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The conventional approach to the design of stochastic systems
Operates, either directly or indirectly, by minimising the

variance of the model. This procedure can be regarded as a

natural extension of the stability analysis of a deterministic

system, according to which the degree of stability is
inversely related to the absolute value of its largest
characteristic root. Very often, however, the policymaker
is not indifferent to the frequency composition of economic
fluctuations. He may, for example, have a marked dislike
for short-term fluctuations. We formalise this notion by
setting up a spectral utility function as a criterion for
steady-state optimisation, and show that the results from
such an optimisation may conflict with those yielded by

the conventional approach. Large characteristic roots may

not necessarily be bad!

The scheme of the paper is as follows. Because the ideas
involved may be unfamiliar we shall spend some time on a
rather intuitive motivation for what follows. This is done
in section I. In section II the notion of a spectral utility
function is introduced and its evaluation discussed. We then
return to the example of section I to give it a more precise
treatment. Section III contains extensions, principally to

the multivariate case.
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I. Motivation

Consider a linear system perturbed from its equilibrium path.
Assuming this system to be stable, we might write the
disequilibrium dynamics in terms of deviations Y from its

~

equilibrium position as:

(1) 7[ : /{7('(

The eigenvalues of the matrix A, and in particular that
of greatest absolute value, constitute the standard measure
of the degree of stability of the model. If the eigenvalues
of A are all small in absolute value, the system will
converge very quickly to its new equilibrium position; if
they are not so small, although still inside the unit circle,
the model will converge, but not so quickly. Now consider

the stochastic analogue of (1):

(2) gt Ag, g
where the disturbance vector‘f,t is supposed serially uncorre-
lated with constant covariance matrix Eitat' = Q. Define the

steady-state covariance matrix VO = Eytyt'. Then it is a
o~
standard result that:

V = AV A' + Q.
o o

It is also well-known that if we stack the columns of VO to

obtain a supervector Vo’ and do the same with Q to obtain 2

-~

we can write:

-/

~ —

where ® signifies the Kronecker product. This can be

expressed as:
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where )'i are the eigenvalues of A (assumed distinct) and Ei

its projection matrices (see section III). The relationship

of the variance of the system to its eigenvalues exhibited

in equation (4) has motivated the interpretation of the
steady-state variance of the system as the natural generali-
sation of the deterministic stability criterion. For if the
characteristic roots of A are all small in absolute value,

so that the model is stable in the deterministic sense, then
from (4) the elements of its covariance matrix in the stochastic
context can be expected to be small. “To be sure, the correspondence
is not perfect. But at least we can assert that the presence

of a large (i.e. close to 1) positive root will have a
substantial adverse effect upon any norm of the covariance
matrix Vo‘ The use of the steady-state variance as a criterion
for stochastic stability is too widespread to give individual
references, but we should mention the elegant formalisation

of the control problem in these terms by G. Chow /3/.

Yet there is a residual nagging discomfort in the above
generalisation. Consider the special case where the system

is one~dimensional. We can write:

Al

‘ £ £ &e£5= o
‘(,7&“4 r + ) - t

(5) Y.
= + as + €
7tf’l “ 7‘-‘"' * &\‘-' T+ !

and so on. Now fix yt_1. Consider the differenceSyt—yt_1 ’
Y417 Yoy and so on. Denoting expectations conditional on

Yioq by a semicolon, we have:

(6) £ (7t ’-vyt-l)k‘) ]t—/ - E(yf - i_—-yf)h_’, (Ejt—yc"))— ) ‘yt" ’
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(7) E{7f+/~ytf/))' = E(Jt”" Ej('w) F (/_‘:%“‘7‘__’)}_)/&_’

2. . 2z 2 L) 1.
= T _
O + a ¢ > (/ a Jt’—' ,

and so on. In general,

- L3 b (ft)
(8) Ely,,., wyc) e T T S -t
i—a*

L oz
- (/—LZT”) 7(__1 .

As ¥ 7 2 |, the second term on the RHS —> yt_12, provided of
course that /a/</ . Now compare two values of a, one small
and positive, the other close to unity. The smaller value
will give the smaller long-run mean-square difference as
defined by (§). But if we look at (6) and (7) for proximal
values, we can see that the reverse is true. The higher the
value of a, the closer can one expect adjacent values of y
to lie. As we go further into the future, the influence of
the conditioning on Y¢_qr @s manifested in the second terms
on the RHS of (6) - (38), wears off.

Let us now turn from the sophistry of arithmetic to the
business of Governments. Being, as they are, all things to
all people, politicians may dislike change, and particularly
any change that manifestly disadvantages one group of voters
to the enrichment of another. Let us take as a concrete
example the housing market in New Zealand. As in many other
countries, house prices showed a truly staggering increase
over the short space of not much more than a year from

1972-73. There is not too much doubt that in doing so, they

)

were adjusting to a new equilibrium position caused inter alia

by a remarkable increase in the volume of immigration.2 Nor

is this best treated as a new deterministic equilibrium, for
immigration - as did other variables involved - subsequently
dropped sharply. After the accompanying outcry, it is clear

that the government of the day would have loocked with a
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jaundiced eye upon any mathematician who claimed that in
fact this market was evidently a highly stable one. They
would have preferred a smoother market, in the sense of

smaller proximal changes, even at the expense of larger

long-run changes. According to this philosophy, change is
more acceptable if it is done by gradual increments, and
one can accept a gradual larger change more readily than

a more sudden one of smaller magnitude.

There are several possible reasons why this might be the case.
For one thing the active life of no (human) politician or decision-
maker is infinite, and like everybody else, he has his own
system of time discounting. The preference for smoother
short-run changes may also reflect the existence of a
recognition or action lag in policy-making. One could with
justice argue that if the nature of the system is accurately
known, one should be able to design an automatic feedback
which would obviate such a preference. Usually however this

is not the case. Finally, there is the argument mentioned
above, namely that the utility effects of sudden change are

rarely symmetric between gainers and losers.

Obviously, however, there is a limit to the extent to which
policy-makers would prefer to swap short-run fluctuations
fop longer-run movements. Our argument must now be given a
more precise expression than is possible with the simple and
rather intuitive example incorporated in equations (5) - (7),
although we have not yet finished with this as an example.
The formalisation of our policy-maker's preferences is the

subject of the next section.
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II. The Spectral Utility Approach

Suppose that (yt) constitutes a scalar stationary3 stochastic
process with spectral distribution function F(w), which for
the sake of expositional ease we shall assume continous, with
density function f(w). As a way of describing the policy-
maker's preferences as between short, medium or long—~term
fluctuations, we can define a real, bounded, semipositive
function U(w) which represents his relative aversion to
different frequencies. Thus we assume U(w) has period

2%, i.e. U(w+27% ) = U(w), that U(-w) = U(w), and that

N
(9) ((uewy = o

In conventional discussions of steady-state stochastic
systems, the criterion function can usually be cast in terms
of the variance of the system, which as a matter of frequency
decomposition is given by

n Y .
(10) vo= | ferde = 2] f@de

)

-

Our proposal is that this criterion should be replaced by
7 3
(1) E.u = —g Uw) feydo - ._zg UES ey do

-@A Y

which is to be maximised with respect to the parameters of
interest. We call this the expected spectral utility
associated with a given process. Our objective in maximising

it is simply a rather more convenient way of saying that we

are minimising the weighted sum of the power at each frequency,

where the weights involved constitute the aversion function

U(w) . Note that the expression (11) is a true expectation of
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the utility function - U(w), bearing in mind the fundamental
correspondence between frequency w and the underlying
probability space of the stochastic process (see e.q.

J. Doob /5/). On the other hand it need not be true that

the utility function involved has the particular characteristics,

such as concavity, of those employed in the theory of choice.

Before we can proceed to discuss further the implications of
the expected utility approach, we shall have to investigate
the determination of the integral in (11). The evaluation of
this integral is in general a difficult matter, especially
where the question of optimisation with regard to parameters
of interest is involved. In one-leadin§4case, however, this
is not true, and the resulting interpretation is both natural

and interesting.

Introduce the lag-operator z such that 2y, = Yi_qs OT

z (for standard accounts of its calculus in

Ye = Yiqq
different contexts, see P. Whittle /7/ and E.I. Jury /6/).

When reference to frequéncies is involved we shall employ the
standard substitution z = e_iw, in terms of the value of z on

the unit circle Jz/= 1.

Suppose now that U(w) can be expressed in terms of the

quotient of polynomialé ("rational polynomial" form) as:

Ll 2
(12) Uw) = /A(e.;w)/ _
g(e")

Now write the moving-average representation of the process as:

Yy = b(z) it.

2
z+b.z +....

where Et is a white noise process, and b(z) = bo+b1 2
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(13a) Eu = TE g /;gi—«u)) ble W)/ r

which can alternatively be expressed in terms of contour

integration around the unit circle as

(13p)  E.u = —F § L h@ b)) AET)NT) dz
o 27T < 9(=) j(z")

The interpretation of equation (13a) is clear. Maximising
expected utility amounts to minimising the variance of a new
process defined by

= h(z)
(14) e j(z) e

This idea is analogous to the process of filtering. The crucial
difference is that instead of choosing the filter for a given
process, we are choosing the process for a given filter. The

integration of (13) can then be carried out by noting that

(15) ar. X T Abs.§ o A@)bE) A2 BT
17(7) j(z )

where Abs. denotes the process of finding the constant term
in the expansion in powers of z of the quantity inside the
brackets. The same result can be obtained independently of
this interpretation by applying the Cauchy residue theorem
directly to the contour integration (13b), noting that under
the boundedness assumption on U, the only pole inside the unit
circle is z = O. The fact that the formula on the RHS of (15)
is independent of the interpretation in terms of a derived

process xt will be useful in section ITT, where difficulties
arise with such a concept.
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Let us now proceed with an example which will clarify the
above procedures while continuing with the discussion of
section I. Suppose that our policy-maker's spectral utility
function is such that the higher frequencies are always
less preferred. We might capture this monotonicity by the

following function:
.y 2 (= 8F
(/( = (I_s )/.____L~~ / pan - )
(u) - e t+85-248cos w

(16)

with -1< § < O. This has a minimum at w = O, and increases

to a maximum at w = W ,

Suppose that the underlying process is the first-order
Markov process specified by equation (5). We imagine that
the policymaker has control over the parameter a, perhaps
after the fashion described by Chow /3/. Our problem is
then to choose a to maximise expected spectral utility.

As we have seen in section I, a = 0 yields the system with

minimum variance. Is zero a still optimum?

According to (14) and (16), the policy-maker now acts as if

he were minimising the variance of the process defined by

x = (/- é‘),)’z_ (/t - /(;-/ + J—>£f2,¢ "'> v

Since the weights & are negative, the weight pattern is one
of alternating sign. We obtain the required variance from

equation (15) as follows:
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= (Tl[__l:.s_:—)»« /;,/H I((If ((Z + SZ‘Z» L(‘ Z o+ (g LZ-Lf A

~1
} Gz + G Z +
J( 1+

(,AJL)(/'L’.‘) r atzte a*z"t -
. + = .2
o £ 1+ 2 Ja + 2487+ 5
B 1 —
1+ da
- /‘—-CIL 1~ Sa

To choose the value of a which maximises E.U., we differentiate
with respect to a, to obtain

A £u = & (= thw 7{—) = "‘? af -, L'<QBJL+ @'y -a-$) .
2 Aa (-da) [1-2*)

Write f(a) = a3$2+a2{—a-6‘. Observe that f(1)< 0, £(0)> O,

f(-1)> 0 and that f(a) has stationary points at a = —%—, ;%

That at a = %} need not concern us. That at a = §%— represents

a maximum which must always lie in the negative half line.

Thus bearing in mind the value of f at -1, O and 1, it will

follow that only one stationary point for f exists in the

interval (-1, 1) and that this root must in fact lie between

O and 1. Denoting its value by ax, it is easy to show that

d2 =
—5 (E.U.) < O at a = a°,

da
so that our stationary point represents maximum expected
utility. Finally one can show that if we decrease § , i.e.
increase our policy-maker's aversion to short-run fluctuations,

. x .
we obtain a value for a” closer to unity.
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The notion of a spectral utility function has therefore
enabled a useful formalisation of the notions introduced in
section I. In the stochastic context, a decision-maker may
well prefer his system to have higher characteristic roots
than the deterministic notion of stability would suggest,
simply because he is relatively averse to short-run

fluctuations.

IIT. Extensions

Consider now a vector process Yy with spectral density matrix
denoted by @(w). The question arises as to the generalisation
of the function U(w) of section II. Rather than attempt to
define an arbitrary generalisation, the best course is to
define the function in terms of the implied operations on

the Y, process, on the supposition that whatever our welfare
effects, they can at least be approximated by a "rational
polynomial" form. Thus one might define, as an extension of

equation (14)

xX = Da‘ . ( AC(Z) ) 3
) ~t °3 3.) g

where Diag. indicates a matrix with diagonal elements as

given, for i = 1....n, and zeros off the diagonal.
Introduce the moving-average representation

Ye = B2 &,

where Cov(Et) = Q. Write the diagonal matrix in (17) as N(z).

Then we can write our criterion as:

(18)

DY
<

= T §’ 2 frace CAZ)YB@)Q B'(Z"/\_(z") dz |

2T Z



-12-

after the fashion of equation (13b) for the univariate case.
Here C is a matrix of constants referring to the weights to
be assigned to the different variables. Equation (18) is our

generalisation of the conventional criterion Eyt'Cyt = trace CVo'

The generalisation of our discussion in sections I and II
would require B(z) = (I-Az)-1. Suppose once more that the
eigenvalues of A are distinct, and write U = (91’92"'9n)’
where u, is_?he eigenvector corresponding to the root li.
Write V = U and let Yj' denote the j th row of V. Then the
projection matrices Ei referred to in section I are defined

., b5
as Ei = uivi', and we can write

Thus

1, _ £ 1 .
y = . EiQE. .

1,] (1_,\iz) (1_1jz) J

B(z)OQB' (z

Suppose that C is diagonal, so that we are interested only

in the individual spectra. Absorb the constants Cx in the
h, (z)

functions 3. (z7 each of which will now normalise to ci in
k

place of equation (9). We thus obtain

(£ A@ 4D (EQE") 1

trace A(2) 8¢ B)/\z) = - — .

AJO_%ZV’EJ) k 2?5 %hﬂj
where (EiQEj')kk denotes the k th diagonal element of the
matrix in brackets. Recalling that Ei = giyi', and
distributing the contour integral @ inside the brackets,

we obtain:

o, ,C 4 (2) 4 ") A
(19) F.u = - Z (Z;Qg)gl%kﬁ%.%_wméiigsv - 5(_x£ﬁs
ok JEO-X Ny
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Determination of the absolute term inside the brackets will
usually be facilitated by a partial factions expansion of

the terms in the denominator. Thus suppose

A
h, (z) _ ck(r—Sk)
gk(z) (1—6kz)
We can write: .
—_— = Sk N + _jﬁ; —t
(/-SkZ)(HAL.ZB S - X, -8 = A -8, /—)L‘Z
= _§5¢ (i« &2~¢S:zl+«~) + A (l«»kiz J)ZZLf'“
Sk’:\t- Xt" Sk

The term in z-1 and Aj can be similarly treated. Multiplying
the two together we easilyv obtain the required absolute part

as:

L i -
abs. ¢ (=307 ¢ (-$)7

(- e T WA S TR S W
5 2Y,-) Ty e — Kk el . k7
N X2« S X \ ) (X/&Q(%yﬁ) ”X» "SQX' Vb
-5
- &

If any of the eigenvalues ki are complex, the resulting
expression will naturally also be complex. But the fact that
complex roots - and their associated eigenvectors - occur

in conjugate pairs will mean that the grand total defined

by (19) will be real. The above treatment can be interpreted
in terms of a set of elementary Markov processes defined by
the roots xi (as in Chow /4/), taken in conjunction with
equation (14) and (15) above. Howevér where the Ai are
complex, such an interpretation is not satisfactory from the
viewpoint of formal proof. We have therefore cast the above
demonstration directly in terms of the appropriate contour

integration.
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Evidently the above expressions are complicated functions of
the underlying parameters aij and qij‘ Thus the maximisations
involved will usually have to be carried out numerically.
This may not be true, however, for simple systems. Thus a
univariate second-order autoregressive process could either
be cast as a first-order two-dimensional system (by defining
the appropriate companion matrix) or else could be treated
directly by employing the appropriate partial fraction
expansion in terms of the characteristic roots of the

System. In either case it may be possible to differentiate

E.U. with respect to the basic parameters of interest.

The analysis of section II could also be extended to allow

the utility function to be expressed in the form U(w,vo),

where Vo denotes the variance of the process. (The normalisation
constraint (9) must nevertheless be satisfied). Thus the
policy-maker may be indifferent to the frequency decomposition
of fluctuations if the overall power is small. But if Vo is
large, this indifference may disappear. Incorporating Vs into
the utility function is a way of handling such interaction
effects. In this case, the maximisation of expected utility

will take place subject to equation (10) , and Lagrangean

methods are appropriate.

The present paper has been devoted to exposition of the
philosophy and techniques of expected~utility maximisation
in the frequency domain. It would now be interesting to
choose a particular stabilisation context and to compare the
results from the conventional variance minimisation with
those obtained by assuming something about the preference

structure of policy-makers over the frequency decomposition
of fluctuations.
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Footnotes

1This paper was conceived and written while I was on leave
at the Institute for Advanced Studies, Vienna. I am most
grateful to the Institute for their generous financial and

material support.

2Some of the dynamic aspects of this episode are discussed
in Bowden /2/.

3There do not appear to be any difficulties in generalising
this to mildly non-stationary processes. The connection with
the characteristic roots of the system matrix can be
approached through the method of moving linearisation
suggested by Bowden /1/.

The question arises as to the conditions under which an
arbitrary U(w) can be at least approximated in the form (12).
This question may be closely related to the problem of
achieving a spectrum factorisation. For if U is continuous,
it can itself be regarded as a spectral density function
corresponding to some process. Let B(z) be the corresponding
moving-average generating function. The question can then
b(z) o 4(2)

g(z)
on the unit circle, once f(z) has been found by factorising U.

be reduced to the closeness of approximation of

We shall not pursue further here the subtle and interesting

problems that arise.

5Such expressions for the spectral matrix in terms of those

for elementary autoregressive processes are éxtensively
discussed in Chow /4/.



