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Abstract

The problem of optimal decision among unit roots, trend stationarity, and trend stationarity
with structural breaks is considered. Each class is represented by a hierarchically random
process whose parameters are distributed in a non-informative way. The prior frequency for
all three processes is the same. Observed trajectories are classified by two information
condenser statistics £, and &,. ¢, is the traditional Dickey-Fuller t-test statistic that allows for
a linear trend. &, is a heuristic statistic that condenses information on structural breaks. Two
loss functions are considered for determining decision contours within the (¢, &) space.
Whereas quadratic discrete loss expresses the interest of a researcher attempting to find out
the true model, prediction error loss expresses the interest of a forecaster who sees models
as intermediate aims. For both loss functions and the empirically relevant sample sizes of
T =50, 100, 150, 200, optimal decision contours are established by means of Monte Carlo
simulation.
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1 Introduction

The contributions on tests for unit roots by FULLER (1996) and DICKEY
AND FULLER (1979) have led to a persistent interest in integrated processes
for the modeling of economic time series. Most econometric researchers have
found evidence on unit roots in the main national accounts variables (cf., e.g.,
NELSON AND PLOSSER, 1982). These findings were particularly convenient
as unit-root models allow identifying long-run equilibrium structures in mul-
tivariate dynamic systems in the context of cointegration. This would not
be possible if economic variables were generated by stationary disturbances
around time trends with a fixed pattern.

However, acceptance of the unit-root hypothesis and its consequences —
persistence of shocks to variables and no return to growth trends, even in the
long run — was not unanimous. In particular, the possibility of broken trend
lines with added stationary processes (‘structural breaks’) was considered by
some authors, such as PERRON (1989). If structural breaks are permitted
in the deterministic part of the statistical models, the reported evidence
on unit roots tends to weaken and stationary models with added structural
breaks and deterministic trends (SBDT) appear to be preferred. However,
this evidence in turn may not be convincing for a number of reasons.

Firstly, whereas it is fairly obvious that time series generated by an SBDT
model lead to apparently spurious evidence on unit roots if structural breaks
are not allowed in the applied statistical frame, the reverse specification error
may also occur. A trajectory of finite length taken from a random walk or,
more generally, an integrated process can be approximated with arbitrary
accuracy by an SBDT model if the admitted number of breaks is increased.
CHRISTIANO (1992) and ZivOoT AND ANDREWS (1992) have taken up a
similar point, although they have been concerned primarily with the effects
of estimating the timing of the break from the data. Also, these authors
have remained strictly in the classical paradigm of ‘null hypotheses’, ‘size
distortion’ and ‘low power’. The SBDT model was generally seen as a variant
of the trend-stationary model.

Secondly, in order to create a valid descriptive model for extended sam-
ples, an assumption on the break-generating mechanism in the trend would
have to be imposed. Ironically, such assumptions typically lead to some sort
of integrated model with infinite persistence of shocks to trend lines, although
this persistence only concerns the supposedly rare trend shocks and excludes




the non-persistent supposedly near-Gaussian innovations. Even those au-
thors who use asymptotically reasonable models, such as CHEN AND T1AO
(1990), see the (correct) classification of an SBDT process as a unit-root
process as a ‘misspecification’. This point has also been made by HANSEN
(1992).

Thirdly, the effects of misclassifying variables on prediction should be
evaluated, accounting for the fact that forecasts based on misclassified
processes and finite samples may dominate those based on correctly classified
processes, due to the sampling variation in estimated parameters. In short,
the aims of correct specification and optimal prediction may be conflicting.
This is mirrored in the theoretical debate between realismn and instrumental-
ism (see POIRIER, 1995, p. 1).

This paper attempts to incorporate the classification problem in a
multiple-decision framework. Decision bounds are calculated in order to
optimize decisions on two discrete parameters of interest, the order of in-
tegration and the presence of structural breaks. The sensitivity of decision
bounds with respect to the choice of the loss function is also evaluated. In
particular, quadratic loss and minimum quadratic prediction error are con-
sidered as criterion functions.

A related approach was adopted by STOCK (1994) who, however, focuses
on the binary decision between I(0) (which may include the trend-stationary
case) and I(1) models, i.e., models integrated of order zero and one. STOCK
(1994) concentrates on the asymptotic properties of his procedure and im-
plicitly treats the SBDT case as I(0). In contrast, I focus on optimization in
finite samples and treat SBDT as a separate class, although I am aware that
it is really part of a slightly generalized I(2) class. Interestingly, the statis-
tical properties of an obvious extension, I(1) models with structural breaks,
are very similar to the SBDT models and hence this extension will not be
treated separately here.

The remainder of this paper is organized as follows. Section 2 consid-
ers the three different models (classes of data-generation processes) among
which a decision is searched. Section 3 highlights the distinction of several
types of parameters that are used in the modeling approach. Section 4 con-
siders the information-condenser statistics that are used for discriminating
among the model classes. Section 5 introduces two different loss functions
for assessing classification decisions. Section 6 presents and analyzes decision
contour maps for the decision setup introduced in the previous sections. An
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illustrative example is also discussed. Section 7 concludes.

2 The data-generation processes

Three potential data-generating mechanisms are considered. The processes
A, B, C are stochastic processes (models) that are seen as candidates for the
true mechanism by the researcher who envisages the observed data as parts
of trajectories from one of the three processes. The lag operator is denoted
by B and the first-difference operator by A =1 — B.

Process A is a real-valued unit-root process started in ¢ = 0. Its difference-
equation representation

2
AX, =i+ @bX, i+& (1)

g=]1

is completed by a standard assumption on the innovation process

g iid N(0,0?) (2)

and by a weighting-prior assumption on the parameter space
po= A1 =1~ ) ~N(0,1) (3)
(o1,02) ~ U(Ss) (4)

with w4 and (¢1,¢;) mutually independent. Here, U(A) denotes the uni-
form distribution on the set A and S; is the stability region of the
second-order difference equation coefficients within R2. It is known
(see, eg., BOX ET AL. 1994) that S; is the triangular area
{(e1, )01+ @2 < 1,—p1 4+ 2 < 1,05 > —1}. One could also impose a
weighting prior on the scaling parameter ¢ but the decision problem is likely
nearly invariant to scaling. In all reported simulations, ¢ = 1 is used for
simplicity. Similarly, starting values Xy, X7, X5 are assumed as known to the
researcher and are set at zero for the bounds simulations.

Notice the reparameterization from fi to p for the drift constant. This is
motivated by the solution of the difference equation (1)

i
Xi=(1=¢1B =B e, + pit (5)
s=1
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The parameter u is the slope of the added linear trend term and does not
change its meaning if the short-run coefficients ¢y, 9 are varied.

Process B is a stationary autoregression with an added linear determinis-
tic trend. Because it competes with the unit-root process A, it has a higher
autoregressive lag order. The difference-equation representation of process B
reads

3
Xp=a+bt+ Y o:iXei+e (6)
g=1
which again is completed by the standard assumption on the innovation
process (2) and by a weighting-prior assumption on the parameter space

(a,0) ~ N(0,I) (7)
(01,00, 03)" ~ U(Ss) (8)

where (a,b) are defined from (@,b) by a = a/(1 — 320, @), b = b/(1 —
Zf=1 ;) as before. The symbol I,, denotes an n x n-identity matrix and S;
is the stability region for third-order difference equations, which is displayed
graphically as Figure 1. Unlike the simple shapes of S} = (—1,1) and S5, the
shape of S3 is surprisingly complicated and it is not even convex. It is again
conjectured that the decision problem is nearly invariant to changes in o, and
it is assumed that the starting values X, X7, X7 are known to the researcher.
For simulating decision bounds, I set 0 =1 and Xy = X; = X3 = 0.
Again notice that solving (5) yields

3
Xo=(1-> @B) e +a+bt (9)

=1

and the meaning of b is retained under variations of the coefficients ;. Equa-
tions (5) and (9) are the counterparts to the difference equations (1) and (6)
and permit decompositions of the observed data into a stochastic compo-
nent and a deterministic trend component. Thus, the models resemble the
‘structural’ models by HARVEY (1989) or the Bayesian time series mod-
els by WEST AND HARRISON (1989). These analogies even become more
pronounced for the SBDT process C.

Process C is the most complicated stochastic mechanism, as it tries to
incorporate change or ‘structural breaks’. It is a modification of the trend-




stationary process B

3
Xi = a.t -+ Ett -+ Z (piXt—i -+ & (10)

g==1

again with the standard innovation assumption (2) and the same weighting
prior on the autoregressive coefficients

(1,02, 3)" ~U(Ss) . (11)

However, the normalized trend coeficients (a,b) = (1 — 3. ¢;)(&,b)’ are
not fixed in one trajectory but are themselves processes that obey

by = bi14+m (12)
a; = Qg1 — 1t (13)

with (n:) n.i.d. (0,1) such that the local trends form a linked chain sequence.
In detail, the solution of (10)—(13) yields

3 ¢ ¢
Xy = (1- Z%‘Bé)—l«ft + tz?h - Zsm +ag + by
=1 sz==]1 g==]

= @Y (B)ec+ Y (t—s)ms + a0 + bo (14)

s=1

with the invertible operator ®(B) = 1—-3_ ¢;B*. It is convenient to assume a
standard N (0, I;) weighting prior for the first draw (ag, by). Without special
assumptions on the break-generating process (7;), process C is a unit-root
process with two unit roots at 1, an ‘I(2)’ process similar to the integral of
process A. Similar definitions of unit-root processes with added short-term
variation and trends are common in the literature on so-called ‘structural’
models in the econometric sense of the word (cf. HARVEY, 1989). A char-
acteristic property of the break model C, however, is the mixed distribution
of the break process. In particular, I consider

ne iid o~ A0+ (1= A)N(0,1) (15)
A~ U(le,1]) (16)




The symbol O denotes a degenerate distribution with unit point mass at
zero. A mixed distribution with weights of A on p; and 1 — X on p; is denoted
by Ap1 + (1 — A)pe. It turns out that the obvious exhaustive choice ¢ = 0
results in a too high frequency of non-zero realizations of 7;, which would
not correspond to the idea of rare breaks. Hence, I set ¢ = 0.9, which reflects
the a priori idea that a probability of breaking higher than 0.1 is definitely
outside the scope of those who think that the economy follows a linear trend
with rare breaks.

Although the abbreviation SBDT is used for processes of type C in the
following, one should be aware of the fact that the underlying broken trend
a; + bt is not ‘deterministic’ in the sense that f(f(w),t,w) would depend on
w only through 6(w). I hold the view that truly deterministic broken trends
are difficult to imagine. If the breaking point is deterministic and fixed,
additional sampling from the process at the end results in the pre-break
parameters being transient. Keeping the break at [Tv] with fixed v € (0,1)
results in the asymptotics of a sequence of processes rather than of processes,
as the timing of the break changes with additional sampling.

Thus, the potential data-generating processes A, B, and C are uniquely
defined, among which a decision is searched that is optimal in some sense.
The decision maker is assumed to be informed about the generating mecha-
nisms of candidates A and B but not about the parameter values within the
candidate models that have to be approximated from partially observing a
single trajectory. The decision maker is not fully informed about the gener-
ating law of process C and, in line with the literature, views this candidate
as a sort of modification of B with rare breaks in the linear trend that occur
approximately once in every 100 observations.

3 A classification of parameters

The parameters appearing in the definition of processes A, B, and C have
different statistical properties. Most of them are denoted by Greek letters,
such as u, A, or ¢;. These primary parameters are typically defined on sub-
sets of R and information on them accumulates even by observing a single
process trajectory of increasing length, assuming they are ‘identified’. Pri-
mary parameters are usually random and are drawn from distributions that
exhaust the data-admissible region. The criterion of data admissibility (cf.




HENDRY, 1995) reflects a priori restrictions due to substance-matter theory.

A second type of parameters may be used to describe the weighting-prior
distributions within parametric families of distributions. An example is the
left corner point ¢ of the interval in (15). Information on such hyperparame-
ters can only accumulate from observing an increasing number of trajectories.
In econometrics, where frequently only one trajectory of the whole process is
revealed by the data, the specification of these hyperparameters is determined
by further a priori considerations. In contrast to the primary parameters,
hyperparameters are typically fixed real numbers.

A third type of parameters is only implicit in the previous definitions. All
three processes A, B, and C contain special assumptions on the length of their
respective memory. The lag length — here 2 or 3 — is an example of a discrete
auziliary parameter. The nature of these auxiliary parameters is ambiguous.
Because information about them may accumulate from observing a single
trajectory, they may be viewed as a discrete version of primary parameters.
They may be randomized on the basis of discrete distributions. However,
they may also be viewed as fixed components of the a priori specified design
of the model processes. Alternatively, they may be targeted by the decision
problem.

A fourth type of parameters is also discrete but is right in the focus of the
decision problem. These are the secondary parameters that are representative
of the — usually finite — number of candidate processes (or, generally, mod-
els) among which a decision is desired. One may define the set of secondary
parameters as {A, B, C} but it is often convenient to code the secondary pa-
rameters as n —tuples of integer numbers. Like the primary parameters, the
secondary parameters are really random. In the absence of a possible a priori
inclination toward one of the considered processes, the distribution on the
set of secondary parameters = will always be assumed as uniform discrete,
as long as Z is finite. The typical element of Z will be denoted by k. Using
the equivalence of x and the process X;(w, ), note that this view defines a
super-structure by

X[(w) = Xi(w,x) (17)
k ~ U(E) (18)
which is again a stochastic process. This process is the most general

model (MGM) considered, it acts like a window on the world of data (cf.
POIRIER,1995) and it will also be called the frame of the decision problem.
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Notice that the words ‘process’ and ‘model’ are used interchangeably and
many researchers may view each of the processes A, B, C as a ‘class of
processes with a prior distribution’. However, abandoning this distinction
permits a comprehensive evaluation of the decision problem.

The point of view expressed by the MGM or the frame differs from tra-
ditional econometric inference, as it is seen, e.g., by WHITE (1996). Tradi-
tional inference views the data as being actually generated from an arbitrar-
ily general probability distribution with possibly time-changing properties,
which is also called the Haavelmo distribution in the British econometric lit-
erature (cf. SPANOS, 1986). However, nothing proves the existence of such
a distribution and, even if it exists, nothing can be learned about it from the
data without further restrictions, hence the concept appears pretty useless.
SPANOS (1986), WHITE (1996), and others view inference as a problem of
approximating the Haavelmo distribution by parameterized families of model
distributions and of minimizing the Kullback-Leibler distance between the
Haavelmo and the best model distribution. In contrast, the ‘reality’ that is
considered here consists of the observed data only, whereas all models are
products of the researcher’s imagination whose angle of vision is summarized
in the frame. All that can be learned from data is the relative validity of
certain components of the frame with respect to whether hypothesizing them
to be data-generating mechanisms is useful and plausible.

4 Condensing information

4.1 Principles of condensing information

It is a statistical principle to base decisions on the evidence in the data.
Bayesian methodology may use the complete information in the data by way
of ‘on-line’ integration and calculation of posterior densities. This procedure
can be cumbersome and time-consuming but it is guaranteed not to miss any
relevant information. If time series of real numbers are observed, the data
is an element of RT. It is usually convenient to summarize the information
in a vector of smaller dimension, with its elements specifically tuned to the
aim of the decision problem. Such numbers that are functions of the data
are statistics.

If statistics are sufficient, there is no loss in relevant information if the




statistics are used in lieu of the original data. A Gaussian frame does not
admit any information but first- and second-order moment estimates to be
relevant for the decision problem, hence the maximum-likelihood estimates
of all primary parameters are bijective functions of these moment estimates
and form a vector of sufficient statistics (cf. GOURIEROUX AND MONFORT,
1995, Ch.3). If there are only a few parameters, these parameter estimates
can be used immediately. For any given combination of parameter estimates,
the expected loss can be evaluated and the decision corresponding to a min-
imum loss should be taken. A map of optimal decisions can be drawn, and
a potential user who is given parameter estimates can arrive at the optimal
decision at once using the map. These maps depend on the sample size T'
and have to be re-drawn if 7" increases from 100 to 120, say. In some deci-
sion problems, asymptotic approximations to true maps are helpful in larger
samples.

If the number of parameters is high — and any number beyond 3 must
be viewed as being ‘high’ — the usefulness of decision maps based on para-
meter estimates is limited. Therefore, in many statistical decision problems,
nearly sufficient or asymptotically sufficient statistics are formed from the
primary parameter estimates. Ratios of local likelihoods between pairs of
(secondary) decision parameters define likelihood-ratio (LR) statistics, which
are commonly used in classical statistics even for multiple decision problems.
These LR statistics are typically not sufficient for the decision problem, hence
the possible deteriorating influence of the remaining information must be
evaluated carefully. The remaining information can be summarized conve-
niently in the estimates of nuisance parameters, which are usually defined
as that subvector of the primary parameter vector that is irrelevant for the
theoretical definition of the ‘hypotheses’. Care must be taken in applying
such definitions. Not all decision problems can be formulated in such a way
that the primary parameter set for all hypotheses jointly © is some (subset
of the) R® and that the hypotheses can be defined by restrictions on some
8; components. It is perhaps more natural to see © as the union of primary
parameter sets ©;, each of which may be isomorphic to some (subset of)
R™ with the dimension varying over i. Seen this way, some problems of
hypothesis testing, such as the ‘presence of a nuisance parameter only un-
der the alternative’ (see ANDREWS AND PLOBERGER, 1994, and DAVIES,
1977, 1987), may be partly caused by the problem formulation that is often
inspired by the instinctive urge of researchers to make © isomorphic to (an
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interval-type subset of) R™.

In many circumstances, the calculation of LR statistics is numerically de-
manding and heuristic approximations are used. These approximations may
also be more ‘robust’ to modifications of the frame than exact LR statistics.
For example, if decisions on the existence of change are aimed at, researchers
use a wide variety of information condensers, such as the CUSUM, CUSUM-
squared, MOSUM, Chow statistics with some variation in corresponding de-
cision rules. For a good survey of several aspects of testing for change in
econometrics, see HACKL AND WESTLUND (1991).

4.2 Condensing information on unit roots

A problem that was much in the focus of time-series statistics recently is
reaching a decision between processes of type A and of type B. Difficulties
arise as process B has more parameters than process A and hence A is not
simply nested in B by imposing a unit root on the lag polynomial defined by
(1, P2, @3). Some authors have suggested defining A ‘in B’ by the additional
restriction b = 0, which defines a = u, whereas others have been concerned
with the corresponding modification in the meaning of the parameters. The
asymmetric treatment of ‘null’ and ‘alternative’ hypothesis in classical sta-
tistics has incited some authors to re-define the frame in order to reverse the
order of hypotheses. Finally, some authors have developed attempts to see
the problem in a decision-theoretic context. For this last point, see STOCK
(1994) and HATANAKA (1996). See also the latter citation and the book
by BANERJEE ET AL. (1993) for good surveys of the relevant literature.

The most commonly used statistic for reaching a decision between process
A and B is the DF-7 statistic suggested by DICKEY AND FULLER (1979).
It is derived from a regression

14
AXy=a+bt+pXoo1+ > AXy i+ (19)

i=1

and calculating the t-value of the coefficient estimate 4. The lag length p
is designed to achieve approximate white-noise errors under both processes,
hence in view of the defined MGM it appears natural to set p = 3. Although
the term bt is not present in process A, its inclusion is supported due to the
better invariance properties of the distribution of DF-r with respect to the
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remaining nuisance parameters, in particular @. The finite-sample behavior of
DF-7 under process A has been analyzed thoroughly in the literature, and
it has turned out that the (analytically tractable) asymptotic distribution
approximates it satisfactorily. For process B, only local simulation results
with fixed parameters are available, whereas for process C one may use the
results of PERRON (1989) and those who built on his work as a guideline
(see also ZIVOT AND ANDREWS, 1992)

Frequency histograms of the finite-sample distribution of {; =DF-7 are
given in Figure 2 for each of the processes A-C. The figures are based on
10,000 replications and T' = 100. Evidently, the statistic {; possesses satis-
factory discriminatory power between the unit-root process A and the trend-
stationary process B, as the probability mass overlapping between the two
finite-sample distributions is rather small. For process C the distribution is
similar to that of process A, although the dispersion is much higher. The
higher dispersion results in a substantial overlap with process B, which rep-
resents those cases where the breaks are few and not very pronounced. In
summary, however, process C is recognized as a unit-root process. However,
this is not a weakness of the test, as process C is a second-order unit-root
process.

If T increases, the frequency plots remain virtually the same for processes
A and C. The small-sample distributions of DF—-7 under these two processes
reach their asymptotic shape rather quickly. For process A, this is the Dickey-
Fuller distribution, a mixture of Gaussian distributions that can also be ex-
pressed as the ratio of two Brownian motion integrals. For process C, it is
another non-standard distribution that can also be expressed as a Brownian
functional. For process B, the mode and the main mass of the distribution
shifts leftward and discrimination against the other two processes becomes
easier. To discriminate process C against processes A and B, another infor-
mation condenser is needed.

4.3 Condensing information on change

Condensing information on change in order to discriminate process C from
processes A and B is a more complex exercise than discriminating A and
B. Following the idea of LR statistics, the ratio of the local likelihoods of B
and C can be calculated, as C touches upon B as a borderline case. How-
ever, likelihood estimation of the primary parameters in C is costly. A good
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alternative information condenser can be calculated on the basis of the statis-
tics proposed by PERRON (1989) who, however, assumes just one structural
break. Here, a third alternative statistic will be used that builds on the
Chow test and assumes that the potential number of breaks increases with
increasing 7.

A researcher who suspects that the data can be modeled more efficiently
by breaking trends may split the sample in two or more parts and compare the
resulting error variances of the unrestricted (split sample) and the restricted
(one sample) estimation. For a fixed point of the sample split and least-
squares regression, this yields the traditional Chow test (CHOwW 1960). If
the change point is unknown, the minimum of such comparison statistics
over a grid of regressions may be chosen. A similar idea is known as the
Quandt test in the econometric literature (QUANDT 1960). For classical
statistics, the complexity of the resulting null distribution creates problems.
This restriction is of no importance here, as decision bounds will be created
on the basis of simulations anyway.

In detail, at first a ‘restricted’ regression

3

g==]1
is run for ¢ = 4,...,T and the resulting error variance estimate is denoted
by 6%. Then, ‘unrestricted’ pairs of regressions are run for t = 4,..., T} and
t=T1+1,...,T and calculate the resulting error variance estimates 6% (7).

The split point 7} is varied between [2\/’_—1’-] +3and T — [2\/7} . The symbol

[.] denotes the largest integer or entier function. Usage of the 2v/T rule is due
to HUBER and is common in time-series statistics. For example, if T' = 50, T}
is varied between 17 and 36. Notice that, for 7' — oo, the minimum sample
size increases sublinearly. The procedure defines a convenient condenser by

min 63(7})

o=—7—"

9r

which will accompany (; =DF-7 in the quest.
The process C admits a maximum of 10 break points and an average of 5
break points in the sample. Due to the Gaussian prior on the change process
7¢, the majority of these breaks are small and one cannot expect more than
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1 of changes that cross traditional statistical significance bounds. Therefore,
only one break is admitted as long as T' < 150. For T € (150,250], two
breaks at 77, T3 are allowed and one may proceed along similar lines for
larger T'. Because minimization has to be conducted over a growing number
of regressions, the test may become time-consuming for large T" and one may
prefer to calculate the minimum sequentially. For example, if T = 200, I
first minimize over one break and two regressions to find 77 and then run a
sequence of triples of regressions over ¢ = 4,..., [2\/T } +3,t= [2\/—’1:] +
4,..., 71, t =Ty + 1,...,T and then widen the first range on the cost of
the second one until that one contain less than 2v/T observations. Then, I
proceed similarly for a potential break to the right of 73.

It is a common practice to replace (, and similar statistics defined via the
R? by F-type transformations. Such transformations achieve distributions
with better invariance properties with respect to 7. They also achieve a
somehow more convenient ‘resolution’, whereas (; has most of its mass very
close to 1. Because the focus of this work is not so much on distributional
properties but rather on decision bounds that vary with T anyway, I refrain
from F-transformations, particularly as the bounded range of (s, the interval
(0,1], is quite convenient.

Because the process C is really a second-order integrated process, an inter-
esting alternative statistic to {, would be the common Dickey-Fuller statistic
calculated on the differenced series. However, it is assumed that the decision
maker views this process as an SBDT process and does not have full infor-
mation about its structure. If the decision maker has such full information,
she would be better off anyway by calculating the computationally costly
likelihood ratios.

Other possible alternative statistics that have been used in the literature
would be the average ratio, suggested in the form of average F by HANSEN
(1992), and the random-walk coefficients test considered by LEYBOURNE
AND MCCABE (1989). Because the coeflicients of process C actually follow
random walks, the latter statistic may be particularly appealing. However,
the low probability of breaks may impair its discriminatory power.

Figure 3 shows frequency histograms of the finite-sample distribution of
(2 for the processes A-C. Because the minimum sample size min(Ty, Ty —
Ti,...,T — Tg) with K = [(T +49)/100] increases toward co as T — oo,
the condenser (, converges to 1 for large T if the applied non-breaking model
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is correct. Processes A and B are correctly specified, hence for these two
processes the distribution (» should be concentrated close to 1. Process
C is not correctly specified and the asymptotic properties of (; are rather
complicated. Figure 3 shows that the mode of (; is in the range 0.8-0.9 for
the processes A and B, with much mass concentrated close to the ideal value
of 1.0. For process C, the distribution is rather flat with a mode at 0.75,
hence the discriminatory power of {,; appears to be unsatisfactory. However,
due to the prior distribution on A, many C trajectories are not revealing in
the sense that the breaking process is never activated. No test can work
miracles in this situation.

An analysis of the bivariate distribution of ((1,{2) confirms this inter-
pretation (not shown). For processes A and B, visual inspection can hardly
reject independence of the two condensers. For process C, the density shows
a curious accumulation of mass for very negative values of (; and large values
of {3. This area corresponds to small draws of A and to trajectories without
revealing shape. The effects persist for larger T'.

5 Loss functions

A decision problem is defined by two main constituent components, the prior
setup and the aim of the exercise. The prior setup is summarized in the
frame — the considered probability model, the way it is split into classes or
hypotheses of interest, the prior distributions over the classes and within the
classes. The aim of the exercise is expressed via a loss criterion that defines
the loss or disutility suffered if incorrect or simply bad decisions are adopted.
I consider two types of loss criteria.

Firstly, I consider discrete quadratic loss, which is a counterpart to the
continuous quadratic loss used in classical statistical estimation. With dis-
crete loss, the theoretical disutility depends on the selected decision and on
the true model only, whereas other characteristics of the trajectories, express-
ible through primary continuous parameters, play a role only for calculating
loss expectations. Bayesians argue sometimes that discrete loss functions
rarely express the true cost of decision problems (cf. POIRIER, 1995). How-
ever, if one does not happen to know the true cost function, they are conve-
nient approximations and their most simple version, the 0-1 loss, is commonly
seen in Bayesian applications and leads directly to an evaluation of posterior
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odds.

Secondly, I assume that the researcher is interested not so much in iden-
tifying the true data-generating mechanism but rather views modeling as
an intermediate aim in obtaining a good prediction of future values of the
variable of interest X. A way to express this loss concept is by the squared
prediction error for a one-step prediction. Notice that the two criteria are not
equivalent. Firstly, using an incorrect model may help in obtaining a better
prediction than using the correct model if parameters have to be estimated.
Hence, loss is not trivially zero if the ‘correct’ decision is taken. Secondly,
prediction loss depends on characteristics of the process trajectories, which
are expressed by primary parameters. Hence, loss is not constant within the
hypothesis classes.

5.1 Discrete quadratic loss

In estimating a continuous parameter 8 by a point estimate 8, the quadratic
loss function

Z2(979) = (9 - é)Z

is commonly used, either explicitly or implicitly. In classical inference, this
loss function is at the basis of the traditional evaluation of the efficiency of
estimators by their variance. In Bayesian inference, I5 is used explicitly and
motivates point estimation by the posterior mean. The concept is also easily
adopted if the parameter space is ordered and discrete, e.g. © = N, where the
integer that is closest to the posterior mean constitutes a reasonable point
estimate. The same concept is also useful if the rank of an n-dimensional
matrix represents the parameter of interest, as in cointegration analysis (see
KunsT, 1996).

If, as in the present case, the discrete parameter of interest is an element
of an unordered set (A, B, C), one may either order the set by an appropriate
function {0, 1,2} — Z and thus express directly that the SBDT process C is
‘further away’ from the unit-root process A than the trend-stationary B, or
code the parameter values by an inherent presence or absence of K features
within {0,1}*. Here, there are two characteristic features (K = 2), the
presence of a unit root and the presence of change in the trend part of the
generating mechanism, which suggests the following correspondence

(1,0) — A
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(0,0) — B (21)
(0,1) — C

Conforming with the view that trend shocks and regular innovations have
different economic interpretation, I do not code process C as (2,1), although
this may be justified on statistical grounds. Obviously, {0,1}? is not ex-
hausted, as breaks and unit roots do not co-exist in the frame. Adopting the
original I, function on the ordered set does not seem to be advisable, as such
a loss function would correspond to linear and not to guadratic weighting of
misclassifications. I therefore rather adopt the double-quadratic loss

lao(i, i) = (Z ks — n;)

i=1

which is called ‘double-quadratic’, as the absolute value is here equivalent
to squares. The discrete parameter is naturally expressed as an element of
{0,1}X as k = (K1, ..., KK)".

Notice that exactly the same loss function evolves either from ordering
the set of secondary parameters and applying [, directly or from interpreting
process C as a second-order integrated process and considering the problem
of estimating a discrete parameter in {0, 1,2} that corresponds to the number
of unit roots at 1. The loss penalizes a misclassification of A as C' and vice
versa more heavily than other misclassifications. In the absence of sample
information, this results in a unique optimal decision: all variables are classi-
fied as B. Although the loss is perfectly symmetric and does not depend on
the primary parameters of the individual processes, the risk to be minimized

R(&]X) = E(lga(, &)|X) = Z laa(k, &) P(| X)

is not constant in f|x. Condensing the information via the statistics ¢ =
(¢y,¢2) leads to the modified problem of minimizing

R(EQ) = Bl R)IC) = 3 Ll £)P(<[C)

in £ as a function of ¢. It is the expression P(x|() that creates problems and
that can usually only be approached by numerical integration or by simula-
tion. If the condenser statistic has an accessible small-sample distribution,
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it may be easier to access the risk via Bayes’ theorem

P(|¢) = P(¢lk)/ D P(ClE)

fez

which expression is particularly simple due to the uniform prior distribution
over x. However, in the present case the small-sample distribution is not
accessible and hence this transformation offers no simplification. A substan-
tial simplification can be achieved if the areas where a certain decision is
optimal are bounded by lines in the ((i,...,(») space that are parallel to
axes. Then, a grid search over potential critical values ((1,...,Gn) results
in an optimal decision configuration. This procedure is particularly attrac-
tive if m > 2 but m is also not too large, as then the grid search becomes
time-consuming. If optimal bounds are not parallel to axes, this method may
still result in a readily applicable low-risk and consistent, albeit not globally
optimal, technique. For applications of such decision bounds, see also KUNST
(1996).

5.2 Prediction error loss

The specification of a loss function in econometric model selection is difficult,
as the ultimate aim of modeling in economics is often unclear. Many models
are used to corroborate economic theories or to assess the explanatory power
of rival approaches. Summarizing such aims as ‘academic discussion’, tech-
nical loss functions such as the squared loss may be appropriate for allowing
an a priort unbiased discussion.

However, some models are constructed for a well specified purpose. The
most common purposes in economics are policy analysis and forecasting.
In policy analysis, an evaluation of a social welfare indicator may define
a loss function, similar to monetary costs and profits in business analysis.
In forecasting, prediction accuracy is the most natural target. Hence, in a
forecasting framework the specification of loss follows from the specification
of a measure of predictive accuracy.

Suppose the forecaster considers a finite set of models M =
{Mi,...,M,}. Each model M; can be expressed as a stochastic process
connected with a vector of primary parameters ; and these may partially
be identified from observing a single process trajectory. The forecaster ob-
serves a portion of such a trajectory X7 = (z1,...,2r) and approximates
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the primary parameter 6; by an estimate 4;. Acting as if M; were the correct
model, this estimation can be conducted over the whole range of secondary
parameters = = {1,...,m}. The procedure yields m different predictors
for the next value zr41, which may be denoted by G(zr41|XT, M;). Typi-
cally, unless evaluation of the conditional expectation is numerically compli-
cated, these forecasts will be determined by conditional expectation, hence
G(zrm|XT, M) = E(zp41|XT, M;). Nonlinearities in the models or asym-
metries in the forecaster’s subjective loss function may suggest replacing con-
ditional expectation by an approximation or by altogether different concepts,
such as the median of the predictive distribution. Typically, the information
in the trajectory cannot be condensed in the estimate 0; and G (a1 | XT, M)
cannot be written as G(zr41|6;).

Suppose then that the forecaster observes zr;. She will tend to prefer the
model M; where G(zr.1| XY, M;) is ‘closest’ to zp,; and tend to dislike the
model where that distance is large. Hence, the forecaster’s loss is conveniently
modeled as a monotonous function of |21y — G(zr1|XT, M;)||. Absolute
values or squares define such norms on R and also on R". Here, all processes
are real-valued and squared loss is used.

For processes A and B, the forecaster is assumed to use the conditionally
correct parametric model structure. For process C, the forecaster is assumed
to take the coefficient parameters from the segment of the trajectory between
the identified break point and the end of the sample. This procedure may
bias the results against model C. However, as in the construction of (3, it is
assumed that modelers that use structural breaks are not fully aware of the
underlying break-generating mechanism.

6 Results

6.1 Results for the technical loss function

Figures 4a—c are based on 270,000 replications of the frame and hence on
approximately 90,000 replications of each of the processes A~C. With T =
50, 100, 150, the statistic ¢, is calculated for just one possible break point.
Based on the simulated distribution of ((3,(z), the minimum expected loss
conditional on the observed ({3,(2) is evaluated, which splits the area of
admissible values into three regions.
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The histograms in Figures 2-3 show that values outside the area
{(¢1,¢2) € (—9,4) x (0.3,0.95)} are very rare for T = 100. In the absence
of sample information, the outlined decision procedure always prefers the
process B, hence the strip along the upper margin of the graphs possibly just
belongs to the B area because of small density values for all processes. The
glacis that separates the A and the C areas has a different reason. A and C
are about equally likely there but misclassification bears a higher risk than
opting for the (rather unlikely) B.

For T = 100, the unit-root process A is preferred in a rather narrow
zone similar to {(¢, ¢2) € (—3.2,—0.8) x (0.75,0.95)}. The procedure is two-
sided: (3 < —3.2 is taken as indicating rejection of the unit-root hypothesis
in favor of trend stationarity, whereas ¢; > —0.8 indicates structural breaks
that generate apparently explosive behavior. Apart from the glacis and the
thinly covered strip {{; € (0.95,1.0)}, the breaking process C is preferred if
C2 < 0.75 or if ¢; > 0. The wide area of preference for C represents different
manifestations of breaking. Breaking may generate seemingly explosive and
also seemingly trend-stationary trajectories, depending on the frequency and
size of the breaks.

For T' = 150, the area where the unit-root process A is preferred is ex-
tended leftward and is approximately bounded by (; = —3.6. Simultaneously,
the ¢ boundary creeps upward such that process C is generally preferred if
(2 < 0.83. For even larger sample size, the leftward movement of the A area
continues whereas the additional permitted breaks slow down the upward
movement of the horizontal separating line between the B and C areas.

For T' = 50, the A preference area shrinks to a small island centered
around (¢i,(2) = (—1.8,0.72). A rather ragged boundary curve separates
the large B preference area from the C preference area, and the glacis is
particularly spacious.

Figure 4d uses the sample size T' = 200. Simulations calculate the statistic
(2 under the assumption of two potential breaks and are more time consuming
than for smaller 7. Hence, the number of replications was set at only 70,000.
The additional break point decreases (5, whereas the left bound of the A area
continues its westward drift. Also notice that the glacis shrinks considerably
as compared to smaller T'.

Table 1 shows how many of the generated processes are classified correctly
if the decisions represented in Figure 4 are followed literally with a numerical
precision grid of 0.1 for ¢(; and 0.02 for {;. The most frequent events of
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misclassification are breaking process C trajectories and unit-root process A
trajectories classified as stemming from the trend-stationary process B. The
decision that is optimal in the absence of information, i.e. B, still dominates
at larger sample sizes.

6.2 Results for the prediction loss function

Figure 5b shows the decision map for the prediction loss function based on
the same frame as before, with 7' = 100, and 120,000 replications. The shape
of the map is remarkable. It must be noted, though, that drawing the map
turned out to be very difficult. For most trajectories and at most locations
of ({1, (2) the forecasting performance of all three prediction models is nearly
equivalent. Therefore, a rougher grid was used than for the technical loss
function and the boundary curves may be less reliable.

The area with preference for process A is surprisingly large. It contains
a large portion of the process A area attached to the technical loss function.
For large (3, its left boundary is around —3.7 which is a marked shift to the
left from the technical A area. Its right bound is approximately (; = —1.0
and is largely independent of (;. The area stretches far into the southwest
corner and includes many cases where the ¢rue process is the breaking process
C. This means that one should use the integrated model for forecasting if the
true data-generating mechanism is supposed to be integrated but also if it
is supposed to be a structural-breaks model, as long as the Dickey-Fuller
statistic does not indicate ‘explosive’ behavior.

The B preference area is unconnected. One of its parts consists of the
northwest corner, which is roughly equivalent to the technical preference area
without the glacis, though its right boundary has shifted leftward, as was al-
ready noted. The other part is situated to the right of the A area and overlaps
with a part of the glacis in Figure 4a. Hence, trend-stationary models should
be used for forecasting either when the data-generating mechanism is actu-
ally trend-stationary or when slightly explosive behavior in the trajectory is
observed without too much evidence on a structural break.

The C preference area is comparatively small. It contains those trajecto-
ries where explosive behavior and structural breaks are indicated jointly by
the traditional interpretation of the test statistics. Only in these cases does
it make sense to use a parameter estimate that has been based solely on the
last part of the sample.

20




Figure 5c shows a comparable decision map for 7' = 150. The boundaries
between the A and B areas in the northwest corner are at similar locations
as for the technical loss function. The northeast portion of the B area seems
to grow but gains over the C model are very small there and the boundary
of this enclave is rather uncertain. Figure 5b relies on 180,000 replications
of the frame.

Figure 5a gives the decision map for 7' = 50 based on 270,000 replications
of the frame. Although the A preference area is smaller than for larger T,
it is much larger than for the technical loss function shown in Figure 4a. In
many empirically relevant cases, it pays to use the unit-root assumption for
prediction, even though one should be rather uncertain whether the process
actually has a unit root. Process C loses some ground relative to technical
loss to the benefit of process B but the difference between the two is rather
small over large areas such that these boundaries may shift if the number of
replications is extended further. In contrast, process A dominates by a wider
margin in the central area.

Figure 5d relies on (; with two possible breaks, 7' = 200, and 70,000
replications of the frame. The upper bound of the C area moves south but
the loss of C decisions in the north-east corner is only slightly larger than
that of B decisions and this boundary is not very precise.

Because the validity of the maps in Figure 5 is so uncertain, the numerical
evaluation in Table 2 relies on the original optimal decision with respect to
prediction loss and a grid with resolution 0.333 for ¢; and 0.02 for (5. Also
the double-quadratic risk was evaluated at the solution where prediction risk
attains its minimum. These values are clearly much higher than for the
decision contours shown in Figure 4. The reason for this increase is the high
percentage of C trajectories that are now classified as A, which is advisable
in order to obtain a nice prediction but reduces the probability of correct
classification per se. The fact that technical risk increases from T' = 150 to
T = 200 probably has no significance and may be due to the reduced number
of replications for the latter experiment.

It may seem surprising that prediction risk is an increasing function of T'.
This effect has two main reasons. Firstly, whereas larger-sample forecasts rely
on better parameter estimates for processes A and B, this is not necessarily
so for process C. For process C, estimates are taken from the time range
between the most significant break and the end of the sample whereas true
slopes possibly change more often in this range for higher 7". It was outlined
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in Section 4.3 how the potential number of breaks increases with 7" and this
problem is overcome as T" — oo. Secondly, all processes are non-stationary
and are started in 0 at ¢ = 0. With larger T, the absolute values of the
realizations typically increase and this yields a higher expected prediction
loss.

6.3 An empirical illustration

The OECD publishes national accounts data for its member countries on a
quarterly basis. As a convenient example for the application of the decision
procedure, I used the OECD series on gross domestic product (GDP) in
logarithms, a summary measure of economic activity that was also in the
focus of previous studies on unit roots and structural breaks.

A first inspection reduced the number of usable country data to 17, among
which 12 had at least 80 observations, so that the decision map for 7" = 100
may be applied to them, at least approximately. For the remaining 5 coun-
tries, the map for T' = 50 was used with a similar result but I will not report
on that experiment in detail. Out of the 12 longer series, some were long
enough to match the map for T' = 150 but I cut the series from the begin-
ning in order to maximize the number of observations in the cross-country
comparison. In detail, the countries analyzed are: Australia, Canada, Den-
mark, Finland, France, Italy, Japan, the Netherlands, Spain, Switzerland,
the United Kingdom, the United States of America. This sample represents
an interesting cross-section of small and large economies across the globe.

For each country, the information condenser statistics ¢; and (; were
calculated from the GDP time series and the resulting values were inserted
into the decision contour map. The result is shown in Figure 6a~b for the
double-square loss function and the prediction loss function. Noting that
the series for the United Kingdom (UK) and Finland (FIN) are different
as they are not calculated on a seasonally adjusted basis, the unanimity
of the evidence is strikingly in favor of the unit-root model A. Only Italy
(I) yields evidence on structural breaks that are also clearly visible from a
time-series plot. Spain (E) reverts to a linear trend in longer swings and
hence is classified as a deterministic-trend model B. Japan (JAP) and the
Netherlands (NL) are located in the glacis of Figure 5a. Their classification
is very uncertain, and hence they are classified as deterministic-trend models
B in order to minimize expected loss. Japan may also be better forecasted
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by using that model but for the Dutch series it may be more advisable to
use a unit-root model for prediction.

Time-series plots of the two outliers UK and FIN show dominant cyclical
seasonal patterns. Only for these two cases did some diagnostic statistics,
that I calculated routinely in the auxiliary regression for (;, point to a pos-
sible gain in information by using an extended frame, for example by using
more lags in this regression. The regular seasonal patterns are interpreted as
structural breaks and the series are classified as breaking (C). In contrast, if
the aim is prediction, usage of a unit-root model is more advisable.

This exercise is meant as an illustration of the procedure only. In order to
obtain further conclusions, one may for example seasonally adjust the outly-
ing series, extend the frame to allow for seasonal unit roots, investigate the
influence of seasonal adjustment on classification ete. It is obvious, however,
that, firstly, the outcome is rather similar across countries and, secondly, the
maps can be consulted quickly without any further computational require-
ment than some linear regressions. The breaking model, that appears to be
attractive to some researchers, is not supported as a good descriptive model
and even less as a good prediction model.

7 Summary and conclusion

To my knowledge, this study is the first attempt at comparing technical loss
and prediction loss with respect to model selection in the three-model set
of unit-roots models, trend-stationary models, and structural-breaks models,
although these models are commonly seen as alternative ways of formalizing
trending behavior in economic time series. It is obvious that much more
detailed work has to be done before the results can be viewed as a defini-
tive guideline for empirical economists and economic forecasters. The most
interesting extensions of the approach should include extensive Monte Carlo
to investigate the reaction of decision contours as functions of T' and discrete
lag-order priors with infinite support. Sensitivity studies could handle non-
normal errors and variations of the functional form in prediction loss. It may
also be interesting to investigate the robustness of the results to an increase
of the forecast horizon. Some rudimentary experiments showed little reac-
tion of the decision contours but more research is needed to permit a definite
conclusion.
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On the whole, the results confirm the fact that the true model — I define
a model as a parameterized collection of processes, not as one specific fixed-
parameter process — is not necessarily the best forecasting model, due to
sampling variation in its parameter estimates. Both faces of this simple truth
are important to empirical researchers. Neither does the true or ‘valid’ model
guarantee optimal forecasting nor must a good forecasting model fulfill any
criteria of statistical validity besides small prediction loss. A cursory glance
at the current forecasting literature reveals a widespread ignorance of this
simple truth.
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Tables

TABLE 1. Classification frequencies based on minimizing the double-squared
technical loss function.

identified generated model expected risk
model A B C
T =250 0.5808
A 0.138 0.034 0.031
0.843 0.959 0.658
0.019 0.007 0.311

0.3873

N
et
ja}
S

0.686 0.127 0.093
0.296 0.865 0.284
0.018 0.008 0.623

0.2610

=
cowrllaowsllaw

oy
T
O

0.816 0.133 0.076
0.172 0.860 0.185
0.012 0.006 0.739
T =200 0.1754
0.894 0.090 0.047
0.096 0.907 0.113
0.009 0.002 0.841

Note: Probabilities have been normalized conditional on the generated
model classes.

Qe
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TABLE 2. Classification frequencies based on minimizing the prediction loss
function.

identified  generated model  expected risk technical risk
model A B C
T =50 1.7624 0.8671
A 0.809 0.326 0.404
0.176 0.663 0.413
0.015 0.010 0.183

1.8245 0.7622

~

awrllows»llowsllaw
<
[en)

0.682 0.183 0.330
0.295 0.805 0.388
0.022 0.012 0.283

1.9241 0.6122

~
fod
o
)

0.744 0.125 0.282
0.244 0.869 0.336
0.013 0.006 0.381

1.9906 0.6421

~
B
S
S

0.836 0.139 0.311
0.145 0.846 0.306
- 0.019 0.015 0.383

Note: Probabilities have been normalized conditional on the generated
model classes.
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F1GURE 3.
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