0 % S X4
%, 9 36 -9 18 45
Xl 36 164 - 16 92 213
XZ -9 - 16 ' 57 - 38 - 19
X3 18 92 - 38 136 142
X4 45 213 - 19 142 289
This matrix can be denoted S (9 Xy X0 X501 X g X4)
S (Xg5 Xp0 X, X5, %)

This matrix is computed from the preceding one by means

of the pivoting algorithm, with M, = (9) as the pivoting element,

Examples of the ¢omputational steps.,

x o~ - —
M3, = L/ISO/MOO = 18/9 = 2
M’gz = My, = Myt My, /Myo = - 38 = 18+(-9)/9 = - 20
X0 % X, %3 X4
x . 1 4 1 2 ;*
0 -9 -

X, 4 20 20 20 33
X, -1 20 48 - 20 26
X, 2 20 - 20 100 52
X, 5 33 26 52 64

The sub-matrix for Xl’ XZ’ X3 and X4 is the cross-product

sum matrix for the four variables in deviation form, The X"O

row/column contains the means.
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Choosing a pivot,

The "best!" first explanatory variable for a regression with
X 4 28 the dependent variable is the one that reduces the unexplained

sum of squares 1?\/144 the most, If Xp is chosen, the new M44 is

Myg = My - Mye 1\/1104‘/1\41313

The "best" pivot element Mpp is thus that for which

M4p‘ Mp“/ Mpp is the largest.
p= 1:(33)%/20 % 54
p= 2: (26)2/48 ¥ 14
p = 3:(52)%/100 & 27

The matrix is therefore pivoted on M, = (20).

Xq X, X, X, X,
X0 -5 + -3 -2 - 5
*1 3 -5 1 ! 5
X, -5 1 28 - 40 -7
X, -2 1 - 40 80 19
X, -2 ’-?2’—% -7 19 2

For the next pivoting, there are two candidates for the role of
a pivoting element. As (19)2/ 80 > 72'/ 28 the next pivoting will be
on Mj, = (80).
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8 (Xgr X1, X5 X, %)
XO Xl XZ X3 X4
173 9 1 9
X0 - 180 20 -6 - %0 -3
% 9 1 3 1 113
1 40 :_1_63__ 2 80 80
3 1 5
%, -6 7 8 -7 .32
5z _1 1 1 1 19
“*3 40 80 -2 ~ 80 80
x 9 113 5 19 403
! -8 0 2 80 80

Checking the results,

The matrix now arrived at should contain the results for the
2 and of X, upon x4 and X3. We check the

former regression, In deviation form,

multiple regressions of X

33

............ — -1 e _—
-1 . 20 20 | 1 | 5 -1,
(x*x) "= . T
20 100 -1 1
These four numbers occur witkithe sign changed in My s My g5 My, and M.,
Ts 1 3
-1 1 1 | i
? : = g | = = | i
These are the elements MIZ ande32.
. . 3 1 _
The intercept is -1 - 5 4 + 5 2= -6, element MOZ'

The residual sum of squares is element MZZ H

Y- B XY= 48-3.20 +5(-20) = &




B

S (Xgr Xq» X,pp X g3 X,)

0’1’2

X0 S % X3
% _ 983 27 3 2
0] 180 20 T4 5
X 21 1 3 17
1 20 32 16 160
7 _3 3 A 1
2 4 16 e - 16
3z 2 17 1 7
3 "5 160 " 16 T 160
5z 3 151 5 63
4 4 160 16 160
With a common denominator ¢ 1440 M =
XO Xl XZ X3
{0 - 7864 1944 - 1080 - 576
Xl 1944 - 495 270 153
Xz - = 1080 270 - 180 - 90
XS -~ 576 153 - 90 - 63
X4 1080 1359 450 567




..3:1-

N Checking the new results,
The rows and columns for XO, Xl, XZ and X3 should
contain minus the inverse of the original cross-product sum matrix
for those variables. That it does in fact do so is most easily verified
by multiplying the matrices together. For example, in the
product matrix MM-I, the element "00" is
9 « (- 7864) + = - 70776 +
+ 36 .. 1944 + + 69984 +
“C +(-9)- (- 1080) + + 9720 -
+ 18 « (- 576) = - 10368 = - 1440
s
The elements no, 04, 14, 24 and 34 in the new result
matrix should be of the type (X’ X)-l X’Y, which is easily
verified. For example, the element '"24" can be obtained as
minus one 1440th of
Jv\" .
' - 1080 - 45 + = - 48600 +
+ 270 . 213 + + 57510 +
+ (- 180) « (-~ 19) + + 3420 -

+(- 90) . 142 - 12780 = - 450

¢

Of course (partial) checking may also be performed by

direct computation of the regression in deviation form,

o




N

M
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Summary of the Xy regressions.

Coefficients with approximate standard errors below them,

After each regression the residual sum of sqares,

Xy = -Lb6 + 165X +e (9.55)
(1.12) (0,26)

X, = - 113+ 1.41 Xl + 0,24 X, + ey, (5. 04)
(0.90)  (0.23) (0.10)

X, = 0,75 + 0,94 X, + 0.31 X, + 0.39 X, + ey 1,4 (4. 25)

(2.16)  (0.54) (0.33) (0.19)

" The increase of the squared standard errors from the second
to the third regression is "explained" by the near-multicollinearity
of the variables Xl, X, and X_,. In fact, as can be seen from the

2 3
proper matrices,

An example of antipivoting.

Antipivoting S (.XO,:XI, X XZ’ X4) on the element 1\/111 leads

to the following matrix,

X X

0 1 2 3 4

% 136 18 '3 1 198
0 ~ 900 5 5 50 50
18 1 113

Xy ] 16 24 5 5
3 1 182

% 1 1 1 L 13
3 50 5 -5 © 100 25
x 198 113 182 13 924
4 50 5 5 25 25

It can be directly verified that this is the same result as.
would be obtained upon pivoting S (XO; Ko %oy Xq, X4) upon M, .

It is the matrix § (XO, g3 Xp X0 X

1, 4)?




