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Abstract

The study proposes a multivariate unobserved components model in order to examine
relationships at business cycle frequencies among macroeconomic variables. The series are
decomposed into non-stationary trends, stationary cycles, and an irregular component. The
co-movements among the particular cycles are modelled by a latent factor, whose dynamics
is governed by a stochastic cycle. As a consequence of certain symmetry‘ properties of the
latter cyclical co-movement can be parametrized in terms of relative variances, phase shifts,
and coherence. The model is applied to a U.S. labour market data set.
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1 Introduction

In recent years the Hodrick-Prescott (HP) filter (Hodrick and Prescott, 1980)
has played the most prominent role for the extraction of cyclical components
in macroeconomic time series. Yet several recent works have called its ad-
equacy for this purpose into question. First, King and Rebelo (1993) and
Harvey and Jager (1993) have examined the conditions under which the HP
filter is optimal in the sense of minimising the mean square error of the esti-
mated cyclical component and have concluded that 'these are unlikely to be
even approximately true in practice (King and Rebelo, 1993: 230)’. It has
further been argued that the resulting need to impose rather than estimate
the signal-noise ratio might give rise to spurious cycles (Harvey and Jager,
1993) and seriously distort sample cross correlations among the cycles of
the particular series (Cogley and Nason, 1995). Second, Harvey and Jager
(1993) have pointed out the weaknesses in deriving stylized business cycle
facts from a pure inspection of cross covariances among the extracted cycles
without any statistical inference. These are typically interpreted in terms of
the relative variances of the particular cyclical components, their strength
of association, and a phase shift (compare, e.g., various chapters of Cooley,
1995). The latter two characteristics are inferred from the cross correlations
by some ’eye-ball metrics’ (Cogley and Nason, 1995).

A growing number of works (Harvey and Jéger, 1993; Gregory and
Smith, 1996; King and Watson, 1996) have therefore put forward alternative
methodologies. Specifically, Harvey and Jéger (1993) and Boone and Hall
(1995, 1996) have proposed the application of structural time series (STS)
models as an approach that encompasses the HP filter and seems capable
of overcoming its main deficiencies. STS models are designed to decom-
pose a time series into its trend, cyclical, and irregular components. The
relative variances of the respective innovations are estimated and cyclical

dynamics is explicitly accounted for. However, the univariate ST'S approach




still requires the need to rely on sample cross correlations for the inspection
of cyclical co-movements and is subject to some difficulties with respect to
extracting and testing for the presence of cyclical components.

I propose a multivariate version of STS models where the linkages among
the particular cycles are assessed by a latent factor. The idea that the busi-
ness cycle is characterized by high coherence among certain macroeconomic
series at business cycle frequencies and that therefore latent factor models
are an appropriate tool for describing cyclical relationships has been put
forward by many authors.! More recent contributions are Stock and Wat-
son (1993), Quah and Sargent (1993), Forni and Reichlin (1995), Kim and
Yoo (1996), Norrbin and Schlagenhauf (1996), and Diebold and Rudebusch
(1996). What is yet specific to the present approach is the usage of a certain
two-dimensional process, i.e., a stochastic cycle (SC) as the main building
block for modelling cyclical dynamics. As the spectral density of the SC
centers around cyclical frequencies it seems particularly suitable for an as-
sessment of cyclical co-movements. Its very specific properties further allow
for introducing phase shifts in a way that symmetrically handles lead and
lag relationships among the particular cycles. The inclusion of idiosyncratic
cycles finally gives rise to a factor model where the co-movements among
the cyclical components of the particular series are explicitly parametrized
in terms of relative variances, phase shifts, and coherence.

The plan of the paper is as follows. Section 2 briefly reviews structural
time series models. Sections 3 and 4 introduce the generalized common cy-
cles factor model (GCCFM) and discuss estimation and testing procedures.
Section 5 presents an application of the model to a U.S. labour market data

set. Section 6 concludes.

'Sargent (1987; 282) offers the following definition: *The business cycle is a phenomenon
of a number of important aggregates (such as GNP, unemployment, and layoffs) being
characterized by high pairwise coherences at low business cycle frequencies, the same
frequencies at which most aggregates have most of their spectral power’.




2 Structural time series (STS) models

The following model has been proposed by Harvey (1985, 1989) for the
decomposition of a macroeconomic time series x;; into a non-stationary
trend :Efj"t, a stationary cycle :I:ft, and an irregular white-noise component

Vit

o tr C
Typ = Ty + Ty + Vit (1)

The trend component follows a so-called local linear trend, that is, a
random walk with a stochastic slope term ., which, in turn, again is

specified as random walk, i.e.,

Aw’zmt = fhigo1 T g (2)
Apiy = Gy

where A denotes the difference operator and level and slope innovations 7, ,
and ¢, are both white noise. If (Iig = 0 the process reduces to a random
walk with drift, while for the case of (rfm = 0, but O‘?’C > 0, it represents a
second-order random walk, i.e., A%éft = (; ;- In the latter case z¥, tends to
evolve smoothly over time.

The cyclical component :cgt is specified as a stochastic cycle, a:z% = Q¢

with the stochastic process governing ¢, , being represented by

Vit | _ cos A sin A P 1 Kit
[(pth ——p[ —sin A cos)\} [(,o;?‘)t_l }_{_[52‘,,’} (3)
or, in short,

By = pOC(N)P; 11 + Ky
with decay 0 < p < 1 and frequency 0 < A < 7. This represents a spe-
cial case of a first-order autoregressive process with a conjugate complex
root thereby generating a cyclical impulse response to both innovations

(Harvey, 1993). Throughout the paper the usually imposed assumption of

EEi,t%t = 0'2-212 will be maintained. As outlined in appendix A.1 the auto




covariance function (ACF) I'(s) for @;, is then given by dampened cosine

and sine waves of length 27 /), respectively, i.e.,

e OF cos(sA) sin(sA)
I(s) = pl l(1 —p?) | —sin(sA) cos(sA) )

Note that I'(s) is skew-symmetric which will be of crucial importance for
various symmetry properties of the latent factor model presented below.

It is finally noteworthy that the HP-filter represents the optimal Wiener
filter for the model

Tip = 93§,Tt+l/z',t (5)

2. tr
Axi,c = Ci,z

where the smoothing parameter corresponds to the signal-noise ratio
o2/o? (King and Rebelo, 1993; Harvey and Jager, 1993). The HP filter thus
emerges as the optimal estimator of a very restricted version of the STS
model neglecting both random walk components and cyclical dynamics. In
fact, from an STS modelling point of view, the need to impose the signal-
noise ratio rather than estimating it is a direct consequence of the limited
nature of model (5).

The properties of the STS model are discussed in detail by Harvey (1989).
Harvey and Koopmans (1996) propose multivariate versions for n series z;
where the particular trend and cyclical components are modelled as in equa-
tions (2) and (3) and certain covariance structures among trend and cyclical
components, respectively, might be imposed. As a special case, several cycli-
cal components mgt might be represented by one common SC. The following
section introduces a generalized version of the common stochastic cycles
model where the particular cyclical components :zzic:t participate at the com-

mon SC with certain phase shifts.




3 A generalised common cycles factor model

The basic idea for introducing a phase shift into a common cycle @, is the
exploitation of the information contained in ¢}. While any linear combi-
nation ¢, + 8*p; shares the same autocorrelation function as from (4) the
cross correlation between ¢, and 8y, + 8%} is given by a dampened cosine
wave subject to a certain phase shift. The inclusion of a further idiosyncratic
cycle allows for modelling the strength of association.

Specifically, let &g, and §; , represent stochastic cycles of the same decay
p and frequency A, the innovations Ko and &;; of which have the variances
03 and 0? and are mutually uncorrelated. Let fe= Py, represent the latent

factor, while :z:glt is linked to both g, and ¢f,; and a further idiosyncratic

£ |1 o ©o, 0
lw%i]‘{ei 9?}{9@%2}4'[1}@@5 (6)

As shown in appendix A.1, the ACF T'z(s) of fC and «f, is given by

o} { cos(sA) a;9; cos(A(s — &;)) }
(1—p%) | cuicos(A(s+&;)) 9;% cos(s\)

cycle @; ;.

1

Tz(s) = PISk

where

9 = /67 +07 + (0i/00)? (7)

a; = sign(8;)9;1/67 4 632

& = Altan™(6]/6:)

Hence, xft and ftc are subject to the same autocorrelation function. The

cross correlation function
corr(zf;_q, f7) = cupl™ cos(A(s — §)) (7a)

is given by a dampened cosine wave with a certain phase shift §; which
is normalized to lie within the range of one quarter of the cycle length

in absolute value. It therefore provides a direct measure for the phase shift




between the two series. The variance of a:ft relative to fC is given by 92. The
multiple correlation |a;| < 1 of :cgt with @g, finally gives rise to a measure
for the strength of association and might be given an interpretation in terms
of a factor loading. Note that the size of the contemporaneous correlation
corr(mft, fE) = a;cos(AE;) is limited both by the factor loading and the
phase shift. As the borderline case of §; = 7/2) emerges a phase shift of
one quarter of the cycle length which yields a contemporaneous correlation
of zero regardless of the strength of association.’

Auto and cross spectra for fC and xzct are derived in appendix A.2
and plotted in Figl. The auto spectra for ¢;, and ], are identical and
center around cyclical frequencies while the real part of the cross spectrum
is identical to zero. As a result, xgt again exhibits the same auto spectrum,

subject to the scaling factor ¥;2. The expressions for coherence and the

phase spectrum are found with

_ o2l e (Im(g2@))?
Coh(w) = l91-§—92 ( @) )} (8)
_ -1 [ 87 Im(g12(w))
Ph(w) = tan { 2 ———————gl(w) }
where
Im(g12(w)) —2psin Asinw
g(w) 14 p?—2pcosAcosw

represents the ratio of the imaginary part of the cross spectrum and the
auto spectrum. It is particularly noteworthy that, first, the SC centers
around cyclical frequencies and therefore measures coherence and the phase
shift just at these. Second, Coh(w) does not depend on the signs of 8; and

07 while, due to the skew-symmetry of tan™!(w) around w = 0, the phase

2In turn, for an integer phase shift £, it would hold corr(a:ft_si, fE) = aip®. The
phase shift thus imposes an upper bound on cross correlations. This compares to the
proposition that, for a vector autoregressive process A(L)x, = &, the correlation between
zi¢ and x5 is limited by |p,...|° where p_.. denotes the largest root in absolute value
of det(A(z)) (see Liitkepohl, 1994: 23). Yet, as long as p is not too far below one, this
does not impose a severe constraint.




simply reverts with the sign of 8 /6;. Thus lead and lag relationships are

handled entirely symmetrically!3

Fig. la: Auto spectrum of the SC for p = 0.9 and 27/A = 20
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Fig. 1b: Coherence (—) and phase shift (- - -) between fC and xft
(0; =0 =1/v/2and o = 1)
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%Both coherence and the phase peak at wo = arccos [2p(1 + p%)" cos )\] which, for
values of p not too far below 1, is close to A. The phase at wo is then close to ;.




Turning to the multivariate case of n cycles 2f = (:13%, ces :L,(f ¢ let, for

i=1,...,n, the dynamics of :1:15lt be given by
xzct = 010 + 07001 + i (9)

©; = (Potr - Pne) 15 a vector of n + 1 stochastic cycles, whose decays
p; and cycle lengths \; are assumed to be equal. The innovations Kit of @i,:

are of variance o7 and are assumed to be both mutually orthogonal,i.e.,
: 2 2 2
¥, = diag(og, 071, ..., 05,) @ Ia.

The ACF of the particular xft with the latent factor ];;C = Py, is then
given as from equations (7). Further, as shown in appendix A.1, phase shifts
turn out to be additive. The auto correlation function of z{ is therefore

given by the expression

CS(O) a1a2cs(§2 "‘51) alancs(ﬁn “El)
) IR S O D
Q1Gqp Cs(§1 - gn) Qolip CS(§2 - gn) CS(0>

where cs(2) denotes cos(A(s—=z)). It is immediately evident from equation
(10) that identifiability requires a normalization of both the variance and
the phase shift of the latent factor. This might be achieved by setting 8; = 1
and 07 = 0 for some ¢. Note further that the system comprises n + 1 cycles.
As with any latent factor model, identifiability of the factor loadings o
therefore requires the dimensionality of the model to be n > 3.

Various works applying STS models to macroeconomic data (Harvey,
1985, 1989; Harvey and Jager, 1993) indicate that the SC is, in fact, suffi-
cient for modelling business cycle dynamics. Further evidence in this direc-
tion has been provided by Hofer et al. (1998). Inspecting bivariate VAR and
VARMA models for GDP and various cyclical indicators they found low or-
der VARMA models to be superior compared to the VAR approach. Further,

the autoregressive part of the VARMA specifications invariably contained a




complex conjugate root which compares favourably to the reduced ARIMA
form of STS models (see Harvey, 1989).

4 Estimation and testing

The model comprises equations (1) for n series z; = (1, ey @ t)| where
the particular trend components are modelled as from equations (2) and
the cycles as from the GCCFM (9). The conditions for the identifiability
of multivariate STS models as discussed by Harvey and Koopmans (1996)
carry over straightforwardly to the GCCFM. Denote with 7, ¢;, and v,
the n x 1 vectors of level and slope innovations, and irregular components,
respectively. Ry is the vector of cyclical innovations of length 2(n + 1) as
from equations (9). The vector &, comprises the particular innovations, i.e.,
e = (i, ¢}, R). Both vy and ¢; are assumed to be identically independently

normally distributed. If the innovations are blockwise orthogonal, i.e.,

Eeie;, = diag(Ty, ¢, EK)
FEew;, = 0

then the system is identifiable (see Harvey and Koopmans, 1996). For esti-

mation the model is cast in state-space form

. = Zap+ vy (11)

a = Tai_1+¢€t

with the state vector a; comprising the unobserved state variables. The
structure of the state-space form is presented in appendix A.3. The pa-
rameters are estimated by maximum likelihood using the prediction error
decomposition provided by the Kalman filter (Harvey, 1989).

Testing and diagnostics in the context of STS models have been discussed
by Harvey (1989) and Harvey and Koopmans (1992, 1996). As pointed out
by Harvey (1989: 251) the test for the presence of an SC is in general subject




to difficulties related to a lack of identifiability under the null. I therefore
focus on Wald tests with regard to the cyclical structure taking the presence
of the latent cyclical factor as given. The test for Ho : (6:,0;) = (0,0),
i.e., the presence of an association of a:f:} with the latent factor requires at
least three pairs of parameters (6;,67) to be left unrestricted in order to
maintain identifiability of the covariance structure under the null. The test
for the presence of an idiosyncratic cycle ¢, 4, in turn, amounts to the null
of Hp : 02 = 0. As the null lies at the boundary of the admissible parameter
space the distribution of the Wald test is given by 1(1 + x?) (Kodde and
Palm, 1986; Gill and Lewbel, 1992).

If (85,67) = (1,0) is chosen for normalization and (6;,07) differs from
zero, the test for Ho : 85 = 0 amounts to §; — §; = 0 and involves no
complications. Alternatively one might test for Hp : §; — &; = 7/2A, or,
equivalently, §; = 0. More general hypotheses on relative phase shifts among
the particular cycles yet require likelihood ratio tests due to non-linearities in
the involved transformations. Finally, given o? > 0, model misspecification
tests might be based on the equality of cycle lengths and decays, i.e., the
hypotheses A; = Mg and p; = pq.

5 Application to labour market data

I apply the model to a labour market data set that has played a central role
in the calibration of real business cycle models, i.e., quarterly data for the
U.S. business sector of output (y:), total employment (e;), hours per worker
(ht), the output deflator (p:), and real compensation per hour (w). The
data stem from the establishment survey and range from 1959:1 to 1994:4.

They are taken in logs.*

1The Citibase labels are LBOUT, LBEMP, LBHP, LBCP and LBCP7. Maximum like-
lihood estimation was done in GAUSS using the algorithm by Rosenberg (1973).

10




5.1 Trends

I transform the trends in accordance with conventional balanced-growth
assumptions and impose orthogonality restrictions on the respective innova-
tions. The trend in output is assumed to be composed of trends in labour
productivity (7"}, employment (e"), and hours per worker (h{") while the
trend in real compensation per hour is composed of 7i" plus a further com-

ponent (si") representing the labour share of income.

yir 111007[nr
elr 01000 el
R l=]00100]]|nr
wlr 100 10]]sr
pir 0000 1]|pr

The particular trends on the right hand side might be modelled as local
linear trends. Yet it should be noted that this renders them to be integrated
of order 2 (I(2)) and therefore has been questioned (e.g., Nelson, 1987). In
particular, A{" and si™ should exhibit no systematic drift though level shifts
seem to have occured in the sample period. In turn, there is evidence for
prices to be I(2) (e.g., Schwert, 1987). The presence of a stochastic slope
is yet less clear for employment and productivity.® Since the focus of the
study is on cyclical co-movements the modelling strategy should tend to
leave the trends unrestricted. I will therefore use, as a benchmark, a model
that restricts h{" and si” to follow random walks without drifts and allows
for stochastic slopes in the remaining trend components. Yet I will comment
on the stability of the results with respect to alternative specifications. The
covariance matrix ¥, of the vector of irregular components is estimated

freely.

®Harvey and Jiger (1993) and Leybourne and McCabe (1994) have argued that the
size of tests for a second unit root is likely to be seriously distorted. Using a test that
takes stationarity as the null the latter provide evidence for the view that some macro
series might be I(2).

11




5.2 Results

Table 1 presents estimates for the benchmark model. The transformed pa-
rameters and the implied cross correlations among the particular cyclical
components are set out in Tables 2 and 3. The latter also contain the im-
plied results for some combinations of interest, i.e., total hours, output per
hour, and the nominal wage. Fig. 2 shows the GCCFM and HP filter esti-
mates of the output cycle. Fig. 3a to 3h present the particular estimated
cyclical components as extracted from the GCCFM.

The cycle length is estimated with 20.3 quarters which corresponds to the
usual characterization of business cycles as being represented by frequencies
from 3 to 8 years. The idiosyncratic cycles for output, employment and
hours are found to be very small and, with the exception of the employment
one, insignificant from the Wald test (W; in Table 1). The co-movement of
output, employment and hours cycles is thus close to being deterministic in
the sense that they follow one common SC. The employment cycle follows
the output one with a phase shift of 2.1 quarters, while the cycle in hours per
worker moves simultaneously with the latter. From the results presented in
Table 2, the cycle in total hours lags the output one by 1.4 quarters, while
output per hour is found to be pro-cyclical with a lead of 2.3 quarters. The
standard deviation of the cycle in total hours relative to the output one is
estimated with 0.73 which results in a respective value for output per hour
of 0.48.

The results for real compensation per hour indicate the presence of a
cyclical component with a somewhat smaller factor loading of 0.67 and a
relative variance of 0.29. Interestingly, the phase shift relative to the output
cycle is found to be very close to the borderline case of one quarter of the
cycle length. As a consequence, though a significant association with the
latent factor is found (W3 in Table 1), the contemporaneous correlation with

the output cycle is virtually zero (Table 3).

12




Table 1: Parameter estimates of the GCCFM

Cycles y& e Y wf ¥
decay p 093
cycle length 2n /A 20.27

g; 1.000 439 214 -.011 -.164
g; .000 -.327 .019 .196 -.298

Innovations (std.dev*100)

common cycle og 624
idiosyncr. cycles ye el ¢ wf ¢
o;  .000 088  .020 134 141
irreg. comp. v ey hy wy ot
ov; 519 000 .118 .000  .000
7T§r G%T h%r Sgr p%r
level Onii .370 .001 210 353  .000
slope Oc;i 045 110 .000  .000  .177

Tests

ot = (W1) 04 515 .30 691  9.67
A=A (LRs) — 02— .24 154
0;=0;=0 (W3) — 123.92 81.12 8.05 3246
; =0 (W) — 8611 7849 .13  9.92
07 = (Ws) — 49.14 0.51 8.00 28.30
Q(20) 25.56  23.42 31.60 24.68 28.81
JB .85 1.09 05 210 .63

Notes: The likelihood ratio (LR) and Wald (W) test statistics LRy, Wy,
Ws follow a X:f, the statistics W3 a X%—distribution under the null. The
distribution of test Wy is discussed in section 4. Q(20) and JB denote the
Ljung-Box and Jarque-Bera statistics for autocorrelation in and normality of
standardized prediction errors, respectively (see Harvey, 1989: 259f). They
are approximately distributed with X%O and X%. 5%-critical values of X‘f, X%
and X%O are 3.84, 5.99 and 31.41, respectively. The 5%-critical value for test
W1 is given by 2.71 (Kodde and Palm, 1986).

13




This result sheds some light on the conflicting conclusions of a num-
ber of studies that find the aggregate real wage to be either weakly pro-
or counter-cyclical (Cushing, 1990; Mocan and Topian, 1993; Abraham and
Haltiwanger, 1995) or do not find an association at all (Summer and Silver,
1989).% Some of these studies have argued that the cyclical behaviour of
the real wage has been changing over time. The high factor loading yet
suggests that the association at business cycle frequencies might be some-
what stronger and more stable than is usually concluded, which is revealed
only if the high phase shift of the real wage is properly accounted for. Yet
Fig. 3g indicates that the real wage might indeed have changed its phase
to some extent. While the average lead with respect to output per hour
is estimated with 2.5 quarters, the real wage moves roughly simultaneously
with the latter during the seventies, though it exhibits a lead before and
thereafter. Note further that the real wage is counter-cyclical with respect
to employment lagging the latter by 2.8 quarters.

Prices are found to be strongly counter-cyclical with a pronounced lead of
3.4 quarters and a high factor loading of —0.83 which is quite in accordance
with the majority of findings from the relevant literature (e.g., Backus and
Kehoe, 1992; King and Watson, 1996). The nominal wage cycle exhibits a
considerably smaller factor loading of —0.54 and lags the price cycle by 1.7
quarters, while the standard deviation is slightly smaller (see Table 2 and
Fig. 3h). This pattern, along with the finding of a weak counter-cyclicality
of the real wage with respect to employment seems quite consistent with a

moderate degree of nominal wage stickiness.”

These studies typically use static regressions where wages and employment are either
detrended by the HP filter or taken in first differences.

" Approaches incorporating various non-Walrasian labour market features into RBC
models (e.g., Burnside et. al., 1993; Danthine and Donaldson, 1990; Feve and Langot,
1996) typically predict a pro-cyclical pattern for real wages with respect to output per
hour, as found in the data. Yet these approaches can hardly explain the findings that the
real wage, on average, leads output per hour and the contemporaneous correlation with

14




Table 2:

Cyclical components: parameters and
implied cross correlations

output emp hours total output real prices nom.
hours p.hour wage wage
std.dev 2.23  1.26 48 1.64 1.08 .65 9N .83
rel.to output % 1.00 .58 22 73 48 .29 .40 37
factor loading oy 1.00 97 98 .98 95 -.67 -83 -.54
phase shift & —  -2.06 029 -1.42 2.34 -4.88 344 170
Cross correlations with output
t-9 -65  -.64 -.62 -.68 -.23 .19 .09 .24
t-7 -42  -.69 -.36 -.64 .09 43 -.28 .03
-5 02 -46 .09 -.33 .53 .55 -60 -.23
t-3 .53 .00 .58 A7 .83 .46 =73 44
t-2 .75 .27 .79 44 .88 .33 -89  -.50
t-1 91 .54 .93 .69 .84 .16 =58 -5l
t 1.00 .78 .98 .89 g1 -.04 -40  -.47
t+1 91 .88 87 .93 A7 -23 -15 =35
t42 75 .89 .69 .89 20 -39 .09 =21
t-+-3 .53 .82 .46 a7 -07  -.50 30 -.05
t+5 .02 .49 -.06 .36 -50 -.55 .59 .22
t+7 -.42 .03 -.47 -12 =70 -40 .62 37
t+9 -65  -.37 -.66 -.48 -62  -14 43 37
Table 3: Implied contemporaneous correlations
output emp hours total output real prices
hours p.hour wage
emp .78
hours 99 .71
tot.hours 89 .93 .84
output p.hour 7119 .76 37
real wage -04  -.42 .02 -.32 40
prices -40 .11 -.46 -.05 =75 -.47
© nom. wage -47 =21 -.49 -.30 -51 -7 .39

the nominal wage is close to zero (Table 3).

15




The results appear to be robust with respect to alternative specifications
of the trends. The benchmark model includes an innovation dummy in the
employment level equation in order to account for a sharp outlier in 1975:2.
While this improves the diagnostics set out in Table 1, it does not affect
any other result. The same holds for relaxing the orthogonality restrictions
on the trends, allowing for stochastic slopes in hours per worker and hourly
compensation, or eliminating the stochastic slope term in productivity. The
only notable difference to the benchmark model occurs if the employment
trend is restricted to follow a random walk with drift, which yields an es-
timate of the cycle length of 29.5 quarters. However, relative variances,
factor loadings, and phase shifts relative to the cycle length again remain
essentially unchanged. The main results for this case are shown in Table 4.

It is finally of interest to compare the implied cross correlations with
those obtained from univariate HP filtering (Table 5). For output, em-
ployment, and hours the similarity of the findings is remarkably high. The
results deviate somewhat more as regards prices and wages. The high cor-
respondence of the findings for output (Fig. 2) might reflect the fact that
the smoothing parameter of the HP filter has been tailored in order to con-
form with prior views about the size of the cyclical component in this series.
However, as argued by Harvey and Jager (1993), the implied signal-noise

ratio is not necessarily adequate for other data under consideration.
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Table 4: Cyclical components
(stochastic slope in employment eliminated)

output emp hours total output real prices nom.
hours p.hour wage wage
std.dev 230 144 41 1.77 1.20 .93 1.00 .92
(rel. to output) v; 1.00 62 .18 77 .52 40 43 40
factor loading o 1.00 .92 1.00 .95 .88 .62 -93 -48
phase shift & — =279 032 -2.08 347 670 499 268
Table 5: HP filter: cross correlations

output emp hours total output real prices nom.

hours p.hour wage wage

std. dev. 2.19 1.46 45 173 1.16 .98 1.42 .95

(rel. to output) 1.00 .66 .20 .78 .52 45 .64 43

Cross correlations with output

t-9 -33  -.54 -.23 -.52 .10 12 .02 .16

t-7 -.26  -48 -.08 -.42 15 .28 =25 -.07

t-5 -02  -28 .22 -17 .26 .38 -53 -.40

t-3 42 .08 .49 .20 .50 43 -72 .64

t-2 .64 .32 .61 43 Y .43 =75 -.67

t-1 .84 57 .71 67 .59 A1 -71 -.64

t 1.00 .79 72 .85 .62 .33 -60 -.54

t4-1 .84 .86 .53 87 .30 21 -.45 -.45

t+2 64 84 .30 .79 .03 11 -28  -.30

t+3 42 .74 .08 .65 -18 =01 =10 -.16

t-+5 -02 .39 -.29 25 -39 -21 .20 .07

t-+7 -26 .04 -.50 -.29 =35 -.28 42 .34

t-+9 -33  -.21 -.46 -.09 -22  -19 48 .52

Notes: The smoothing parameter has been set to 1,600.
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6 Summary and conclusions

The present study proposed a multivariate unobserved components (UOC)
approach for modelling cyclical dynamics the basic building block of which
is the stochastic cycle (SC). It was shown that, in a multivariate latent
factor setting, the specific symmetry properties of the SC allow for a testable
parametrization in terms of the parameters of interest. Long-run neutrality
restrictions on the trend components might be imposed.

Consequently, the multivariate UOC approach has the potential to yield
more consistent and substantially sharper results compared to univariate
filtering techniques. As the most striking outcome, there appears to be a
significant association of the hourly real wage with the business cycle which
is subject to a phase shift relative to output of close to one quarter of the
cycle length. It would yet be grossly misleading to interpret the resulting
contemporaneous zero correlation as the absence of any association. With
regard to measuring the business cycle, accounting for phase shifts therefore
might also yield additional insights in comparison with other dynamic factor
models as used, for instance, by Quah and Sargent (1993) or Norrbin and
Schlagenhauf (1996) that focus on contemporaneous relationships only.

In sum, the results once more confirm the need to endow business cycle
models with various features that account for pronounced phase shifts of
employment, labour productivity, and the real wage. First, they make a
strong case for mechanisms that have been proposed in order to explain the
negative phase shift of employment with respect to output, i.e., indivisible
labour (Hansen, 1985), labour adjustment costs (Burnside et al., 1993), or
search costs (Feve and Langot, 1996). Yet, in turn, such mechanisms seem
also entirely sufficient for explaining the lead of output per hour, as the
cyclical dynamics of output, employment, and hours per worker is found
to be represented by one common cycle. Second, while the real wage is

strongly pro-cyclical with respect to output per hour, the findings on the
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cyclical behaviour of prices and nominal wages seem to indicate some role
of nominal wage stickiness as, e.g., investigated by Cho and Cooley (1995)

in an intertemporal equilibrium framework.
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Fig. 2: Output cycle

6.0
"
3.0 —
!
0.0
L /‘\
] i !
-3.0 o [
19859 1964 1969 1874




Fig. 3a: Output and employment
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Fig. 3e: Output and prices
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A.1. Auto covariance function of the GCCFM

The ACF I'(s) of the SC as from equation (4) is found from the set of equations

I(s) = [pCN]"T(0)
L) = pCNT(O)CON) +ailz
It is easily verified that T'(0) = o%(1 — p?)"1L.  Moreover, it holds

[C\))° = C(s)). Hence, the ACF for &;, is given as in equation (4) in the
text.

The ACF I';(s) for the model z{ = éﬁc as from equations (9) yet with ¢; , =0
follows from I'z(s) = OT'(s)©’. The elements of B(s) = ©C(sA)0’ are found as

Bii(s)
Bij(s) = (6:0; +0707)cos(s)) + (8:67 — 070;) sin(s))

(922 + 0;‘2) cos(sA)

I

055 cos(sA) + 67; sin(sA)

The cross terms can be simplified from the identity (Harvey, 1993: 227)
055 cos(sA) + 67 sin(sA) = sign(8;)7s; cos(sA — ;)

where

Yi; = tan“l(el-}/(?ij)

and ;; € [~7/2;7/2] denotes the phase shift between z¢, and z,. Note that
(8:5,607;) = (031, —07;) and, hence, v;; = —7;;. As a special case emerge equa-
tions (7) for ¢, , = 0. In order to establish equation (10) it remains to show that

the phase shifts are additive. Denoting

TE = \/9,%.-*}-922

U = Qz/ék

i

T tan™ ! (ug)




it is, first, easily shown that r;; = r;7;. Additivity follows from

Yij = tan_l(uj —u;y /(1 + uz-uj')

-1 1

= tan” " u; —tan~ Ui =Y; Vs

The above identity holds if ]7j - 'yil < 7/2 but needs some adjustment of
signs otherwise from the requirement [7ij| < w/2. Yet {'yj - 7i[ > /2 is just

equivalent to
1+ usuy = 0;5/(0:8;) < 0 < sign(fi;) = — sign(8;) sign(0;)

in which case the sign of the tangens switches. It finally follows that

|5 42
Pei(s) = = g7t cos(s)
p|slgg ) )
Dpu(s) = T2 sign(8;) sign(6;)rir; cos(A(s — &5 +&;))

where §; = )\_17,.. Adding uncorrelated idiosyncratic cycles ¢, , leaves the
covariances unaffected but changes the expressions for Iy ;;(s) by replacing r?
with 92 = 72 4+ (0;/00)? according to equation (7). Finally, the ACF for any

linear combination 2 = a’z{ is again of the same form as in (10).

A.2. Spectral generating function
Consider equations (9) and let the SGF of ¢, , be given by

- 1(w)  g12(w)
G;(w) = (2m) 10? i_______
g12(w)  g2(w)

where g(.) denotes the complex conjugate to g(.). Under the symmetry con-
ditions g;(w) = go(w) and Re(gi2(w)) = 0 the SGF Gi(w) = OGy(w)®' for

zf = 0@, is found as

guiilw) = ofrigi(w)

geis(W) = 0§(0i;01(w) + 05012(w))




Hence, all xi(’:,_ share the same spectral density and this consequently holds for

any linear combination. The expressions for coherence and the phase spectrum
are then given by

Coh(w) = (rr;)"2

P ( ) ( 1 J) 1 (w)

9% Im(glz(w))]
05 g1(w)

iy ()’

Ph(w) = tan“l[

i
Coh;;(w) is independent of sign(63;/6;;) while Ph;;(w) changes its sign with the
latter. This shows that the above conditions are sufficient for establishing the
relevant symmetry properties as discussed in the text. Again, adding idiosyn-
cratic cycles leaves the expressions unchanges apart from scaling. The necessity
of the conditions can be established from an inspection of the respective expres-
sions for a more general SGF G;{w).
The power spectrum of the SC is calculated from the moving average represen-

tation &; , = M(L)R;: (e.g, Priestley, 1981: 689) as
Gilw) = (2m) YoM (e™™) M (eT)

where M'(e**) denotes the transposed conjugated matrix to M (e=*). From

Harvey (1993: 183) the SGF follows as

21+ p? —2pcosAcosw
o3 5

Im(gi2(w)) = *2039&122132

201(w) =

and
D = [1+4 p" + 20> — 4p(1 + p%) cos A cosw + 2p?(cos 2 + cos 2w)]

while the real part of the cross spectrum is identical to zero.




A.3. State-space form

The state-space form is outlined for a model with n = 2 and one idiosyncratic

cycle ¥, , as from equations (6). It is given by

r = JZoap+uy
a = Tap_1+¢
with the vector z; = (21,1, 2,1)" of the observations at time ¢, the state vector

a; comprising the unobserved state variables, and v, and e; representing the

irregular components and innovations respectively. More specifically, with

tr ir * * \/
az (xl,t) Kyt T2y H2 12 PPt P2ty 9‘92,t> , and

!

- o . o . K
&t (771,t1 Cl,t: Ta,ts <2,t3 K160 Ky 00 K2t /"2,1)

the matrices Z and T are given by

10 1100 0 0 O 0
0 0 1000 0 O 0 O
0 1 0011 0 0 0 0
s |0 0| L, 0010 0 0 0 0
1 6, 0000 pcy psy 0O 0
0 6; 00 00 —psy pcx 0 0
0 1 0000 0O 0 pcy psa
0 0 (0000 0 0 -psy pos |

where ¢y, and sy denote cos(A) and sin(A), respectively.
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