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It has become increasingly realised that Walrasian market
adjustment mechanisms, at least in the form popularised

by P.A. Samuelson (1941) in his Foundations, may in some

circumstances yield an inadequate representation of price
and quantity dynamics. In situations where nothing approxi-
mating in its effects the Walrasian auctionneer exists,
there may be complicated internal dynamics incorporating
the acquisition and processing of information by the agents
concerned. These internal dynamics may imply a behaviour
for manifest prices and quantities very different from the
Walrasian scheme, where price is assumed to change only in
response to a discrepancy between flow demand and flow
supply. In the present paper we construct a model in which
we attempt to allow for some of these internal dynamics.

In the sense that it is cast in terms of a price distribution
which is at least in principle easily observable, namely
that at which transactions actually occur, the model
represents an extension of Walrasian analysis. On the
other hand, it stops short of the (possibly unattainable)
task of representing in a simple way the full internal
dynamics of the system, a burden to which the literature

has so far not been equal.

A model of this kind should be able to tell us what happens
when a variation in one or more of the underlying assumptions
occurs. One of the most interesting and important of these,
both from the theoretical and practical point of view, is

the case where buyers may be subject to a financing con-
straint. The role of financing constraints in geﬁeral has
received widespread attention as a result of the so-called
"Keynesian reinterpretation". To financial economists, it
appears as the phenomenon of credit rationing, which may
have either a temporary aspect, or else be of more

permanent duration ("equilibrium rationing" in the
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terminology of D.M. Jaffee and F. Modigliani (1969)).
Rationing of any kind has always been of interest in
economic theory because of the implied contrast between
two forms of stabilisation or control, the one based on

a diktat of some kind, the other emerging out of the
unencumbered operation of a pricing system. From the
practical point of view this contrast is full of interest
for those fortunate or unfortunate enoﬁgh to live in a
financial milieu of heavily regulated interest rates,
particularly in respect of mortgage rates on real estate.
Whether or not it is true that frustrated buyers succeed
in obtaining finance from an uncontrolled fringe market,
the question as to whether such direct controls would
succeed of themselves in stabilising the housing market
is obviously of interest. The model we establish appears
to yield some useful insights into the effects of rationing
of this kind.

The scheme of the paper is as follows. In section I we
establish the basic model and its equilibrium properties.
The dynamics are investigated in section II. We investigate
here a question of some importance which does not seem to
have been treated in the literature, namely whether a market
is more or less stable the more imperfect is the information
acquisition and processing on the part of its agents. Does
"friction" increase or decrease a market's rate of conver-
gence to equilibrium? In the third and final section we
impose credit rationing constraints of two kinds and study
equilibrium and disequilibrium properties of the resulting

system.
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I. The Model

One approach to the study of markets in disequilibrium
starts from the presumption of stable flow demand and supply
functions. The guantity transacted in any period is equal

to the minimum of the quantities demanded or supplied; this
and a rule for price adjustment based on the difference
between demand and supply, determine the dynamics of clearing
(R.C. Fair and D.M. Jaffee (1972), Fair and H.H. Kelejian
(1973)). But while this may be adequate for fish, it will
not do for houses. Where the commodity involved is durable,
if the market is supposed to be in disequilibrium for a
finite length of time, we have to consider what happens to
the unsatisfied demand or supply. Does it simply go away?

If it does not, that is, if at least some of it is back-
logged, then if price change is to be related to a discre-
pancy between demand and supply, these schedules can no
longer be regarded as stable, in the sense that they are
invariant to the recent history of the process. It is this

consideration that motivates our own model.

The determination of prices under conditions of imperfect
information has received much recent attention (for topics
related to the subject of this paper, some useful references
are to be found in E. Phelps (ed) (1970), P. Diamond (1971)
and the surveys by M. Rothschild (1973) and H.I. Grossman
(1973)) . A profusion of models analysing various aspects
of search and price formation has emérged, bewildering in
the diversity of their specifications and sometimes in
their underlying logic. A formal distillation of these
models where they attempt a complete price and quantity
dynamics (not too often, admittedly) might be something
like the following: Suppose for the sake of simplicity
that only one good is purchased at a time; extension to
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the case where, given the purchase decision has been made,
a demand function exists relating the number purchased to
the price, poses no difficulties. At any point in time
there is a certain number of sellers, and a corresponding
distribution of asking prices for the product (which we
shall call the sellers' price distribution). Now impose

on this a selection rule, which selects a certain number

of these sellers and a corresponding price distribution.
This latter number is the quantity actually transacted,

and the latter distribution we shall call the transactions
price distribution. The burden of the literature has been
to specify the details of the above process. The selection
rule operates by the process of consumer search, itself

a costly procedure. The task of specifying a fully adequate
dynamics requires not only full specification of the number
and search behaviour of buyers, but an account of how the
sellers distribution is formed and changed, indeed as to
why it should even persist as a proper distribution (in

the mathematical sense). Particularly with respect to the

latter aspect the literature has not so far been conspicuously

successful. Presumbably, however, the characteristics of
the sellers distribution can ultimately be related to the
recent history of the transactions distribution. Likewise
the numbers and perceptions of searching buyers must be
related to the recent history of the transactions distri-
bution. For in both cases, this distribution and in
particular some measure of the central tendency thereof,
represents the basic, observable data which help to motivate
the entry, continuation, or exit of buyers or sellers from
the pool of active agents. The other basic determinant of
such entry or exits, is the search history of these agents,
representing their hopeful prospects for the future or

their accumulated frustrations from the past.
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Thus in our own model, we have chosen not to attempt to
model explicitly either the determination of the sellers
price distribution or else the precise search characteristics
“of buyers. Rather; we have chosen to model the process in
terms of the transactions price distribution, and in
particular some single measure thereof such as the mean.
Underlying our model, however, is some deeper structure
such as that outlined above. By combining the idea of a
ruling transactions price with a model based on underlying
search behaviour, we are able to graft ideas derived from
the probabilistic character of the search process on to
the immensely fruitful stock of Marshallian demand and
supply analysis. We shall now proceed to the details of
the construction.

There is a flow of new entrants, both buyers and sellers,
to the pool and for the sake of simplicity such flows will
constitute our stable or invariant demand and supply
schedules. There is a flow of agents out of the pool con-
sisting (a) of those who have concluded agreements and

(b) those who decided to exit for other reasons: either
their costs of search (psychological or financial) may have
mounted to the point where in the light of an unchanged
subjective probability distribution of qualities or prices,
they assess the probability of success in the coming period
as not worthwhile. Or else their assessment of the distri-
bution of prices may have changed so that they exit for the
same kind of reason that they entered, namely their
assessment of the ruling price. After each round of trans-
actions, we imagine a new ruling price based on the dis-
crepancy between the number wanting to buy and those wanting
to sell at the previous price. Given this new price, un-
satisfied buyers and sellers will consider whether or not
they wish to remain in the pool. Their decisions wiil

depend (i) on the new ruling price and (ii) on the length



of time that they have already been in the pool, a quantity
which we shall proxy by the expected "age" of buyers or

sellers.

In defining the following functions and adjustment mechanisms
we have chosen to remain quite general. (We have suppressed
in particular a rate of interest variable, the effect of
which will be given some attention in Section III. Depending
on the market under consideration, many more variables might
enter, and identical variables to those we do consider might
enter in different ways - e.g. we could have a demand

function depending also on g— ;, where p, was a perceived
%
long-term or "permanent" price):

Py = ruling purchase price, time t.

nd(pt) = flow of new entrants2 to the buyers pool
during period t.
ns(pt) = flow of new entrants2 to the sellers pool
during period t. _
Ni = stock of potential buyers in the pool at
time t.
Ni = stock of potential sellers in the pool at
time t.
n, = transactions {(agreements) during time t.
Et = successfully concluded agreements, with finance
available, during time t (used only in Section III).
(1) p.-p. . =08 xS ), 0<B <1,
t Tt-1 t-1 Tt-1

This expresses the change in ruling prices.

a_ a d
(2) Ny = Pae Meoq = Beoq) *omg -

S _ <] - ) s
(3a) NS = ¢ (NL_4 n,_4) +ng .
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Equations (2) and (3a) need further explanation. Consider
the demand version (2). The quantity N3_1(pt_1) - Dy
represents unsatisfied demand in t-1, i.e. the number of
unsuccessful buyers in the pool. The new ruling price is
P, - A proportion ¢d’ which (given pt—1) will depend among
other things on Py of the unsatisfied buyers then elect
to stay in the pool. The number of searching buyers in
period t is then given by (2). A similar interpretation
holds for equation (3). We have not as yet specified in

any detail the functions¢(i and ¢S; this is done below.

(4) n, = h(lN‘E—NiI)min.(Ni,Ni), O¢hg1, h'y 0 .
The number of successful contacts during period t is
determined by the short side of the market; but is closer
to the minimum according to a measure of the discrepancy
between the forces of demand and supply. This expresses

some of the probabilistic character of search. The greater

the discrepancy between the two different types of searcher,

the higher the probability that a given agent of the type
in short supply will be successful. Note that without the
existence of credit rationing, n, denotes successful con-
tacts, which thereby exit from the pool. In Section III
this will not be the case, and some redefinition will be

necessary.

Let us now investigate the functions ¢d and ¢s’ which

reflect decisions by unsuccessful agents to try again. If

- his past search experiences were a matter of indifference

to him, a decision to stay on would reflect only the agent's

assessment of the new ruling price. In this respect, one
could argue that he would then be on all fours with a new
entrant, so that for example

d

n-(p,) “

Pa= @ T 1+ (B - pe Py
n (pt_1)



0

~

Yy

nd'
where €4 = ;a—
schedule, evaluated at Piroqe

is the elasticity of the flow demand

Such an assumption, however, is not palatable. As any
prospective housebuyer knows, the process of search is
rarely pleasant, and the longer it goes on, the more
discouraging it becomes, in the light of point (b) at the
start of this section. We therefore suppose that the

functions ¢d and ¢s depend also upon the average age of

the buyer (/1%) and seller (/ui), in the sense of the
average time for which they have been in the pool. It

is shown in Appendix I that

Nd-—nd
o wdore (L
N
t
S S
N -n
(6) P B
Ne

The time convention applied in (5) and (6) refers to the
end, rather than the beginning, of the period. Thus at the
end of period 1, all unsatisfied searchers are 1 period old.

We can now write

_ _ a
(1) Bap = BaPy ~ Peoqrpeoq) 95 1<0, 84 ,<0.

(8) ¢st ¢s(pt - pt_1,/4:_1) ¢S’1> o, & <0.

s,2

The specification of our underlying model is now complete.
Although we have used arguments which have a probabilistic
flavour, the model is nevertheless deterministic. We
achieve this by use of the "ruling price", which we might
identify with the mean of the distribution of prices at

which agreements are actually éompleted. The ruling price
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change (1) is taken to be the outcome of a probabilistic
process in which rulihg price and transacted quantities
emerge jointly. The factors @ in (1) and h in (4) are
therefore not independent, so that to assume 6 constant

is obviously only a first approximation. We have simply
moved a little way from standard Marshallian supply and
demand analysis towards a more realistic model of market
clearing for a durable good, without wholly abandoning the

great usefulness of the former.

Equations (1) to (8) constitute our model of market dynamics
unhampered by the availability of finance. The system has

a stationary point as follows:

9 (@ 9™ = %) = nf,
(b) Ndx — Nsx - NX,
(c) n: = h(O)er

®
(d) /*d - ndx i IR AP

(e) P40, p¥) = @ (0, p¥) = 1.

Equation (a) tells us that this equilibrium is determined

by equality of flow demand and flow supply, in classical
fashion. However at any point in time there may be more
searchers in the pool than the flow of completed transactions
would indicate. The quantity h(0O) can be taken to measure

the equilibrium degree of "friction" in the market. Not

every searcher can count on immediate success; the average

%
age of searchers is E; ; which is greater than one if

n
h(0) < 1, i.e. if friction exists. Condition (e) is not so

much an independent equilibrium condition, as a condition
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on the functions ¢ to allow of a stationary solution. The
situation is analogous to that of a hydro lake. In the
stationary state, the flow into the lake is equal to the
flow out; but this fact says nothing about the volume of
the water in the lake at any point of time. This depends
on the height of the dam - in our case, the distance 1 =~
h(0) as a measure of the imperfection of the market

clearing process.
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II. Dynamics of the Basic Model

In this section we shall study some of the dynamics of the
model constructed in section I. Since backlogging of demand
and supply is permitted, we should expect our model to
possess at least some of the dynamic features of such
models (see e.g. P.A., Samuelson (1941)). Thus a monotonic
divergence of price away from equilibrium is ruled out,

for this would imply a backlog of ever-increasing size
which, under any reasonable price adjustment mechanism,
would altimately reverse the price movement. We should
expect also that the model would overshoot the equilibrium
position, leading to cyclical behaviour, for at the point
px where nd = ns, the existence of a backlog accumulated
from past disequilibrium will nevertheless imply a non-zero
price change. But apart from these intuitive impressions,
the intrinsically non-linear nature of the system renders

a more precise dynamics hard to give.

We can, however, obtain a degree of insight into its local
dynamic properties by linearising the system about its
equilibrium position, a procedure which will be of some
interest in its own right. It is convenient to work in

terms of the proportional deviations

Ne Py
?_11'—}§'_17
N p
evidently we could simply redefine units so that NT = px =

Define the elasticity

= 1 dnd ®
€3 3 - evaluated at p = p”.

n®  d(p/p")
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In a similar fashion, define e: and the derivatives of the

functions ¢d and ¢s' namely ¢d?’ ¢d§ and ¢S?, ¢s§'

Reinterpret the adjustment parameter © in equation (1) to
refer to proportional deviations as defined above. A tilde
over a variable will denote its proportional deviation

~ N
from the equilibrium value. Thus Nt = —% - 1. After a small

N

amount of substitution, we obtain the following linearised
(but see 10(d)) system:

4 _ o~ A e w o~ x . ~d
(102) Ny =elgp N _q=hng_q= Pgq (1P 4+ Bgp (1-h) sy 4y

_ _E . %
where h = h(0) and <, —¢a1(1 h)+heq,

NS _ o2 uNS o~ m R .\ ~S
(10b)  NZ = o p +N._q=hn, 4= 9 (1-h)p, i+ @5, (1-h) iy,

S _ ®
where ocs = ¢s1 (1=h)+h Es .

~ = ~d ~s
(10c) P = Peqt e(Nt_1 Nt-—‘l) .
. ., s _ and Ay S
(10d4) (1) If Ne > N, n g = BN _ +(1-8)N._,.
(ii) Otherwise n = (1—B)§d +8NS
! t-1 t-1 t-1'
h' (0)

where 8 = N* h (0)

is defined on the same basis as previous elasticities. It
is thus reasonable to specify O < 8 < 1; the interpretation

is that actual transactions are locally a fixed proper

convex combination of Nd and NS.
~d _ oy od o xy d
(10e) M = (=hlup = €75, +Np .
(10£) wS = (1-m)aS - X5 4R
My Me-1" &Py
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As it stands, this is a 6th order system. We can reduce it
to 5th order by eliminating the transactions variable,
recovering it later in terms of ﬁi and ﬁi from 10(d) . The
system can then be cast as a 1st-order matrix difference
equation of the form |

~d ~ ~ ~

_ . _ d ~s
yt - Ayt_1l with Y{._ —[Nt’ Ntl ptl /"‘tl /’Lt ]‘

We obtain:

(1) If N‘E; NS, so that 10(d) (i) holds,
YS +eel, -05+eed, neX |, (-m g%, 0
Y]+ 0Ll —(5+ eeh, nel o , (1I-n gL,
A(i) = © , -6 , I o, 0
rd d = =
oo =Y, -(-h)ed S (1-h) (1+¢7,) 0
s vS ® ‘ =
L Y1 ’ —YZ I_(1_h)£S I 0] 1(1_h) (1+¢52)
where Y? = Yg + (1-h),

da _ _ _ ® %
‘{2 (1-8) h+8 (1-h) (¢d1 gd)

Y7 = Y5 + (1-h)

Y3 = -8h + 8(1-h) (@5 -¢5).

—
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ii) If Ni < Ni so that 10(d) (ii) holds, we need only

replace 8 by 1-8 in the above matrix to obtain A(ii).

Now in most tatonnement adjustment mechanisms, price change
can be expressed solely in terms of the excess-demand
differences Nd—NS, rather than in either Nd or N° by itself.
That is, price movements do not depend directly upon the
past history of transacted quantities. Now inspection of
the above coefficients reveals that Y?— Yg = 1-h = Y?— Yg,
so that Y?— Y? = Yg- Yg. If we look at the equation for
price adjustment we can see that only the differences

N xS
t-1 t-1 ;
concerned. Unfortunately, this does not nevertheless imply

will appear so far as these stock variables are

that price movements are independent of transactions. For
the effect of these transactions shows up in the search
history of participants as reflected in the age variables
[Li_1 and/#:_1. Thus we should not be surprised to find
that the dynamic behaviour of the system is a great deal
more complicated as a result. Note also that our model is
not completely linearised, in that we retain the switching
from one regime to another incorporated in equation 10(d)
(i) and (ii). This fact makes stability analysis difficult;
all we could assert is that if the characteristic roots of
both A(i) and A(ii) were less than one in absolute value,
the model would be locally stable. Thus the very weak
sufficiency criterion together with the fact that in either
regime the system is of the 5th order, make stability

analysis very difficult.

There is one important case, however, where this is not so.
® B _ %

Suppose that¢d2 =Gy = ¢2, so that buyers and sellers

possess the same discouragement factor with regard to

unfulfilled search. In this case we can express our price

movements in terms of the differences;li—jii in the ages
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of buyers and sellers, rather then each individually.
Subtracting the 2nd row of A(i) from the 1st, and the

5th row from the 4th, we can form the matrix aR correspond-

. td s ~ ~d ~s
ing to the reduced state—vector[Nt—Nt, pt’”t—”t] :
[ yd_ ¢S, K K ®_ % A E
Yi- Yi+0(e3-€]), hiegg-el) »  (1-h)@7
aR = e , 1 , 0
d_ys X R (%
LY5-Y] » = (1-h) (eg-£0) , (1-h) (1+¢0)] .

Now if we do the same with A(ii) and bear in mind the value
of the coefficients Y?'S and Yg’s we arrive at exactly the
same reduced matrix. Thus the same linear system applies
regardless of whether we are in the regime defined by (i)
or that defined by (ii), so that not only is the system of
only 3rd order, but stability conditions derived from a

consideration of AR will be necessary as well as sufficient.

We can write the characteristic equation of AR as:

(11) F(\) = )3+a2 X2+a1k ta_ = 0,
where: a, = -(1-h) (1+63) +1+Y5-15+ 0 (e5- %)
a; = (1-h) (1+§5) +(2-h) (Y-¥3) +0(1-h) (2+¢3) (€,-€)
a, = =(1-h) (14+8(1-h) (B3,~F5)) -

The following 4 conditions are necessary and sufficient
for all the roots of (11) to lie inside the unit circle
(E.I. Jury (1964), p.93):
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(1) F(1) > O
(ii) F(-1)< ©
(iii) /aol <1
(iv) a’ -1 < a_a,-a
e} o2 71"

In terms of our elementary parameters, these conditions

emerge from a little manipulation as follows:

(1) F() = 6(ef-€d) (-n’+(1-ng%) .

Since Eg < 0, g: > 0 and —1<:¢§ < 0, this is positive as
required, for any admissible parameter values.

(1)  -F(=1) = 4(2-h)+ @5 O (1-h) (€3-€2) -6h (2-h) B} ,~¢5, - (e5-€0)

+ 2 g5 01-n+ 8(2-h) 2 (g%, -5 ).

This condition is evidently fairly complicated, and the
above represents the most informative nould in which we
have been able to cast it. We require the R.H.S. > 0. The
first two terms are positive, the first large. The_thitd
may be of either sign, but we might expect its absolute
value to be small. Considering the demand parameters, for
instance,¢g1 is an elasticity representing the reactions
to a price change of those already in the market; ag is the
elasticity of the flow demand schedule. If we suppose that
any interaction effects with age are small - which our
linearisation does indeed presuppose - then these two
factors should be of similar magnitude. Similarly for the

supply parameters, so that the difference defined by the
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third term above will be small. The last two terms are both
negative. It is evident that condition (ii) is by no means

stringent.

®
s1
indeed in absolute value will it be in danger of violation.

Only if the elasticity differencegj§1— ¢ is very large

If the adjustment parameter 6 <1, it is certainly sufficient
for stability that the elasticities ¢§1 and ¢:1 are both less
than one in absolute value, but much weaker sufficient con-

ditions than these can be derived from (ii).

(iii) The conditionla& &£ 1 can be recast as
1 1 ® " h
"o U TR < B4 < L
9 (1-h)

Only the left-hand inequality is ever binding, and once
again the magnitude of the elasticity difference ¢§1-— ¢:1
is involved. The condition is not stringent. Note that the
larger the value of h, the less stringent it becomes. We
investigate in more detail below the relationship of this

friction coefficient to stability.
(iv) This is more complicated. It can be cast as:
0 < -h®(1-n) 2 (1+ g5) 2+ 9% (1-n) (B% 6%~ (€5-¢D) -
~0n(1-h) (1+43) (@5, -g5,)+[x - & h(1-n) (1465 ] 2,

- _ ® %
where X = 1 + 6(1-h) (@3,-67,) -
Under the argument of (iii) regarding the 2nd term, the

leading negative term is the first. All others are semi-

positive. Evidently the first term, consisting of a squared
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product of three fractions, will be very small. Thus
condition (iv) is once again far from stringent,indeed we
have been unable to find any plausible parameter combi-

nation that does not satisfy it.

The overall impression is therefore quite unambiguous. Unless
the elasticities involved are gquite unrealistically large in
absolute value, the model will be stable for any combination
of parameter values. Before proceeding further with the topic
of stability it is convenient to look briefly at the question
of cyclical properties. A full examination of this question
relying upon Rozanov's & Fuller's determinants (Jury p 112)
is too complicated. Note however that a negative real root
will exist if a_> 0, i.e. if 1+ 8(1-h) (¢§1-¢’;1) < O. Thus
the effect of numerically very large price elasticities is

to introduce the posibility of saw-tooth fluctuations

associated with one or more negative real roots.

If we discount this possibility, this leaves us either with
three semipositive real roots, indicating a monotonic con-
vergence to equilibrium, or else two complex conjugate roots
and one semipositive real root. For reasons earlier out-
lined, we might expect the latter case to be applicable, so
that fﬁé model will exhibit damped cycles about the equilibrium
position. Let us now return, for this case, to the question
of stability. The quantity 1-h we shall call the coefficient
of friction for this system, after the analogy with physical
systems. Thus if 1-h=0, we have n® = N and markets are fully
cleared in every period. As an inverse measure of the
stability of the system we can take /det AY/ = EWE
(Viewed as such a measure, it is decidedly imperfect; the

only perfect measure is the modulus of the root with greatest
absolute value, which is not available). Now if the elasti-
city parameters are not too large numerically, so that no

negative real roots exist, we have ag < O. Then
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2a

(12)  —2—— jdet &%/ = - 2 (-a) = ~(1 + ).

J(1-h) oh

Thus if /ao/ is very small, so that the model exhibits a
very high degree of stability to begin with, the effect

of increasing the friction in the system is to decrease

[ det AR/ , in other words, to increase the stability. But

if /aO/ is not so small, the reverse conclusion holds:

if the model does not exhibit a high degree of stability to
begin with, increasing friction will, as a matter of
comparative dynamics, decrease its stability. These are
interesting conclusions even if not as rigorous as we
should prefer. In a recent study of the housing market,
Bowden (1975) suggested in a rather nebulous way that
imperfections in information on the part of agents may
increase the stability of a market. The present study shows
that this is only true if the market is pretty stable to
start with. In the more useful context where the market is
not so stable, precisely the reverse is true. A final point
concerns negative roots. If these are present, then con-
dition (12) has its sign reversed, since a, is now positive.
The conclusion is then that increasing friction unambiguously

decreases the stability of the system.

Preliminary to introducing the next section on credit
rationing, we report here a simulation on the same basis,
and with similar numbers as will be described therein. This
revealed an oscillatory approach to an equilibrium solution,
which was fairly well damped. Starting with the equilibrium
price perturbed 50%, the system settled down to within 1%
of the equilibrium price within about 35 to 40 periods,

depending upon the particular combination of parameters.

This simulation, done with a full nonlinear model corresponding

to equations (1)-(8), can thus be taken to support the view

of the local dynamics presented in this section.
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III. Credit Rationing

Implicit in the foregoing
if finance is required to
always available, so that

in the derived market for

-20~-

treatment has been the idea that-
complete transaction, it is
if necessary interest rates rise

funds. Our flow demand and supply

schedules are assumed to reflect possible interest effects.

But suppose now that there is some imperfection in the

market for funds, so that

the rate of interest cannot rise

or fall to maintain equality of the derived demand and
supply for funds. The number of transactions that can be
successfully completed will then depend on the flow of

finance during the period.

{(a) A constant flow of

We shall suppose3 two cases

funds (M) is available for

financing each period. Or

(b) Funds may be backlogged, so that if not all the

available funds are required in a period, the

excess may be transferred forward to finance

transactions in the following period.

Since successful contacts will turn into completed contracts

only if finance is available, we have now to distinguish

nt, the number of contacts as defined in Section I, from

nt, the number of consummated agreements. Thus in case

(a) above,

(13) n, = min(n
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expressing the requirement that aﬁtpté M. Here a is a
constant reflecting the financing requirement for each
transaction. Henceforth we simply absorb it in the
quantity M. In case (b) above,

M

—E), where
Py

(13b) n

min(nt,

(14) M

M+ (M _q — N 4Peq)

expresses the backlogging of funds. We consider first
case (a).

(a) No backlogging of funds

Suppose that the system is (as described in Section I)
initially in equilibrium at the point E in Figure 1, the
intersection of the flow demand and supply schedules.
Imagine that there is now a sudden drop in the flow of
available financing, so that new transactions are con-
tained to lie below or on the hyperbola np = M, as in-
dicated. The immediate temptation is to imagine that this
merely creates a new effective flow demand function CDE'FG,
as distinct from the notional schedule nd. The intersection
E' of this effective demand schedule with the supply
schedule n® would then indicate the new constrained
equilibrium. We shall shortly show that this is a temptation

which must be resisted; E' is not a stationary point of the
system.
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N'k

Figure 1

Following the imposition of the finance constraint in
period O, nx—ﬁo transactions cannot now be consummated

for lack of finance. Let us consider the effect of this

on decisions to remain in the pool. These will not be
symmetric as between buyers and sellers. If a buyer is
refused finance, this is likely to have a rather shattering
effect on his decision to remain in the pool. He may judge
it better to withdraw from the pool until such time as his
prospects for obtaining finance appear to have improved. -
As a matter of contrast, wevshall thus imagine that if a

buyer is refused finance, he immediately exits from the
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pool of searchers. So far as buyers are concerned, eguation
(2) of Section I remains unchanged as a description of total
demand pressure. The exit of buyers from the pool comprises
all those who have made contacts, n,. Under the above‘dis—
couragement assumption, it is immaterial whether or not all
of the ng pencilled agreements have been consummated with

finance.

However, the effect of a buyer's failing to obtain finance
on the seller, i.e. on the other half of such a pencilled
agreement, is not as clear-cut. Failure to obtain finance
is more often a reflection on the creditworthiness of the
buyer, rather than on the quality of the good cffered by
the seller. The discouragement effect of the falling through
of an agreement on the buyer's decisions is consequently
not likely to be quite as dramatic. He may elect to remain
in the pool of active sellers. Under these circumstances,

equation (3a) of Section I must be replaced with

' : _ S _ = S
(3b) N = ¢St(Nt_1 n._q) +n .
Strictly speaking, the function ¢st should now be altered,
to reflect the fact that the collective decision on the
part of sellers to remain in the pool should now depend

on the history of unconsummated contacts (n —ﬁt), That is,

t

an additional argument, as well as the (unchanged) argu-
s . .

ments p,-p,_4, and u’, should appear in ¢st' We will

assume, however, to highlight the contrast with buyers,

that sellers are indifferent to such failures in their

decision to stay on the market.

" Let us return then to Period O, with the initial shock

provided by the decrease in available finance. As of

Period O, there are no directly consequential pressures
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on price. However it follows from the arguments given above,

that in the following period, there will be more sellers
d
1 14
as indicated on the vertical axis of Figure 1. In this

than buyers at the unchanged price Pg - That is N?,> N

sense, the initial gap EK between n® and the "effective"
demand curve DCE'KM provides a clue as to the depressant

effect on price of our initial financial shock.

However, the interpretation of the latter curve as a new
effective flow demand does not extend to consideration of

new equilibrium positions. Note first that, if = denotes
M

. . =%
a presumed stationary solution, we cannot have n” < = -

P
For this would correspond to an unconstrained system as in

Section I. Given that the equilibrium is unique in the
latter case, this rules out the above contingency. We must

therefore have n™ =,M§ . Consider,then, the following

P
equations, which will define any new stationary solution:

(15) (i) nIE = nSE
(i) N = g (0, %) ¥ -n¥)+n%%,
(iii) N = @ (0, ) (w%¥-5%)+n5%,
(iv) ﬁxpx = M,
(v) n* = h(O)NX,
d= =
. N " -n
(vi) my=1 4 e )
. ® NSF_R® ®
(vii) Mg = 1 4+ v ) R
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on price. However it follows from the arguments given above,

that in the following period, there will be more sellers
a
1!
as indicated on the vertical axis of Figure 1. In this

than buyers at the unchanged price Pg- That is N?,> N

sense, the initial gap EK between n® and the "effective"
demand curve DCE'KM provides a clue as to the depressant

effect on price of our initial financial shock.

However, the interpretation of the latter curve as a new

effective flow demand does not extend to consideration of

new equilibrium positions. Note first that, if = denotes
M

. . -
a presumed stationary solution, we cannot have n“ < =

For this would correspond to an unconstrained system as in
Section I. Given that the equilibrium is unique in the
latter case, this rules out the above contingency. We must

therefore have n™ = ME . Consider,then, the following

p
equations, which will define any new stationary solution:

(15) (1) NI® - yS%

(ii) Ndx - ¢d(o’ 3)(Ndx_nx)+ndx,
(iii) N = @_(0, %) (v%F-n%) 405",
(iv) npt = M,

(v) n® = h(0)N%,

dx =

. N -
(vi) #3 =1+ (—1@*}-{9——)/*3 '

. H® _ NZE_R* %
(vii) Mg = 1 +(——§§——Lus .
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- Ndx
Combining (ii) and (vi), it follows that/;d = ;a; , and
- NSE
similarly/¢s = 5= ° We can now reduce 15(i) to (vii) to
n

- the two equations:

=
X _ N _ = dx
(16) N —¢d(o, ;&E)“ h(0))N" + n
% ( N* ® M sx
(17) NT =9 (0, == (W - =) + 077,
n p
Bearing in mind that nd% - ndx(px) and n°* = nsx(px), these

two equations define any equilibrium in terms of N> and px.
By considering the slope of (16)xand (17) in the N-p plane,

one can show that along (16), dn

——§-< O. And provided that

dp
le) g;, which is certainly a sensible requirement'for a
P 13
stationary solution, QEE > 0 along (17) in such a region.
dp

It follows that if a stationary solution exists, it must
be unique.

Particular interest attaches to the question of whether E

of Figure 1 can constitute a new equilibrium. This point

is characterised by ns(p) = %, defining Pgpi1- It accordingly
N,
satisfies equation (17) only if either (i) ¢S(O, ~§—) = 1
ol
— NEI ‘
or (ii) Np, = ng, and ¢S(O, ——) = 0. Only case (i) is
ng,
sensible. The equation
Nl
¢ (0, —E—) = 1, with the condition ns, =2 _ ’
s S E Poi
gy E

defines NE' = NE,(M), Ppi = pE.(M).
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Substituting these values into equation (16) yields an
independent condition that E' must satisfy if it is to

constitute a stationary solution. Evidently there will in
general be at most one value of M for which this condition
is satisfied. Thus in general, i.e. for an arbitrary M,

the point E' cannot be a stationary solution.

Let us now turn to the dynamics of disequilibrium adjust-
ment. Even if ¢a2 = ¢sZ’ as in section II, it is no longer

possible to cast our price dynamics in terms of the

difference Ni - Ni, since the transactions quantity
relevant for Ni, namely Ny, is different from that apposite
to Ni, namely ﬁt. We therefore resorted to a simulation

study in the hope that this would yield some insight into
possible dynamics. The numerical values and specifications
for equations of the simulations are given in Appendix II
to this paper, which reproduces a representative set of
results (Table 1). In the present case (a constant flow
of funds) a well-defined limit cycle emerged after quite

a short time. This is sketched in Figure 2, where the
continuous line represents transactions (n) and the broken

line the number of goods on the market (N°).
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Figure 2: Limit Cycle of Table 1 (sketched).

It is apparent that the closed transactions - price cycle
does not include the point E'. One of the most interesting
features of this cycle is that the price fluctuations set
up by credit rationing may, at the lower end of the price
scale, depress supply to the point where all the available
credit is not needed. The system does not, therefore,
automatically move along the financing constraint or
frontier. So far as the number of goods on the market is

concerned, this too shows quite a wide degree of fluctuation.
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In short, the imposition of credit rationing, perhaps to
control a situation where the equilibrium price is regarded

as too high, can hardly be regarded as a stabilising device.

(b) Backlogging of Funds

Let us now substitute equation (13b) with (14) for equation
(13a), to allow for the possibility that funds not used in
any period may be backlogged. The comparative statics of
stationary states are the same as those of case (a) above,
where no backlogging occurs. For if a stationary state were
to occur, it would follow from equation (14) above that

M* = M, the constant of the previous analysis.

A dynamic simulation on a similar basis for that in case
(a) is also presented in Appendix II. Once again, price

and transacted quantities oscillate, and the amplitude

of oscillation in price, at least, is very little different
from that where no backlogging is permitted. However, no
limit cycle, in the exact sense, appears to exist. Instead
the dynamics consist of a series of oscillations, each of
which folds back on itself in the n-p plane, of roughly
similar shape. It may be that a true limit cycle does
exist, but if so would take a very long time indeed to

emerge.

We have tried in this section to build a model of market
dynamics under a finance constraint which while undoubtedly
polar in nature and abstract in the sense that it might be
applicable to a wide range of particular markets, is hope-
fully reasonably realistic in its description of the
behaviour of participants. Naturally, there have been
implicit comparisons and contrasts with existing models

of market clearing. We single out two:
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(a) The first is between our model of credit rationing
and the case where interest rates rise quickly to
preserve equality between the demand and supply for
funds. The polar case is where interest rate adjustment
is instantaneous, by a tatonnement process within one
of our single periods. In this case we can write our
flow demand function as nd = nd(p,r), to reflect the
fact that higher interest rates will affect decisions
to enter the pool. Moreover ¢s and ¢d will also depend
on r, in the sense that the interest-rate tatonnement
is supposed to take place jointly with the formation
of the ruling price. Assume now a lowering of the
available funds for transactions. By replacing the
rationing device by the rate of interest as a pricing
C device, the result is to create a stable equilibrium,
in the sense that no limit cycle will in general
emerge. This stable equilibrium will now coincide with
' the point E' of Figure 1, at which point nd(p,r),
C evaluated at the new equilibrium interest rate, will
intersect the flow supply curve, ns(p), assumed un-
changed. In this sense, interest rate flexibility, as

a pricing device, can do what credit rationing cannot.

(b) Our second comparison is with the case where market
behaviour is assumed to follow more standard concepts
of demand and supply. Thus suppose h(0)= 1 and
¢s = ¢<i = 0O, so that pure flow concepts are
applicable. The system (without backlogging of funds)
is then

, d
mln(nt, n

r"’\
B

o
Il

(ol
|

= min(nt,
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Suppose we start from the point E of full equilibrium
in Figure 1. M is now lowered as in the previous
experiment. The new quasi-equilibrium is now at

point K. For in the absence of backlogging of any
kind, there are no pressures on price. Moreover, if
the system starts at any other point, price adjustment
will follow classical rules and come to rest at Pg-
Equilibrium transactions are solely determined by the
rationing constraint and price gets stuck at Pg-
Intuitively, such a separation of price and quantity

adjustments seems a little implausible.

If we regard the matter as one of judging the relative
efficacy of a price mechanism or a rationing mechanism for
the use of funds, the conclusions of this paper are fairly
clear-cut. In the model we have used, rationing is re-
sponsible for providing a wrong signal to sellers as to
the state of effective demand. If the cost of funds rises,
the price which buyers are willing to bid falls, and
sellers will be faced with longer periods without a contact,
inducing them to lower their reservation prices directly.
But if the price of funds is held constant, so that
rationing becomes necessary, there is no such direct
signal. The failure of a buyer to find the necessary
finance may be seen by the seller only as a reflection on
the buyer's creditworthiness. So far as the seller is
cdncerned, there is no direct incentive to lower his price,
for the existing price has been seen to attract attention.
Only when frustrated buyers exit, does the more indirect
force of the growing relative number of sellers to buyers
start to make itself felt.
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Footnotes

< N

[l

I should like to thank Esther Ching who programmed
very efficiently the simulation of the model. I am
grateful also to an unknown referee, whose criticisms

stimulated a material improvement in the paper.

Note that the assumption that this is stable may under
many circumstances be questionable. For example,

the world at large will include those who have just
emerged from the pool of searchers, and their recent
experience will affect their decision to re-enter.

One would certainly require a large population of
holders ("reservation stock demand"! relative to

the size of the pool for the presumption of stability.

In assuming credit rationing to take this form, we

are supposing that the probability of any particular
buyer obtaining finance is independent of any of his
other characteristics such as his search history. More
generally the representation of credit rationing must
depend on a specific theory of such, and we refer the
reader on this question to Jaffee and Modigliani (1969)
and the references cited therein. The approach of this
péper does not appear to be incompatible with such
previous work, although this is really a matter for

substantive research.
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APPENDIX I

We prove equations (5) and (6) of Section I. We consider

only buyers; the case of sellers is identical.

Leftovers from Period t-1 trading are Ni 1 Let

- n,_. ..
t-1
Pi_1(T) be the age distribution of these leftovers;

= 1,2 .... The number of t-1 leftovers who decide to
d

t-1
of new entrants is ni. The total is Ni. Assume that the
probability that a buyer is successful is independent of

remain for Period t trading is ¢dt(N - nt_1). The number

whether he is one of the new entrants or one of the old
hands. Then

a
pl(r) = & v =1,
N
t
a
N, - n
= (=5 xpd - 1) T2 2.
a -1
t
so
a a
oo n © N_ - n
£ ypdyy = £, £ [t tyopd -
pe T = BT =g sy mgm ) TR (T
t t

o0
Since m, _, =,;§17'Pi_1(?), by writing s =7 -1 we obtain

oy nd
L Skt

a
—5 (-8 (s),
Ny

which reduces to equation (5) of the text.
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APPENDIX TII

The Simulation of Section III

The following is the complete system specification:

- = ~ NS
(1 Py 7 Peg Q(Nt 1 £=1)
We tried 6 = 0.5, 0.75.
d _ a d
(2) Ne = Pgp Ne_q - ng_p) +nf .
s d _
We specified ng = 40,000 -~ Py -
s _ S _ S
(3a) Ng = Bop (Ng_q = ng_q) + n}.
s e s _
We specified N, = P
Or
' s _ - s
(3b) N = B (Nt 1 = Mp_q) * o0l
_ d _ s . d S
(4) n, = tht Ngl) min(NZ, NJ).
=1 - _ 1.6094 NS =
We chose h. = 1 - 0.25 exp 55600 IN Ntl . So h(0) = 0.75.
d d
N, - n
d _ t t, d
(5) Mg =1+ My
N
t
s s
. N, - n
5 _ t t, s
(6) /u.t =.1 + (———————-but_1 .
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. 1 d
(7) ¢CH:= max (O,min (1,1 - (p, = pe_4q)" ;a__._ (e _q— 1.33)84)) .
t-1

We tried Bd = 0.25,0.25. The above specification is intended

to represent a linearisation about the point p = 0,

- P
t t-1
/*x = %, the latter corresponding to the unconstrained

equilibrium expected age.

S

(8) @ = max(0,min(1,1 = (p_ = p_,)* —— - (e_q= 1.33)8,)) .

nS
t-1

We tried BS B, = 0.15,0.25.

d
- _ . M____
{(10a) n, = mln(nt, pt).
M = 300 x 10°.
or
(10b) M =M+ (M

t £-1 = De-1Pe—q) -

We reproduce below a selection of figures for two sets of
results, (a) with no backlogging of funds (b) with back-
logging. In both cases the simulation is that of the
conceptual experiment discussed in Section III; i.e.
initial equilibrium price Po is set at 20,000, the un-
constrained equilibrium. The precise value of the
parameters as given above turned out to make little
difference to the substantive character of the results.
We accordingly present only values for 8 = 0.5,

BS = Bd = 0.15.
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- TABLE 1
(No backlogging)
(to nearest dollar or unit)
s d s =
Py Ne Me Mt Dy Dy

20,000 26,667 1.33 1.33 20,000 15,000
20,000 31,667 1.33 1.49 33,208 15,000
17,500 31,689 1.22 1.67 22,352 17,143
15,135 26,985 1.19 1.73 21,462 19,822
16,378 23,541 1.30 1.53 20,415 18,317
20,308 25,532 1.41 1.31 20,670 14,772
21,999 32,759 1.41 1.43 21,910 13,637
18,339 33,999 1.20 1.66 22,090 16,359
22,488 23,901 1.51 1.08 19,976 13,341
25,098 35,659 1.51 1.32 20,504 11,953
18,489 35,999 1.12 1.64 21,313 16,226
12,213 24,359 1.08 1.82 20,467 20,467
14,995 18,887 1.28 1.37 17,473 17,473
22,488 23,901 1.51 1.03 19,976 13,341
25,098 35,659 1.51 1.32 20,504 11,953
18,489 35,999 1.12 1.64 21,313 16,226
12,213 24,359 1.08 1.82 20,467 20,467
14,995 18,887 1.28 1.37 17,473 17,473
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TABLE 2
(Backlogging)
(to nearest dollar or unit)

Py Ny .Aﬂg .Aki D n
12,470 23,672 1.10 1.79 20,225 20,225
15,828 19,275 1.31 1.32 17,734 17,734
22,913 24,454 1.52 1.08 19,952 16,021
24,815 33,248 1.49 1.27 20,017 12,090
19,360 36,053 1.15 1.59 20,960 15,496
12,814 25,628 1.08 1.80 20,817 20,817
14,594 19,405 1.26 1.45 17,851 17,851
21,665 23,220 1.49  1.10 19,810 17,204
24,971 30,987 1.52 1.21 19,985 12,014
20,985 37,271 1.21 1.53 20,426 14,296
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