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Competitive Equilibrium and Trading Networks: A Network Flow
Approach

Ozan Candogan, University of Chicago
Markos Epitropou, University of Pennsylvania
Rakesh V. Vohra, University of Pennsylvania

Under full substitutability of preferences, it has been shown that a competitive equilibrium exists in trading
networks, and is equivalent (after a restriction to equilibrium trades) to (chain) stable outcomes. In this
paper, we formulate the problem of finding an efficient outcome as a generalized submodular flow problem
on a suitable network. Equivalence with seemingly weaker notions of stability follows directly from the
optimality conditions, in particular the absence of improvement cycles in the flow problem. Our formulation
yields strongly polynomial algorithms for finding competitive equilibria in trading networks, and testing
(chain) stability.

CCS Concepts: rApplied computing→ Economics; rTheory of computation→ Market equilibria;rMathematics of computing→ Discrete mathematics;

Additional Key Words and Phrases: Trading Networks, Competitive Equilibrium, Stability, Submodular
Flow Problems, Discrete Convexity.

1. INTRODUCTION
In many economic settings, trades are based on bilateral contracts which can be rep-
resented by a trading network ([Hatfield et al. 2013]). Nodes of the network corre-
spond to agents. Edges represent the non-price elements of a bilateral trade and their
orientation identifies which agent is the “buyer” and which the “seller”. Agents have
quasi-linear preferences over the set of trades and associated prices. The model is rich
enough to allow an agent to be a buyer in some trades and a seller in others. In partic-
ular, it subsumes the classic assignment model [Shapley and Shubik 1971], as well as
the model of supply chain networks, [Ostrovsky 2008], where the underlying directed
graph is acyclic.

In trading networks where agents exchange indivisible goods (or indivisible con-
tracts), [Hatfield et al. 2013, 2015b] has established that under a full substitutabil-
ity condition on agents’ preferences, a competitive equilibrium exists. The full substi-
tutability condition generalizes the well-known gross substitutability condition, which
is used to establish existence of a competitive equilibrium in two-sided markets [Gul
and Stacchetti 1999; Kelso and Crawford 1982; Sun and Yang 2006]. Thus, the trading
networks model extends the competitive equilibrium existence results to multi-sided
settings. Competitive equilibria of trading networks are also stable outcomes in that
they cannot be blocked by any coalition of agents and trades. A blocking set is a set of
(feasible) trades and corresponding prices such that all agents who can participate in
these trades (strictly) prefer them (while possibly declining some of their equilibrium
contracts) [Hatfield et al. 2013]. Conversely, in any stable outcome it is possible to set
prices for trades not involved in this outcome, to support the outcome as a competi-
tive equilibrium. In fact, the stability condition is equivalent to the seemingly weaker
chain stability condition [Hatfield et al. 2015a]. The latter condition restricts blocking
sets to be paths/cycle of trades in the underlying trading network.

This paper’s contribution is to show that under the full substitutability assumption,
all these results can be obtained simply and directly from the optimality conditions of
a generalized submodular flow problem in a suitable network. The optimal solutions
to this flow problem (and its dual) yield a competitive equilibrium outcome and sup-
porting prices. Moreover, in generalized submodular flow problems, a feasible flow is
optimal if and only if there does not exist an improvement cycle. This optimality con-



dition yields the equivalence between a competitive equilibrium outcome and (chain)
stability. A consequence of this is a strongly polynomial algorithm to find a competitive
equilibrium as well as to identify a blocking chain when an outcome is not stable.

Our starting point is to express the problem of identifying the set of trades that
maximize welfare, as a network flow problem on an appropriately defined flow network.
The flow network is related to, but distinct from the underlying trading network. In
the flow network each node corresponds to an agent-trade pair of the trading network.
Since exactly two agents are involved in each trade, the flow network has two nodes for
each feasible trade (one associated with the buyer the other associated with the seller
in this trade). These nodes are connected by an edge in the flow network. However,
this network is not connected in general.

Full substitutability of agents’ preferences corresponds to M \-concavity of the value
functions [Hatfield et al. 2015b]. This observation allows us to represent the problem
of finding the set of welfare-maximizing trades as a generalized submodular flow prob-
lem on the flow network. In this problem, we do not impose flow conservation at all
nodes. Instead, we associate an M -convex penalty term with the net flow at nodes as-
sociated with the same agent in the flow network. Intuitively, the net flow encodes the
trades where an agent participates as a buyer/seller, and the penalty term captures
the total value the agent enjoys for these trades. Minimum cost flows in this network
correspond to trades in the original network that maximize total welfare. The optimal
dual solution to this problem are competitive equilibrium prices that support this set
of trades. Thus, our approach generates the equilibrium trades and prices through the
solution of an optimization problem. In contrast, [Hatfield et al. 2013], construct an
auxiliary two-sided market and invoke the competitive equilibrium existence results
(based on fixed point arguments due to [Kelso and Crawford 1982]) for that market.

We establish the equivalence between stability, chain stability, and competitive equi-
librium outcomes directly from the fact that a given flow is optimal if and only if it
admits no improvement cycles. Our proof technique also provides an algorithm that
(i) checks whether an outcome is (chain) stable, and (ii) identifies a blocking chain if
it is not. In particular, given a set of trades and associated prices, we first consider a
(reduced) trading network that consists of the remaining trades (after an appropriate
modification of the payoff functions), and the corresponding flow network. The algo-
rithm starts with the (trivial) flow which does not use any edge of the flow network
that is associated with the trades in the (reduced) trading network. Then, the algo-
rithm searches for an improvement cycle. If such a cycle is not found, we conclude that
the initial set of trades/prices constitute a (chain) stable outcome. Otherwise, the short-
est such cycle reveals a blocking chain. The computational complexity of this approach
is equivalent to that of constructing the flow network, and identifying the smallest
negative cycle in this network. The overall complexity is polynomial in the number of
nodes/edges of the underlying trading network. Thus, the network flow approach pre-
sented in this paper not only gives simpler existence proofs of the properties of trading
networks (e.g., existence of competitive equilibrium, and its equivalence to stability),
but also provides a tractable algorithm for determining competitive equilibria, testing
(chain) stability, and identifying blocking sets of trades whenever they exist.

[Hatfield et al. 2015a] observed an equivalence between stability and chain stability
which resembles an analogous equivalence result in classical network flows. Those
authors argued that there are important differences between the two settings:

“...in the ‘network flows’ environment, there is a single type of good ‘flowing’
through the network, and the objective function is the maximization or min-
imization of the aggregate flow, whereas in our setting many different types



of goods may be present, and the preferences of agents in the market may
be more complex.”

Our paper shows that these differences are superficial. An outcome is not stable if the
corresponding flow is suboptimal. In the generalized submodular flow problems, sub-
optimality implies the existence of an improvement cycle. This indicates that whenever
the initial outcome is not stable, it can be blocked by relying on a “simple” set of trades,
which correspond to a chain in the underlying trading network.

The related literature is discussed below. Section 2 introduces notation and the
model. Section 3 describes the submodular flow problem and its optimality properties.
Section 4 describes the transformation of the problem of finding an efficient outcome
into an instance of the submodular flow problem. Section 5 discusses the equivalence
of various stability notions.

Related literature:. Gross substitutes of preferences is a sufficient condition for the
existence of competitive equilibrium with indivisible goods ( [Gul and Stacchetti 1999;
Kelso and Crawford 1982]). It is also equivalent to M \-concavity of the valuations
[Fujishige and Yang 2003; Murota and Tamura 2003b; Paes Leme 2014; Shioura and
Tamura 2015]. M \-concavity has found applications in mathematical economics; such
as direct proofs of the competitive equilibrium existence results, and algorithms for
computing the competitive equilibrium outcome [Danilov et al. 2001, 2003; Murota
and Tamura 2003a,b].

[Gul and Stacchetti 1999; Kelso and Crawford 1982] were concerned with a two-
sided market of buyers and sellers. The trading networks literature ([Hatfield et al.
2013, 2015a,b; Ostrovsky 2008]) generalized the gross substitutes property to full sub-
stitutability. This extended the existence of competitive equilibrium result beyond the
two-sided setting. These papers established that full substitutability corresponds to
M \-concavity of preferences. It suggests that the desirable properties of trading net-
works (under the full substitutability assumption) could be directly obtained by lever-
aging the rich literature on discrete convexity. This paper does just this. It shows that
the results obtained in the recent literature on trading networks can be deduced from
optimality conditions in (generalized submodular) network flow problems, where the
cost functions (which are obtained by a transformation of valuation functions) are M -
convex.

In [Murota 2003; Murota and Tamura 2003a] it was shown that the efficient al-
location problem for a two-sided economy with multiple buyers and sellers, could be
formulated as a generalized submodular flow problem on a bipartite network. We fol-
low a similar approach in the more general setting of trading networks. The presence
of agents who participate as buyers for some trades and sellers for others renders the
reduction in [Murota 2003; Murota and Tamura 2003a] inapplicable. We provide an
alternative network flow formulation for identifying the set of efficient trades in this
more general setup. Additionally, it shows the equivalence of competitive equilibrium
to (chain) stable outcomes can be characterized using a generalized submodular flow
formulation. Thus, together with the results of [Murota 2003; Murota and Tamura
2003a], our paper indicates that a generalized submodular flow formulation provides
a unifying framework for the study of various competitive equilibrium results in the
literature.

2. THE MODEL
A trading network is represented by a directed multigraph G = (N,E) where N is the
set of vertices and E the set of arcs. Each vertex corresponds to an agent and each
arc corresponds to a trade that can take place between the incident pair of vertices.
For each e ∈ E, the source vertex e+ corresponds to the seller and the sink vertex e−



corresponds to the buyer in the trade. Let δ+(i) and δ−(i) be the outgoing and incoming
arcs incident to vertex i ∈ N , and δ(i) = δ+(i)∪δ−(i). An outcome of the market is a set
of trades i.e. X ⊂ E. We define a price vector p ∈ RE , where pe is the price associated
with the trade that corresponds to the arc e. Denote by pX the price vector restricted
to the arcs in X.

Denote agent i’s value function for any set of trades involving agent i by wi : 2δ(i) →
R. Agent i’s utility function is ui : 2δ(i) × Rδ(i) → R. For each S ⊂ δ(i) and p ∈ RE

ui(S, p) = wi(S) +
∑

e∈S∩δ+(i)

pe −
∑

e∈S∩δ−(i)

pe.

The demand correspondence for agent i ∈ N , given a price vector p ∈ Rδ(i), is

Di(p) = arg max{ui(Y, p) : Y ⊂ δ(i)}
Definition 2.1. An outcome X ⊂ E along with a price vector p ∈ RE is a competitive

equilibrium (X, p) if, for all i ∈ N ,

X ∩ δ(i) ∈ Di(p).

Definition 2.2. An outcome X ⊂ E is efficient if

X ∈ arg max
S⊂E

∑
i∈N

wi(S ∩ δ(i)).

3. THE M-CONVEX SUBMODULAR FLOW PROBLEM
Here we introduce the M-convex submodular flow problem which generalizes the stan-
dard network flow problems (see Chapter 9 of [Murota 2003]). We are given a directed
graph (V,A), where V is the set of vertices and A is the set of arcs. For each v ∈ V
denote by δ+(v) and δ−(v) respectively the set of outgoing and incoming arcs incident
to vertex v.

As in the standard network flow problem each arc a ∈ A has a cost ca per unit of
flow, and lower and upper capacities ka, ka. Denote by xa the amount flowing through
a ∈ A. Given flows in the arcs, denote by yv the net outflow (that can be positive or
negative) from vertex v, and let y denote the vector of {yv}v∈V . The added feature of the
M-convex submodular flow problem (MSFP) is a term, f(y), in the objective function
which is M-convex (defined below). the MSFP can be formulated as follows:

min
x,y

∑
a∈A

caxa + f(y)

s.t.
∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = yv ∀v ∈ V

ka ≤ xa ≤ ka ∀a ∈ A.
In the standard network flow problem, f ’s domain is just a single point (y = 0). In
our case f is M -convex. To define M -convexity let χj ∈ Zn denote the 0-1 vector with
exactly one non-zero entry in component j. A function f : Zn → R∪ {∞} on the integer
lattice is M -convex if it satisfies the following exchange axiom:

(M -EXC[Z]): For all x, y ∈ Zn and for all u ∈ supp+(x− y),
f(x) + f(y) ≥ min

v∈supp−(x−y)
f(x− χu + χv) + f(y + χu − χv)

where supp+(x−y) (supp−(x−y)) is the set of all indices in {1, . . . , n} such that xi−yi > 0
(xi−yi < 0). A function g is called M -concave if −g is M -convex. An M -convex function



f ’s effective domain (i.e., domf , {x ∈ Zn| −∞ < f(x) <∞}) as well as its maximizers
form the basis family of a matroid.

The domain of an M -convex function f(·) can be extended to Rn by computing the
convex closure of f(·), i.e., by finding

f̄(x) = sup
p∈Rn,α∈R

{∑
i

pixi + α
∣∣∣∑

i

piyi + α ≤ f(y) ∀y ∈ Zn
}

for all x ∈ Rn.

We assume that the flow cost associated with the MSFP is the closure of an M -convex
function f(·) defined on the integer lattice.1 Theorem 9.15 in [Murota 2003], guaran-
tees the existence of an optimal integer flow when the capacities are integer valued – a
result analogous to integrality of optimal solution in classical network flow problems.
Thus, in our exposition we focus on f(·) defined on the integer lattice but implicitly con-
sidering its convex closure when we formulate MSFP. Note that for optimal solutions
only the values of f(·) on the integer lattice matter. Our theoretical and algorithmic
results do not require explicitly constructing this convex closure.

One can generalize the optimality conditions of the standard flow problem with a lin-
ear objective function to the MSFP (see [Murota 2003]). In particular, the optimality of
a flow is characterized by the nonexistence of a negative cycle in an auxiliary network
as well as in terms of a set of potentials associated with the nodes of the network.

First, define an auxiliary networkGaux which is an extension of the idea of a residual
network used in the standard network flow problem to account for the non-linearities
in f . Let x be a feasible flow in G and y be the associated vector of net flows at each
vertex. Let Gaux(x, y) = (V,Aaux(x, y) ∪Baux(x, y) ∪ Caux(x, y)) where

(1) Aaux(x, y) = {a|a ∈ A, xa < ka},
(2) Baux(x, y) = {−a|a ∈ A, xa > ka}(−a denotes arc a with its orientation reversed),
(3) and Caux(x, y) = {(u, v)|u, v ∈ V, f(y − χu + χv) < +∞}.
The auxiliary network has no arc capacities. The cost for each arc in Gaux(x, y) is given
by

cauxa (x, y) =

{
ca if a ∈ Aaux(x, y)
−ca if a ∈ Baux(x, y)
f(y − χu + χv)− f(y) otherwise.

The sum of the edge costs associated with a directed cycle of the auxiliary network
can be interpreted as the “length” of this cycle. A directed cycle of negative length
is referred to as a negative cycle. The optimality criteria are listed in the following
theorem.

THEOREM 3.1. (Theorems 3.1, 3.2 in [Murota 1999]) The following three conditions
are equivalent:

(1) (x, y) is an optimal solution to MSFP.
(2) There does not exist a negative cycle in Gaux(x, y).
(3) There exists a potential p : V → R such that

(a) for each (u, v) ∈ A,
(i) c(u,v) + p(u)− p(v) > 0⇒ x(u,v) = k(u,v)

(ii) c(u,v) + p(u)− p(v) < 0⇒ x(u,v) = k(u,v)
(b) f(y)− p · y ≤ f(y′)− p · y′ for all y′ ∈ ZV .

1Such functions are also referred to as integral polyhedral M -convex functions. See [Murota 2003], Section
6.11.



If the {ka, ka}a∈A are all integral, there is an optimal solution (x, y) to MFSP that is
integral. Unlike the standard network flow problem, a negative cycle is only a certifi-
cate of non-optimality. It is not the case that augmenting flow along any negative cycle
can improve the objective function. However, there exists a particular negative cycle
that does correspond to an improving direction. This cycle and how it is to be found is
described in greater detail later.

3.1. M \-Concave Valuation Functions
An M \-convex function f : Zn → R is a function satisfying the following exchange
axiom

(M \-EXC[Z]): For all x, y ∈ Zn and for all u ∈ supp+(x− y),
f(x) + f(y) ≥ min[f(x− χu) + f(y + χu), min

v∈supp−(x−y)
f(x− χu + χv) + f(x+ χu − χv)].

AnM \-convex function is supermodular. A function f isM \-concave if−f isM \-convex.
Any M \-convex function f : Zn → R∪∞ can be represented as an M -convex function

f ′ : Zn+1 → R ∪∞ where

f ′(x0, x) =

 f(x) if x0 = −
n∑
i=1

xi

+∞ otherwise.

3.2. Full Substitutability
Earlier, we defined each wi as a function over subsets of δ(i). If we represent sets
by their characteristic vectors, we can treat each wi as a function over {0,−1}δ−(i) ×
{0, 1}δ+(i). We extend the domain of wi to Zδ(i) by following the convention that wi(x) =
−∞ for x ∈ Zδ(i) such that x /∈ {0,−1}δ−(i)×{0, 1}δ+(i). An analogous convention applies
to the utility functions ui. Next, assume that each wi for each i ∈ N isM \-concave. This
is equivalent to the property that an agent’s demand correspondence satisfies the full
substitutes property (see [Hatfield et al. 2013, 2015b], and Theorem 7 of [Murota and
Tamura 2003b]).

Definition 3.2. Agent i’s preferences are fully substitutable if:

(1) For all p, p̃ ∈ Rδ(i) such that pe = p̃e for all e ∈ δ+(i) and p̃e ≥ pe for all e ∈ δ−(i),
for every Y i ∈ Di(p) there exists Ỹ i ∈ Di(p̃) such that (Y i ∩ {e|pe = p̃e}) ∩ δ−(i) ⊂
Ỹ i ∩ δ−(i) and Ỹ i ∩ δ+(i) ⊂ Y i ∩ δ+(i).

(2) For all p, p̃ ∈ Rδ(i) such that pe = p̃e for all e ∈ δ−(i) and p̃e ≤ pe for all e ∈ δ+(i),
for every Y i ∈ Di(p) there exists Ỹ i ∈ Di(p̃) such that (Y i ∩ {e|pe = p̃e}) ∩ δ+(i) ⊂
Ỹ i ∩ δ+(i) and Ỹ i ∩ δ−(i) ⊂ Y i ∩ δ−(i).

4. TRANSFORMATION TO MSFP
We use the optimality conditions of the MSFP to show that a competitive equilibrium
exists. To do this we transform the problem of finding an efficient outcome into an
instance of the MSFP.

We introduce a flow network G′ = (V,A), associated with the trading network G.
Recall, there is an M \-concave function wi : Zδ(i) → R associated with each vertex
i ∈ N . We represent the set of trades agent i is involved in by a characteristic vector
yi, where for each trade e ∈ δ(i) which occurs, we set yie = 1 if e ∈ δ+(i) and yie = −1 if
e ∈ δ−(i). With this representation we can replace each wi by an M -concave function



w′i : Z× Zδ(i) → R, such that

w′i(z0, z) =

 wi(z) if z0 = −
n∑
r=1

zr

−∞ otherwise
(1)

For y = {yi}i∈N , the social welfare of the trading network is given by −f(y) =∑
i∈N w

′
i(y

i). M -concavity of {w′i} implies implies that f(·) is M -convex as the argu-
ments of the M -convex functions in the summand are disjoint.2

Now, each wi is a function of the characteristic vector of arcs incident to i that carry
a positive amount of flow. To account for this we represent each i ∈ N by a set V i
of vertices associated with the arguments of each M \-concave function w′i, i.e. |V i| =
|δ(i)|+ 1. Formally,

V =
⋃
i∈N

V i = {vie|i ∈ N, e ∈ {0} ∪ δ(i)}.

We refer to vertices of the form vi0 as special vertices. We add a set of (directed) arcs
A0 between every pair of special vertices. Additionally, for each e ∈ E with e = (i, k)
we introduce an arc a = (vie, v

k
e ). Intuitively, one unit of flow on this arc represents that

both agent i and agent k participate in trade e (and since yie = −yke the corresponding
flow cost reflects values of both agents for this trade). These arcs form set A1.

Formally,

A = A0 ∪A1 = {(vi0, vk0 ) : i, k ∈ N} ∪ {(vie, vke ) : e = (i, k) ∈ E}.
Figure 1 displays an example.

e1

e2e3

v10

v1e1

v1e3

v2e1

v20

v2e2

v3e2v30v3e3

Fig. 1. (a) A trading network G = (N,E) (b) Corresponding flow network G′ = (V,A)

We define the following instance of MSFP on (V,A):

min
x,y

f(y)

s.t.
∑

a∈δ+(v)

xa −
∑

a∈δ−(v)

xa = yv ∀v ∈ V

ka ≤ xa ≤ ka ∀a ∈ A

2In general, the sum of M -convex functions is not M -convex. However, this property trivially holds when
M -convex functions with disjoint arguments are considered.



Notice here that all arc costs are zero, i.e. ca = 0, and lower and upper capacities are
set as follows :

ka = −∞, ka = +∞.
Additionally, by construction −f(y) is M -convex. We can associate an auxiliary net-
work with a given feasible solution (x, y) of this problem, as demonstrated in Figure 2.

Fig. 2. (a) Feasible Solution (b) Auxiliary Graph (blue: Aaux ∪Baux, green: Caux)

Consider a set of trades S ⊂ E in the trading network G = (N,E). A corresponding
flow in G′ = (V,A) can be obtained by sending one unit of flow on each arc in A1 asso-
ciated with these trades, and choosing the flow through arcs between special vertices
to keep the total net flow into vertices in V i equal to zero (for all i). Observe that the
absolute value of the associated flow cost is equal to the welfare corresponding to S.
Conversely, by construction of f(·), it can be seen that any flow with bounded cost is
such that the net flow into vertices in V i is equal to zero for all i (see (1)), and each arc
in A1 carries at most one unit of flow. Moreover, the absolute value of cost of any such
flow is equivalent to the total welfare associated with the trades that correspond to
arcs in A1 with nonzero flow. Hence, integer flows with bounded cost in G′ correspond
to feasible sets of trades in G. The MSFP on G′ = (V,A) is guaranteed to have an in-
teger optimal solution. Thus, this solution corresponds to an efficient outcome for the
trading network G = (N,E).

Consider an optimal solution (x, y) to the MSFP onG′. According to Theorem 3.1, the
corresponding auxiliary graph does not have negative cycles. Thus, as in the classical
network flow problem, one can associate a potential function with the auxiliary graph,
satisfying the following constraints (where the right hand sides correspond to edge
costs in the auxiliary graph):

p(v)− p(u) ≤ 0 ∀(u, v) ∈ Aaux(x, y) ∪Baux(x, y), (2)

p(v)− p(u) ≤ f(y − χu + χv)− f(y) ∀(u, v) ∈ Caux(x, y). (3)

We refer to (2,3) as the potential function conditions. They are identical to the potential
function characterization in Theorem 3.1. In particular, inequality (2) is equivalent to
p(v) − p(u) = 0 for all (u, v) ∈ A, since for each (u, v) ∈ A, we have (u, v) ∈ Aaux(x, y)
and (v, u) ∈ Baux(x, y). The latter equality is also equivalent to Theorem 3.1 (3a),
since the arc capacities are infinite. The inequalities in (3) are equivalent to those in
Theorem 3.1 (3b) by Theorem 6.26 in [Murota 2003] (and M-convexity of f(y)−p ·y; see



Theorems 6.13(3), and 6.15 in [Murota 2003]). We conclude that the set of potentials
satisfying (2,3) is equivalent to the potentials implied by Theorem 3.1.

From the discussion above we get that p(u) = p(v) for all (u, v) ∈ A, which is our
candidate price for the trade (u, v). Furthermore, given a potential function p : V → R
satisfying the conditions of Theorem 3.1 (3a – 3b), p′(u) = p(u) + c for all u ∈ V gives
another potential satisfying these conditions. Recall, all special vertices are adjacent
to each other. This means they all have a potential equal to p0. By setting c = −p0 we
ensure that a potential function always takes value zero on the special vertices.

Potentials are defined on vertices. However, in our construction of flow networks
each vertex corresponds to a particular trade-agent pair and the potentials of two ad-
jacent vertices (associated with the same trade) are equal. Theorem 3.1 (3b) implies
that if these potentials can be interpreted as prices, and the set of trades yi chosen
for some agent i are modified (through a choice of different in/outflow ŷi for V i nodes),
then the surplus of agent i cannot be improved. Thus, it follows that an optimal solu-
tion (x, y) of the MSFP and the prices that correspond to a potential function satisfying
Theorem 3.1 (3b) constitute a competitive equilibrium.

Conversely, given a competitive equilibrium, the prices for trades defines a potential
function on all vertices where the potential of a vertex is the price of the corresponding
trade and the special vertices get a potential value of zero. The equilibrium conditions
imply that the equilibrium prices and outcome satisfy Theorem 3.1 (3a – 3b). Hence,
the flow associated with this outcome solves the MSFP. Thus, the equivalence of opti-
mal solutions of the MSFP and efficient outcomes, as well as potential functions and
competitive prices follows.

4.1. Immediate Consequences
THEOREM 4.1. (Theorem 1 in [Hatfield et al. 2013]) There exists a competitive equi-

librium.

PROOF. Given a trading network G = (N,E), we map it to the associated flow prob-
lem on the flow network (V,A). The MSFP on (V,A) has an optimal solution (x∗, y∗),
since it is a discrete problem and “no flow” is a feasible solution. Theorem 3.1 implies
that there exists a potential p∗. The feasible solution (x∗, y∗), along with its potential
function p∗ is a competitive equilibrium. This completes the proof.

The outcome associated with a competitive equilibrium is efficient.

THEOREM 4.2. (First Welfare Theorem, Theorem 2 in [Hatfield et al. 2013]) Suppose
that (X, p) is a competitive equilibrium. Then, X is an efficient outcome.

PROOF. Let (x, y) be a feasible flow associated with the outcome X. The competitive
prices imply a potential function for the flow (x, y). By Theorem 3.1, (x, y) is optimal,
therefore, the outcome X is efficient.

Next, we show that competitive prices support all efficient outcomes, i.e., these prices
with any efficient outcome constitute a competitive equilibrium.

THEOREM 4.3. (Second Welfare Theorem (strong version), Theorem 3 in [Hatfield
et al. 2013]) For any competitive equilibrium (X, p) and efficient outcome X ′, (X ′, p) is
also a competitive equilibrium.

PROOF. The outcomes X,X ′ correspond to optimal flows (x, y) and (x′, y′) respec-
tively. The prices imply a potential function associated with the optimal flow (x, y).
The second part of Theorem 3.1 in [Murota 1999] states that the potential function
satisfies the conditions of the potential criterion for the flow (x′, y′). We conclude that
(X ′, p) is a competitive equilibrium.



The set of competitive prices enjoys a nice structure.

THEOREM 4.4. (Theorem 4 in [Hatfield et al. 2013]) The set of competitive price vec-
tors is a lattice.

PROOF. Immediate from the fact that the feasible region of a system of difference
constraints (2, 3) is a lattice. 3

In this model one can interpret a trade as the sale of goods from a seller to a buyer.
The trade specifies the identity of the good (edge) as well as its quantity (flow). The
buyer pays the price for given quantity of the product. [Hatfield et al. 2013] gives
a sufficient condition for the existence of a competitive equilibrium, where uniform
pricing over “identical” trades is realized. The connection to the MSFP allows us to
extend this sufficient condition. We define what it means for two trades to be perfect
substitutes for each other.

Definition 4.5. Agent i sees trades e, e′ ∈ δ(i) as perfect substitutes for each if
wi(X ∪ {e}) = wi(X ∪ {e′}) for all X ⊂ δ(i) \ {e, e′}.

This definition immediately implies that the valuation function of agent i depends
only on the number of trades chosen in an equivalence class of perfectly substitutable
trades Y associated with him, i.e. wi(X ∪ S) = wi(X ∪ S′) for all S, S′ ⊂ Y such that
|S| = |S′| and for all X ⊂ δ(i) \ Y .

In [Hatfield et al. 2013] it was established that there exists competitive equilibrium
where trades that are perfect substitutes receive the same price, provided that these
trades are also mutually incompatible, i.e., accepting more than two such trades leads
to a payoff of−∞. Our next result (see appendix for a proof) shows that such an equilib-
rium still exists, when the mutual incompatibility assumption is relaxed. Importantly,
this relaxation allows the seller to produce and sell multiple identical goods.

THEOREM 4.6. Suppose that for agent i, any pair of trades in Y ⊂ δ(i) are perfect
substitutes for each other. Then, there exists a competitive equilibrium, such that pe =
pe′ for all e, e′ ∈ Y .

5. STABLE OUTCOMES
In this section we list various notions of stability for trading networks that have been
proposed in [Hatfield et al. 2013]. Informally, a stable outcome has the property that no
subset of agents has incentive to deviate from it. Given a set of trades X, with a slight
abuse of notation, we denote the prices of the corresponding trades by pX , and the set
of trades agent i demands once she is restricted to the trades in X by Di(p

X) ⊂ X∩δ(i).
Call an outcome X, along with its prices pX individually rational if

X ∩ δ(i) ∈ arg max
Y⊂X∩δ(i)

wi(Y ) +
∑

e∈Y ∩δ+(i)

pXe −
∑

e∈Y ∩δ−(i)

pXe ∀i ∈ N.

Definition 5.1. An outcome X, along with its prices pX , is stable if it is individually
rational and is unblocked:

There is no feasible nonempty blocking set Z ⊂ E, along with its prices pZ such
that

(1) Z ∩X = ∅, and

3Theorem 9.15 in [Murota 2003] presents a more sophisticated version of the result, i.e. the set of optimal
potentials is an L-convex polyhedron. This means that the set of competitive prices, which is a restriction of
the potentials to the coordinate plane, is an L\-convex polyhedron.



(2) for all agents i involved in Z, for all Y i ∈ Di(p
Z∪X), we have Z ∩ δ(i) ⊂ Y i.

The closely related notion of strongly stable outcome is defined next.

Definition 5.2. An outcome X, along with its prices pX , is strongly stable if it is
individually rational and is strongly unblocked:

There is no feasible nonempty strongly blocking set Z ⊂ E, along with its prices
pZ such that

(1) Z ∩X = ∅, and
(2) for all agents i involved in Z, there exists a Y i ⊂ {Z∪X}∩δ(i) such that Z∩δ(i) ⊂ Y i

and
wi(Y

i)+
∑

e∈Y i∩δ+(i)

pZ∪Xe −
∑

e∈Y i∩δ−(i)

pZ∪Xe > wi(X∩δ(i))+
∑

e∈X∩δ+(i)

pXe −
∑

e∈X∩δ−(i)

pXe .

Clearly, a strongly stable outcome is stable.
The next notion of stability is analogous to pairwise stability in bipartite matching.

Call a set of consecutive arcs in a graph G, i.e., a set of m arcs S = {e1, . . . , em}, such
that e−i = e+i+1 for all i = 1, . . . ,m− 1, a chain.

Definition 5.3. An outcome X, along with its prices pX , is chain stable if it is
individually rational and is unblocked by a chain:

There is no feasible nonempty blocking chain Z ⊂ E, along with its prices pZ

such that

(1) Z ∩X = ∅, and
(2) for all agents i involved in Z, for all Y i ∈ Di(p

Z∪X), we have Z ∩ δ(i) ⊂ Y i.
The related notion of strong chain stability is defined below.

Definition 5.4. An outcome X, along with its prices pX , is strongly chain stable if
it is individually rational and is strongly unblocked by a chain:

There is no feasible nonempty strongly blocking chain Z ⊂ E, along with its
prices pZ such that

(1) Z ∩X = ∅, and
(2) for all agents i involved in Z, there exists a Y i ⊂ {Z∪X}∩δ(i) such that Z∩δ(i) ⊂ Y i

and
wi(Y

i)+
∑

e∈Y i∩δ+(i)

pZ∪Xe −
∑

e∈Y i∩δ−(i)

pZ∪Xe > wi(X∩δ(i))+
∑

e∈X∩δ+(i)

pXe −
∑

e∈X∩δ−(i)

pXe .

Clearly, a strongly chain stable outcome is chain stable. Definitions 5.1-5.4 also im-
ply that a (strongly) stable outcome is (strongly) chain stable, since if there exists no
(strongly) blocking set, there exists no such set with a chain structure.

Before we show the equivalence of these stability concepts, we focus on the case
when the ‘no trade’ outcome is inefficient. In this case we show it is always possible to
find a chain that improves welfare. Intuitively, this preliminary result implies that it
may be possible to restrict attention to chains when searching for a blocking set. We
subsequently formalize this intuition in Corollary 5.6 for outcomes where no trade is
executed.

LEMMA 5.5. Consider a trading network G = (N,E). Assume that the no trade
outcome is inefficient. Then, there exists a chain of trades that improve welfare.



PROOF. Consider the MSFP formulation of the welfare maximization problem in
G, and let (x, y) denote a feasible solution of the MSFP associated with flow network
G′ = (V,A) that corresponds to the no trade outcome, i.e., that associates zero flow
with all arcs in A1, and hence guarantees y = 0. Since outcome ∅ is not optimal in G,
according to Theorem 3.1 there exists a negative cycle in the auxiliary graphGaux(x, y).
Pick a negative cycle K with the fewest number of arcs.

We claim that there exists such a cycle K which satisfies the following conditions:

(1) 0 >
∑
a∈K

cauxa (x, y) =
∑

(u,v)∈K∩Caux(x,y)

[f(y − χu + χv)− f(y)],

(2) It contains at most one special vertex OR two incident special vertices,
(3) K∩Baux(x, y) = ∅, and if e ∈ K∩Caux(x, y), then there exists h1, h2 ∈ K∩Aaux(x, y)

such that h1 − e− h2 is a sequence of edges on cycle K.

The first condition follows since K is a negative cycle, and arc costs are nonzero only
for arcs in Caux(x, y). Suppose that the second condition is violated. Pick two special
vertices and the arc with zero cost between them. Then, we get two smaller cycles, such
that at least one is negative, which contradicts our assumption that K is the negative
cycle with the fewest number of arcs.

To see the third one, first observe that Caux(x, y) = {(u, v)|u, v ∈ V, f(y − χu + χv) <
+∞} only consists of edges (u, v) where (i) u, v ∈ V i for some agent i, (ii) u ∈ {vie|e ∈
{0} ∪ δ−(i)} and v ∈ {vie|e ∈ {0} ∪ δ+(i)}. To see (i) note that y = 0, and by construction
f(z) < ∞ only when the total net flow into nodes in V i is zero for all i. Thus, if this
claim does not hold, then f(y − χu + χv) = ∞, indicating that (u, v) /∈ Caux(x, y).
Similarly, property (ii) follows since by construction f = −

∑
i w
′
i, and the definition of

wi implies that f(y − χu + χv) =∞ unless this property holds.
Assume that (u, v) ∈ K ∩Baux(x, y), then (v, u) ∈ A = A0 ∪A1. If (v, u) ∈ A0, then by

construction we also have (u, v) ∈ A0, and hence (u, v) ∈ Aaux(x, y). Thus, another neg-
ative cycle with the same number of arcs and total weight can be obtained by replacing
(u, v) ∈ K ∩ Baux(x, y) with the parallel edge between the same nodes that belongs to
Aaux(x, y). Conversely, if (v, u) ∈ A1, then v ∈ {vie|e ∈ δ+(i)}, hence the next arc (v, v′) of
K, cannot belong to Caux(x, y) (as this violates (ii)). Since the edges in A1 are disjoint,
this arc is given by (v, v′) = (v, u). By omitting both (u, v) and (v, u), a shorter negative
cycle can be obtained, thereby leading to a contradiction. Thus, K can be chosen such
that K ∩Baux(x, y) = ∅.

Finally, note that if (u, v) ∈ K ∩Caux(x, y), then there is no (v, v′) ∈ K ∩Caux(x, y), as
otherwise we obtain a contradiction to (ii). Since, K ∩ Baux(x, y) = ∅, this observation
implies that any arc (u, v) ∈ K ∩ Caux(x, y) is followed in K by arcs that belong to
Aaux(x, y), and the third condition follows.

Proposition 9.25 in [Murota 2003] implies:

0 >
∑

(u,v)∈K∩Caux(x,y)

[f(y−χu+χv)−f(y)] = f

y +
∑

(u,v)∈K∩Caux(x,y)

(−χu + χv)

−f(y),

since K is a negative cycle with fewest arcs. Moreover, it can be seen that the first
term in the right hand side is the cost of flow obtained after modifying the original
flow by sending one unit of flow on edges A ∩K (recall that K ∩ Baux(x, y) = ∅). Thus,
we conclude that executing the set of trades associated with edges A ∩ K improves
welfare. We complete the proof by showing that this set of trades constitute a chain in
the trading network.

First observe that if K involves two consecutive arcs in Aaux(x, y) ⊂ A0 ∪ A1 = A,
then these arcs are between adjacent special nodes, since by construction all edges in



A1 correspond to disconnected components of (V,A). This contradicts the second con-
dition above, thus it follows from the third condition that arcs of K alternate between
Aaux(x, y) and Caux(x, y).

Assume that K does not involve an arc between any special vertices (i.e., K ∩
Aaux(x, y) ⊂ A1). Consider an arc e ∈ K ∩ Caux(x, y), and recall that both end points
of this arc belong to V i for some agent i. The next arc in K belongs to A1, and hence
connects a non-special vertex in V i to a non-special vertex in V j for some i 6= j, thereby
capturing a trade between i and j. Since arcs of K alternate between Aaux(x, y) and
Caux(x, y), it follows that the next arc’s endpoints belong to V j . Hence, proceeding it-
eratively it can be seen that the arc after this one suggests a trade relation between j
and some other agent k. Thus, as claimed the set of trades associated with arcs A ∩K
constitute a chain4 in G.

Assume instead that K involves an arc between special vertices. Since K involves
at most two special vertices, there can be only one such arc. Starting with such an arc,
and proceeding as before, it can be shown that the remaining arcs of K suggest a chain
of trades that correspond to the arcs of A ∩K.

Hence, we conclude that the trades identified by the smallest negative cycle induce
a chain of welfare-improving trades, as claimed.

The optimality conditions for the MSFP and the structure of the flow network play
a key role in the proof of Lemma 5.5. Lemma 5.5 also has a straightforward corollary
that characterizes blocking chains in terms of a minimal set T of trades that improve
welfare, i.e., T such that no subset of T improves welfare when compared to the no
trade outcome.

COROLLARY 5.6. Consider a trading network G = (N,E). Assume the no trade
outcome is inefficient. Then,

(i) any minimal set of trades that improve welfare constitutes a chain,
(ii) there exist prices which together with these trades constitute a blocking chain.

PROOF. (i) Assume ∅ is not efficient in G, and let T ⊂ E be a minimal set of trades
that strictly improve welfare. Consider a trading network Ĝ = (N,T ), obtained by
restricting the original set of trades to T . Observe that the outcome ∅ is also not wel-
fare maximizing in Ĝ. Lemma 5.5 implies that there exists a welfare-improving set of
trades that constitute a chain in Ĝ. Since, T is the minimal (and only) set of trades
that improves welfare, it follows that T is a chain.

(ii) Since T is a minimal welfare-improving set of trades, it follows that in Ĝ = (N,T )
the unique efficient outcome involves executing all trades in T .

Let ∆ > 0 be such that
∑
i wi(T ∩ δ(i)) − 2∆|T | >

∑
i wi(X ∩ δ(i)) − 2∆|X| for any

X ( T . It suffices to choose a ∆ > 0, such that 2∆|T | <
∑
i wi(T ∩δ(i))−

∑
i wi(∅) (recall

that
∑
i wi(X ∩ δ(i)) ≤

∑
i wi(∅) for any X ( T , since T was a minimal set of trades

improving the welfare). Consider another economy with the same network structure
Ĝ = (N,T ), but with valuations w̄i(Z) = wi(Z) − ∆|Z| where Z ⊂ δ(i).5 Observe that

4In such a case, A ∩K is a cycle in G.
5The use of “modified valuations” was employed in [Hatfield et al. 2013] to establish that a stable outcome
can be supported with appropriate prices to obtain a competitive equilibrium. We follow a similar construc-
tion to show that if the efficient allocation is unique, there exist competitive equilibrium prices under which
each agent strictly demands her equilibrium set of trades. Note, that this result is independent of the trading
network structure, and is a byproduct of strict complementarity in optimization.



for any outcome X ( T we have∑
i

w̄i(T ∩ δ(i)) =
∑
i

(wi(T ∩ δ(i))−∆|T ∩ δ(i)|) =
∑
i

wi(T ∩ δ(i))− 2∆|T |

>
∑
i

wi(X ∩ δ(i))− 2∆|X| =
∑
i

w̄i(X ∩ δ(i)).
(4)

Thus, it follows that executing all trades in T is still the unique welfare maximizing
outcome in this economy. Denote a competitive equilibrium of this economy by (T, pT ).

We claim that (T, pT ) is a competitive equilibrium of the economy with valuations
{wi}, where Di(p

T ) = {T ∩ δ(i)}. This is because, if a set of trades T ∩ δ(i) is demanded
in the economy with payoffs {w̄i}, for any S ( T ∩ δ(i) we have

ui(T ∩ δ(i), pT )−∆|T ∩ δ(i)| = ūi(T ∩ δ(i), pT ) ≥ ūi(S, pT ) = ui(S, p
T )−∆|S|, (5)

where ūi is the utility function associated with w̄i. This implies that the surplus of
agent i for the trades in T ∩ δ(i) is strictly greater than her surplus for any set of
trades S ( T ∩ δ(i).

Thus, we conclude that in the economy with valuations {wi} given a set of contracts
(T, pT ) we have Di(pT ) = {T ∩ δ(i)}. Hence, it follows that (T, pT ) is a blocking chain
for the outcome ∅.

To study stability of outcomes other than the no trade outcome, we introduce the
notion of the contraction of an economy (see [Hatfield et al. 2013]). For an outcome X,
and associated prices pX , we define a new trading network GX = (N,E \ X) where
agent i ∈ N has a valuation function ŵi : 2δ(i)∩(E\X) → R given as follows:

ŵi(S) = max
Y⊂X∩δ(i)

[wi(S ∪ Y ) +
∑

e∈Y ∩δ+(i)

pXe −
∑

e∈Y ∩δ−(i)

pXe ] (6)

It follows from [Murota 2003] (Theorem 6.13(3,4), Theorem 6.15(1)) that ŵi is M \-
concave for each i ∈ N . We refer to GX with these valuation functions as the contrac-
tion of economy X, with respect to (X, pX).

5.1. Equivalence of Solution Concepts
We show that all of the stability notions coincide with the concept of a competitive
equilibrium in the following two steps (established in Theorems 5.7 and 5.8 respec-
tively):

(1) A competitive equilibrium outcome is a (strongly) stable outcome.
(2) A chain stable outcome is a competitive equilibrium outcome.

The first result follows from the definition of stability, while the second follows from
Lemma 5.5 and Corollary 5.6 which exploit the network flow formulation.

THEOREM 5.7. (Theorem 5 in [Hatfield et al. 2013]) If (X, p) is a competitive equi-
librium and pX is the restriction of p to the arcs in X, then, (X, pX) is a (strongly) stable
outcome.

PROOF. Since (X, p) is a competitive equilibrium, it follows that (X, pX) is indi-
vidually rational. To complete the proof, it suffices to show that there is no chain that
(strongly) blocks (X, pX). LetGX be the contraction with respect to (X, pX). Since (X, p)
is a competitive equilibrium in G, (∅, p(E\X)) is a competitive equilibrium in GX . Theo-
rem 4.2 implies that ∅ is an efficient outcome in GX . Suppose, for a contradiction, there
exist contracts and prices (Z, pZ) that (strongly) block (X, pX) in G. This would imply
that Z has higher welfare than ∅ in GX , which contradicts the efficiency of ∅.
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As any (strongly) stable outcome is (strongly) chain stable, Theorem 5.7 implies the
hierarchy displayed in Figure 3.6

Next, we establish the equivalence of all the stability notions, by showing that in any
chain stable outcome (X, pX), it is possible to find prices for trades E \X to support X
as a competitive equilibrium. Thus, the “weakest” and “strongest” equilibrium/stability
notions in Figure 3 are equivalent.

THEOREM 5.8. Suppose that (X, pX) is a chain stable outcome. Then, there exists a
price vector p ∈ RE such that (X, p) is a competitive equilibrium where pe = pXe for all
e ∈ X.

PROOF. Consider the contraction GX of the trading network G = (N,E) with re-
spect to (X, pX). We claim that for some price vector p̂E\X , (∅, p̂E\X) is a competitive
equilibrium in GX . Assume not, then, it follows from Theorems 4.1 and 4.3 that ∅ is
not welfare maximizing in GX . Then, Corollary 5.6 implies that this outcome is not
chain stable, and there exists a set of trades T ⊂ E \X, and prices pT that constitute
a blocking chain in GX . This implies that (T, pT ) also blocks (X, pX) in the original
trading network G. Thus, we obtain a contradiction, and it follows that (∅, p̂E\X) is a
competitive equilibrium in GX . Since (X, pX) is chain stable and hence individually
rational, this implies that in trading network G, under prices (pX , p̂E\X), each agent i
demands X ∩ δ(i). Hence, this outcome corresponds to a competitive equilibrium, and
the claim follows.

5.2. Determining a Blocking Chain
A pseudo-polynomial algorithm for solving the MSFP is given in [Iwata et al. 2005]
which corresponds to the Successive Shortest Path (SSP) algorithm on auxiliary net-
works. In our MSFP reduction, we can assign each arc of the flow network unit ca-
pacity. Therefore, the SSP algorithm is strongly polynomial in our case which gives a
strongly polynomial algorithm for determining an efficient allocation in a trading net-
work. Supporting prices can be found by applying the Bellman-Ford algorithm to the
auxiliary graph associated with the efficient outcome.7 This is because, as discussed
earlier, a solution of (2,3) corresponds to competitive prices, and can be interpreted as
the dual to the problem of finding all-pairs shortest paths. Since the number of ver-
tices in the auxiliary network are polynomial in the number of trades in the trading

6Notice, a competitive equilibrium lies in a different space (since unlike the notions of stability, at an equilib-
rium all trades are priced). Thus, in Figure 3, with slight abuse, when we refer to a competitive equilibrium
we refer to the equilibrium outcome along with the prices of the trades involved in this outcome.
7Optimal potentials, and hence competitive prices, can also be extracted from the SSP algorithm.



network, this approach yields a strongly polynomial algorithm for finding a competi-
tive equilibrium.

We now describe a polynomial time algorithm to determine a blocking chain for a
given outcome or to certify that none exists. Clearly, this algorithm can be used to
check if an outcome is chain stable. Fix an outcome X along with associated prices
pX . To test chain stability, one should first verify individually rationality, and then
examine if the outcome is blocked by a chain.

To verify individual rationality of the outcome X ∩ δ(i) for each agent i it suffices to
compare ui(X ∩ δ(i), pX) with ui((X ∩ δ(i)) \ {e}, pX) for all e ∈ X ∩ δ(i), and ui((X ∩
δ(i) \ {e1, e2}), pX) for all e1 ∈ X ∩ δ+(i), e2 ∈ X ∩ δ−(i). This follows from the fact that
ui(X ∩ δ(i), pX) is M \-concave and Theorem 6.26 in [Murota 2003]. Thus, individual
rationality can be checked by comparing X with polynomially many sets of trades
incident to agent i.

Assume that outcome X along with prices pX is individually rational. Then, Algo-
rithm 1 (see Appendix) can be applied to test if the outcome is unblocked, and provide
a blocking chain in case it is blocked.

Algorithm 1 proceeds in two phases. Phase one focuses on the contraction GX (with
respect to (X, pX), corresponding valuations {ŵi}i∈N (see (6)), and outcome ∅. It uses
the auxiliary graph associated with GX , and finds a minimal welfare-improving chain
T if one exists. If none exists, then there is no blocking chain. Otherwise, the second
phase returns the prices pT which together with T constitute a blocking chain for out-
come ∅ in GX (and equivalently outcome (X, pX) in G). In order to do so, it works on
the auxiliary graph associated with Ĝ = (N,T ), valuations {w̄i}i∈N , and outcome T , as
described in Corollary 5.6.

Algorithm 1 does not require computing the valuations {ŵi}i∈N explicitly. It suffices
to determine enough information to compute the edge costs of the arcs Caux(x, y) of the
auxiliary graphs used in the two steps of the algorithm: caux(u,v) = ŵ′i(y

i)−ŵ′i(yi−χu+χv),
where ŵi′ is the M-concave function associated with ŵi. The definition of {ŵi}i∈N in (6)
and M -concavity of wi implies that ŵi(y) can be computed via a greedy algorithm in
strongly polynomial time ([Shioura 2004]).8

The main components of the algorithm is the structure of the auxiliary graph, and
three functions aux.construct(), greedyX(), BellmanFord(). Each auxiliary graph has at
most O(|N |+ |E|) vertices and O(|E|+ |N |2) arcs. Initially, aux.construct(G, (x, y)) con-
structs the auxiliary graph associated with graph G and flow (x, y). Next, greedyX()
is used to assign costs to all arcs Caux(x, y). Recall that obtaining these costs cor-
responds to solving an M-concave maximization problem, associated with functions
{ŵi}. Specifically, greedyX(wi, y

i) computes {ŵi} as described in the paragraph above.
BellmanFord(Gaux(x, y), s) computes shortest path distances on Gaux(x, y) from vertex
s, which provide the prices pT for the blocking chain T .

Phase one of Algorithm 1 finds a chain of arcs improving the total welfare of the
agents involved. It works on GX , and the auxiliary network associated with it, valua-
tions {ŵi}i∈N , and outcome ∅. A negative cycle with the fewest number of arcs on the
auxiliary network, implies a blocking chain T (see Lemma 5.5). To find such a negative
cycle, it suffices to compute W , where W [u, v,m] stands for the shortest distance from
vertex u to vertex v going through at most m arcs. The negative cycle with the fewest
number of arcs is given by the diagonal element W [u, u,m] which is negative, for the
smallest possible m. Note here that the negative cycle can be found by adding a matrix
of predecessors during the computation of W .

8In our case this greedy algorithm is strongly polynomial, since domf ⊂ {−1, 0, 1}V .



In phase two we know the blocking chain T but the prices pT have yet to be de-
termined. Following the approach in Corollary 5.6, and focusing on Ĝ, the algorithm
first perturbs the valuation functions {ŵi}i∈N by ∆ > 0 (specified in the algorithm).
As in Corollary 5.6, a competitive equilibrium of this economy, leads to prices pT such
that under these prices in the original economy each agent i strictly demands T ∩ δ(i),
thereby establishing that (T, pT ) is a blocking chain for the outcome (X, pX) in G.

The competitive prices are given by legitimate potentials on Gaux(x, y), which can
be computed by the Bellman-Ford algorithm. Distances are computed starting from
a special vertex in order to guarantee that the special vertices get zero potential. If
some vertices are not reachable from the special vertices. Then, the algorithm picks
a random vertex and computes shortest distances from such a vertex. Finally, after
computing legitimate potentials, the prices are extracted.

Algorithm 1 is strongly polynomial. During the construction of the auxiliary graphs,
greedyX() is used for each of at most |V |2 arcs in Caux(x, y). Since the M -concave
function maximization problem associated with greedyX() has complexity, O(|X|2),
the overall complexity of this step is bounded by O(|V |2|X|2), which is bounded by
O((|E|+ |N |)2|E|2). Furthermore, in the first step of the algorithm, the computation of
matrix W takes O(|V |4) = O((|N | + |E|)4) steps. The complexity of this step drops
down to O(|V |3 log |V |), if binary search on the cycle length is incorporated. Since,
Gaux(x, y) involves O(|N | + |E|) vertices and O(|E| + |N |2) arcs, the complexity as-
sociated with constructing the prices using Bellman-Ford algorithm is bounded by
O(|N |3 + |E|2 + |N |2|E|+ |N ||E|).
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APPENDIX
A.1. Proof of Theorem 4.6
As before, we introduce a flow network G′ = (V,A), associated with the trading net-
work G. Recall that we assign to each agent an M -concave function w′i with each argu-
ment capturing the net flow into a vertex u ∈ V i. Let VY ⊂ V i be the vertices associated
with the trades in Y . Merge all vertices in VY into a vertex vY . Make each arc incident
to vertex in VY incident to vY . We obtain a new set of vertices associated with agent i
given by V im = (V i \ VY ) ∪ {vY }. We define a new function ŵi : Z × Zδ(i)\Y × Z → R on
the vertices V im, and so we do

ŵi(y
i
({0}∪δ(i))\Y , yY ) = sup{w′i(yi({0}∪δ(i))\Y , z)|

∑
e∈Y

ze = yY }

The function ŵi is said to be generated by aggregation of the original M -concave func-
tion w′i. Aggregation preserves M -concavity (see Theorem 6.13 in [Murota 2003]).

The instance of the MSFP constructed in this way preserves the equivalence between
flows and outcomes as argued earlier. This is true because the function w′i depends only
on the net flow into vertices Vy, as the valuation function depends only on the number
of trades in Y .

The theorem follows from the equivalence between potentials and competitive prices.
Recall that the potentials are defined on vertices, and we imposed an restriction on
the potentials on vertices VY to be equal, by merging the vertices. As argued before,
Theorem 3.1(3b) implies that potentials p on the auxiliary graph associated with the
optimal solution are supporting prices. Since there exists a unique potential value
p(vY ) for the vertices VY associated with Y , “uniform pricing” follows.



A.2. Algorithm in Section 5.2

ALGORITHM 1: Determining a Blocking Chain

Input: Trading network G = (N,E), valuations {wi}i∈N , and outcome X with prices pX .
Output: Blocking chain T with prices pT .

G = GX ; (x, y) = ∅; Gaux(x, y) = aux.construct(G, (x, y));
foreach i ∈ N do foreach u ∈ V i do foreach v ∈ V i do
caux(u,v)(x, y) = greedyX(wi, y

i)− greedyX(wi, y
i − χu + χv);

foreach i ∈ V do foreach j ∈ V do W [u, v, 1] = caux(u,v)(x, y);
for m = 2→ |V | do

foreach u ∈ V do
foreach v ∈ V do

W [u, v,m] = W [u, v,m− 1];
foreach t ∈ V do

W [u, v,m] = min{W [u, v,m],W [u, t,m− 1] + caux(t,v)(x, y)};
end

end
end

end
Find smallest m such that W [u, u,m] < 0 for some u and negative cycle K from matrix of
predecessors;
if not found then return No Blocking Chain;
else T = K ∩Aaux(x, y);

G = (N,T ); (x, y) = T ; Gaux(x, y) = aux.construct(G, (x, y));
foreach i ∈ N do foreach u ∈ V i do foreach v ∈ V i do
caux(u,v)(x, y) = greedyX(wi, y

i)− greedyX(wi, y
i − χu + χv);

∆ =
∑

i greedyX(wi,y
i)−

∑
i greedyX(wi,∅))

4|T | ;
foreach a ∈ Caux(x, y) do

if a involves a special vertex then
cauxa (x, y) = cauxa (x, y)−∆;

else
cauxa (x, y) = cauxa (x, y)− 2∆;

end
end
Pick a random special vertex s in Gaux(x, y);
d = BellmanFord(Gaux(x, y), s);
foreach e ∈ T do pT [e] = d[ve

+

e ];
return (T, pT );

Remark:. In the second phase, the algorithm focuses on network Ĝ = (N,T ), valua-
tions {ŵi}i∈N , and outcome T , as described in Corollary 5.6. Let {w̄i(Z) = wi(Z)−∆|Z|}
denote valuations obtained after a perturbation by ∆. The perturbation in the pay-
offs, corresponds to perturbing the cost of arcs in Caux(x, y). The new cost for an arc
(u, v) ∈ Caux(x, y), owned by agent i and involving a special vertex, is given by

f̄(y − χu + χv)− f̄(y) = w̄′i(y
i)− w̄′i(yi − χu + χv)

= w′i(y
i)−∆|T | − (w′i(y

i − χu + χv)−∆(|T | − 1))

= caux(u,v)(x, y)−∆,

(7)



where w̄′i is the M-concave function associated with w̄i, and {caux(u,v)(x, y)} denote the
costs associated with Caux before perturbation of the payoffs. An analogous result
(f̄(y − χu + χv)− f̄(y) = caux(u,v)(x, y)− 2∆) follows in the case where the arc does not in-
volve a special vertex. Phase two relies on these edge costs, to compute node potentials
(through BellmanFord). These potentials correspond to competitive equilibrium prices
in Ĝ = (N,T ) with new valuations, which by Corollary 5.6 are also equivalent to the
prices pT of the blocking chain.


