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Abstract

This study extends the literature on portfolio choice under prospect theory

preferences by introducing a two-period life cycle model, where the household

decides on optimal consumption and investment in a portfolio with one risk-free

and one risky asset. The optimal solution depends primarily on the household’s

choice of the present value of the consumption reference levels relative to the

present value of its endowment income. If the present value of the consumption

reference levels is set below the present value of endowment income, then the

household behaves in such a way to avoid relative losses in consumption in any

present or future state of nature (good or bad). As a result the degree of loss

aversion does not directly affect optimal consumption and risk taking activity.

However, it must be sufficiently high in order to rule out outcomes with relative

losses. On the other hand, if the present value of the consumption reference

levels is set exactly equal to the present value of the endowment income, i.e., the

household sets its reference levels such that they are in balance with its income,

then the household’s optimal consumption is the reference consumption in both

periods and the household will not invest in the risky asset. Finally, if the present

value of the household’s consumption reference levels is set above the present value

of its endowment income, then the household cannot avoid experiencing a relative

loss in consumption, either now or in the future. As a result, loss aversion directly

affects consumption and risky investment. Reference levels play a significant role

in consumption and risk taking activity. In most cases the household will “follow

the Joneses” if the reference levels are set equal to the consumption levels of the

Joneses. Independent of how consumption reference levels are set, being more

ambitious, i.e., increasing one’s reference levels, will result in less happiness. The

only case when this is not true is when reference levels increase with growing

income (and the present value of reference levels is set below the present value of

endowment income).

Keywords: prospect theory, loss aversion, consumption-savings decision, portfolio allo-

cation, happiness

JEL classification: G02, G11, E20



1 Introduction

In this paper we explore the factors that influence a household’s consumption and savings

decision, based on behavioral economics preferences. Households make decisions on how much

to consume today and how much to save for the future when, e.g., they retire. Savings are

the means of transferring consumption into the future and of having income for retirement

or the means of transferring future income to the present in order to be able to afford more

consumption today. Moreover, households do not only decide how much to save but also how

to allocate their savings into different types of assets. These decisions are made knowing that

the future is risky and uncertain.

Traditionally, the expected utility (EUT) framework has been used to model such be-

havior.1 This research will deviate from the EUT model and will explore a different type of

preferences. In particular, we will assume prospect theory preferences that were introduced

and developed by Kahneman and Tversky (1979) and Tversky and Kahneman (1992) and

that take into account also psychological aspects of households’ behavior. Prospect theory

can be characterized by the following properties. Decision makers under risk evaluate gains

and losses with respect to some reference level, rather than evaluating absolute values (of

their wealth or consumption). Households exhibit loss aversion, which means that they are

more sensitive to losses than to gains of the same magnitude. In addition, households display

risk aversion in the domain of gains but show risk appetite in the domain of losses, which is

described by an S-shaped value function that is concave in the domain of gains and convex

in the domain of losses.2 For a comprehensive overview on prospect theory see, e.g., Barberis

(2013) and DellaVigna (2009).

We address a number of issues on the savings behavior under prospect theory preferences

that have only partially been explored in the literature before. How do households decide

on consumption and portfolio decisions when faced with prospect theory type of preferences?

Do households have to be sufficiently loss averse to yield reasonable optimal solutions for

consumption and investment decisions? Does loss aversion affect consumption and portfolio

decisions? Do reference levels affect the households’ consumption, savings and portfolio choice

to transfer consumption into the future? If yes, how? Do households “follow the Joneses”,

(i.e., compare themselves to and follow neighbors or associates) when making consumption

and savings decisions?

There are many different types of reference points that can be considered in exploring the

savings behavior and portfolio choice. The first reference levels that were used are subsistence

levels of consumption (see, e.g., Stone, 1954 and Geary, 1951). Under such preferences,

households get utility from consumption in excess of a subsistence level. Individuals have to

1For original work in this area see Sandmo (1968, 1969) and Merton (1969, 1971).
2Another property, not included in this study, is that the probabilities assigned to the utility of the outcomes

are not objective but subjective (so-called decision weights), as people seem to underestimate large probabilities
and overestimate small probabilities.
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consume a certain minimal level irrespective of its price or the person’s income. The savings

and portfolio choice with subsistence consumption has recently been explored by Achury et

al. (2012). They use the Stone-Geary expected utility model to explain a number of observed

empirical facts such as why the rich have a higher savings rate, higher holdings of risky assets

relative to personal wealth and a higher consumption volatility than the poor.

Another commonly used reference dependent preference model is habit persistence. The

habit persistence model assumes that households derive utility from consumption relative to

a reference level that depends on past consumption levels. Habit persistence models have

been used in many applications in macroeconomics and finance and can to some extent ex-

plain, for instance, the equity premium puzzle and the behavior of asset returns (Abel, 1990;

Constantinides, 1990; Campbell and Cochrane, 1999), excess smoothness in consumption ex-

penditures (Lettau and Uhlig, 2000) and business cycles characteristics (Boldrin et al., 2001;

Christiano et al., 2005).

Reference levels can also be set by comparing one’s consumption levels to others (Falk

and Knell, 2004).3 According to the psychology literature, people can be governed by self-

enhancement and/or self-improvement motives. The former motive occurs when people want

to make themselves feel better by setting their references at low levels, possibly reflecting

the wealth of poorer people. However, people also place importance on the self-improvement

motive. Here people compare themselves with others who are more successful and as a result

set their reference levels high.

Many of the applications of prospect theory in portfolio selection assume that the reference

level is the investor’s return from investing all initial wealth into the risk-free asset (Barberis

and Huang, 2001; Gomes, 2005; Barberis and Xiong, 2009; Bernard and Ghossoub, 2010; He

and Zhou, 2011). Barberis et al. (2001), Berkelaar et al. (2004), Fortin and Hlouskova (2011,

2015) and Gomes (2005) use also a dynamic updating rule for the reference point. Future

utility, in one-period models, is derived from the excess return of the risky asset holdings.

One of the major findings of this literature is that investors may not invest in risky assets

even if its expected return is higher than the risk-free rate.

Some work has been devoted to exploring the consequences of reference dependent pref-

erences for inter-temporal two-period habit-persistence consumption decisions, when future

income is uncertain and when households are loss averse, see, e.g., Bowman et al., 1999. They

find that a household will resist reducing its consumption level when there is bad news about

future income. Furthermore, the resistance to reducing consumption with bad news is greater

than the resistance to increasing consumption in response to good news.

Koszegi and Rabin (2006) assume rational expectations in the formation of reference levels.

Assuming agents are more affected by news about current consumption than by news about

future consumption, they find that people would intend to overconsume today relative to

3For a literature review see Clark et al. (2008).
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their optimal plans. They would increase consumption right away when good news regarding

wealth arrives, but would postpone decreasing consumption when receiving bad news. Thus,

higher wealth reduces the painful impact of bad news, and as a result people save more for

precaution.

Van Bilsen et al. (2014) investigate optimal consumption and portfolio choice paths of a

loss averse household but with an endogenous reference level. They find that households strive

to protect themselves against consumption losses in order to avoid bad states of nature. They

attribute this behavior to loss aversion. Due to the dynamic nature of their set-up they can

investigate the effect of financial shocks and find that consumption choices adjust only slowly

to financial shocks and that welfare losses are substantial with suboptimal consumption and

portfolio selections.

Our research complements the work by Van Bilsen et al. (2014) in that it provides

additional insights as discussed below. We provide a closed-form solution to the inter-temporal

consumption and portfolio decision of a prospect theory household in a theoretical two-period

model, where uncertainty arises from the risky asset. We assume that the asset’s return follows

a Bernoulli distribution, i.e., there are two states of nature realizing with certain probabilities,

and that the household’s consumption reference levels are set exogenously. These reference

levels are compared with the household’s consumption levels and the household derives its

utility from the difference between its consumption and the reference level. Consuming above

the reference level means that the household incurs relative gains while consuming below

the reference level means that it incurs relative losses. It turns out that the consumption

reference levels (in both periods) as well as the loss aversion parameter are crucial in the

analysis. The solution depends on the household’s choice of the consumption reference levels,

more precisely, on the present value of the chosen reference levels relative to the present value

of the endowment income. Hence we have three different types of households with reference

levels below, equal to or above the income.

Our main results are the following. If the household sets its references levels such that

the present value is below the present value of its endowment income, then it behaves in such

a way that it avoids relative losses in any present or future state of nature (good or bad). So

optimal consumption is always above the reference level. This implies that the degree of loss

aversion does not directly affect optimal consumption and risk taking activity. However, loss

aversion must be sufficiently high in order to prevent relative losses. Further, the household

always invests in the risky asset. If, on the other hand, the household sets its references levels

such that the present value is equal to the present value of its endowment income, i.e., the

household completely balances reference levels and income, then the optimal consumption is

equal to the reference consumption in both periods. Also the household does not invest in the

risky asset in this case. Finally, if the household sets its reference levels such that the present

value is above the present value of its endowment income, then it cannot avoid relative losses
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at all times. Either in the first or in the second period (good or bad state of nature) the

household has to accept consuming below the reference level. This implies that loss aversion

directly affects consumption and investment in the risky asset. Investment in the risky asset

is again positive in this case. We look at various examples of how consumption reference

levels are set, including the case when households set their reference levels according to the

consumption of the “Joneses” (neighbors or associates) and examine what happens to the

implied optimal consumption. Mostly prospect theory households “follow the Joneses” in the

sense that their optimal consumption follows the Joneses’ consumption. Another interesting

result of the sensitivity analysis is that increasing one’s reference level, i.e., increasing one’s

targets and thus being more ambitious leads to less happiness.4 This is true for all three

types of households, i.e., independent of whether households set their consumption reference

levels below, equal to, or above the income.

The paper proceeds as follows. In the next section we describe the set-up of the model. In

section 3 we investigate the case where the households sets its reference levels such that the

present value is below the present value of its endowment income (low aspirations). Section 4

explores the case where the present value of consumption reference levels is exactly equal to

the present value of the household’s endowment income. Section 5 examines the case where

the household sets its reference levels such that the present value is above the present value of

its endowment income (high aspirations). Finally, we summarize and offer some concluding

remarks and future extensions.

2 Problem set-up

We consider a household that lives for two periods. In the first period it receives a non-

stochastic exogenous income (labor income, endowment income), Y1 > 0, which it can allocate

to current consumption, C1, risk-free investment, m, and risky investment, α, where the sum

of the risky and risk-free investment are savings S. Thus, in the first period

Y1 = C1 +m+ α = C1 + S (1)

We consider two assets, a risk-free asset with a net of the dollar return rf > 0 and a risky

asset with stochastic net of the dollar return r that yields rg in the good state of nature, which

occurs with probability p, and rb in the bad state of nature, which occurs with probability

1− p. We assume that −1 < rb < rf < rg, 0 < p < 1, and E(r) = p rg +(1− p)rb > rf . Thus,

in the second period the household consumes

C2i = Y2 + (1 + rf )m+ (1 + ri)α

4The term “happiness” is used to denote the indirect (optimal) utility.
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where Y2 ≥ 0 is the non-stochastic income of the household in the second period, which

can also be thought of as an exogenous government pension income. There are no liquidity

constraints that prevent the household from consuming any exogenous future income in the

first period, but consumption is not allowed to be negative in either period, so that it can

only partially borrow against uncertain future income. This means that risk-free savings, m,

can be negative to a certain extent. The value (1 + rf )m + (1 + ri)α represents the wealth

acquired from capital investment, i ∈ {b, g}. So, in the second period the household consumes

C2b in the bad state of nature and C2g in the good state of nature. Based on this and (1) the

consumption in the second period is

C2i = Y2 + (1 + rf )(Y1 − C1) + (ri − rf )α (2)

The household’s preferences are described by the following reference based utility function

U(C1, α) = V (C1 − C̄1) + δ V (C2 − C̄2) (3)

where C̄1 and C̄2 are exogenous consumption reference or comparison levels, such that 0 ≤

C̄1 < Y1 +
Y2

1+rf
and 0 ≤ C̄2 < (1 + rf )Y1 + Y2, i.e., Y1 +

Y2
1+rf

> max
{

C̄1,
C̄2

1+rf

}

, δ is the

discount factor, 0 < δ < 1, and V (·) is a prospect theory (S-shaped) value function defined as

V (Ci − C̄i) =















(Ci−C̄i)
1−γ

1−γ , Ci ≥ C̄i

−λ (C̄i−Ci)1−γ

1−γ , Ci < C̄i















(4)

for i = 1, 2. Parameter λ > 1 is the loss aversion parameter and γ ∈ (0, 1) is the parameter

determining the curvature of the utility function. If consumption is above the reference level

we talk about (relative) gains, if it is below the reference level we talk about (relative) losses.

The utility has a kink at the consumption reference level and it is steeper for losses than

for gains, i.e., a decrease in consumption is more severely penalized in the domain of losses

than in the domain of gains. Finally, the utility function is concave above the reference point

and convex below it. The household is thus risk averse in the domain of gains (i.e., above

the consumption reference level) and risk seeking in the domain of losses (i.e., below the

consumption reference level), see Figure 1.

The household maximizes the following expected utility as given by (3) and (4)

Max(C1,α) : E(U(C1, α)) = V (C1 − C̄1) + δ EV (C2 − C̄2)

such that : C1 ≥ 0, C2b ≥ 0, C2g ≥ 0 and α ≥ 0
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(relative) gains(relative) losses

reference point

Figure 1: Loss aversion (S-shaped) utility

Based on this and (2) the household’s maximization problem can be formulated as follows

Max(C1,α) : E(U(C1, α)) = V (C1 − C̄1) + δ EV
(

(1 + rf )(Y1 − C1) + (ri − rf )α+ Y2 − C̄2

)

such that : 0 ≤ C1 ≤ Y1 +
Y2

1+rf
−

rf−rb
1+rf

α,

0 ≤ α ≤
(1+rf )Y1+Y2

rf−rb

(5)

Note that the upper bound on C1 follows from C2b ≥ 0 and the upper bound on α follows from

the imposition of the upper bound on C1 being non-negative, i.e. Y1 +
Y2

1+rf
−

rf−rb
1+rf

α ≥ 0.5

The condition on α means that short sales are not allowed.6

5Imposing positive lower bounds on consumption in both periods (i.e., on C1, C2b and C2g), so that the
household does not “starve”, would not substantially change our results. In occurrences when the optimal
consumption hits zero now, it would hit the lower bound then. Thus, the behavioral implications of our
findings related to the sensitivity analysis and thus comparisons to others would not change.

6Fortin, Hlouskova and Tsigaris (2015) show that the assumption p >max
{

rf−rb
rg−rb

,
(rf−rb)

1−γ

(rf−rb)
1−γ+(rg−rf )1−γ

}

rules out short-selling if there is no non-negativity restriction on α. Note that E(r) > rf is equivalent to

p >
rf−rb
rg−rb

, so only E(r) > rf is not sufficient to rule out short sales (except in section 3).
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Before proceeding further, we introduce the following notation

Ω = (1 + rf )(Y1 − C̄1) + Y2 − C̄2

= (1 + rf )

[(

Y1 +
Y2

1 + rf

)

−

(

C̄1 +
C̄2

1 + rf

)]

(6)

Kγ =
(1− p)(rf − rb)

1−γ

p(rg − rf )1−γ
(7)

M =

(

δ(1 + rf ) p
rg − rb
rf − rb

)
1
γ rf − rb +K

1
γ

0 (rg − rf )

rg − rb
(8)

In addition notice that

K0 =
(1− p)(rf − rb)

p (rg − rf )
= Kγ

(

rf − rb
rg − rf

)γ

< 1

In the following analysis we consider three fundamentally different situations, which give

rise to profoundly different types of optimal consumption behavior. These situations are

characterized by how the household sets its consumption reference levels in relation to its

endowment income. Namely, whether the difference between the present value of total en-

dowment income and the present value of the sum of the consumption reference levels is

positive (Ω > 0), zero (Ω = 0), or negative (Ω < 0).7 The case when Ω is positive is charac-

teristic for households with low aspirations, while the case when Ω is negative is typical for

households with high aspirations. The case when Ω is zero is a special case, where the present

value of the household’s total endowment income is exactly equal to the present value of the

consumption reference levels.

In the formal analysis we split the household’s consumption decision problem (5) into

eight separate problems, (P1)–(P8), which differ in their respective domains, i.e., in their sets

of feasible solutions. These domains are specified by whether first and second period (in the

good and bad state of nature) consumption levels are above or below the respective reference

levels. This yields a total of eight combinations, see Appendix A. Households with a positive

Ω will operate on certain domains which differ from the domains on which households with a

negative Ω operate.

3 Low reference values relative to endowment income (Ω > 0)

We now consider the case when the household sets its consumption reference levels such that

the present value is below the present value of its endowment income, i.e., when Ω > 0. This

7Note that Ω denotes the difference between the present value of total endowment income and the present
value of the sum of the consumption reference levels multiplied by the gross return of a dollar investment in
the risk-free rate, see equation (6). Note, in addition, that future income and consumption reference levels are
discounted at the risk-free rate.
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is done when the household has low aspirations. To proceed with the analysis let us introduce

the following notation

λΩ≥0 =
Ω1−γ

δ(1 − p)(1 + rf )C̄
1−γ
2

[

(1 + rf + k2)
γ

(

1 +
rg − rf
rg − rb

C̄2

Ω

)1−γ

− (1 + rf +M)γ

]

=

(

1 + rf
k

+

(

1

Kγ

) 1
γ

)γ
(

Ω

C̄2

rg − rb
rg − rf

+ 1

)1−γ

−

(

1 + rf
k

+

(

1

Kγ

) 1
γ

+ 1

)γ
(

Ω

C̄2

rg − rb
rg − rf

)1−γ

(9)

We can now formulate the main result for the case when Ω > 0.

Proposition 1 Let Ω > 0 and λ > max
{

1
Kγ

, λΩ≥0,
(

M
1+rf

)γ}

. Then problem (5) obtains a

unique maximum at (C∗
1 , α

∗) where

C∗
1 = C̄1 +

Ω

1 + rf +M

= C̄1 +
1 + rf

1 + rf +M

[(

Y1 +
Y2

1 + rf

)

−

(

C̄1 +
C̄2

1 + rf

)]

> C̄1 (10)

α∗ =

(

1−K
1
γ

0

)

M

rf − rb +K
1
γ

0 (rg − rf )

(C∗
1 − C̄1) > 0 (11)

Proof. It follows directly from Lemma 1 in Appendix B.

When Ω is positive then aspirations are low, which should make it easier for a household

to reach and exceed its consumption comparison levels than when aspirations are high. If, in

addition, the utility is such that consumption below the reference levels is sufficiently penal-

ized, i.e., the loss aversion parameter is large enough, then we expect optimal consumption

to exceed its reference levels. This is indeed what we observe: optimal consumption levels

in both periods are strictly larger than their corresponding reference levels provided that the

household is sufficiently loss averse, i.e., C∗
1 > C̄1 and C∗

2g ≥ C∗
2b > C̄2, where

C∗
2g = C̄2 +

MΩ

(1 + rf +M)

(

1 +K
1
γ
γ

)

rg − rb
rf − rb

(12)

C∗
2b = C̄2 +

MΩ

(1 + rf +M)

(

1 +K
1
γ
γ

)

rg − rb
rf − rb

K
1
γ

0 (13)

Thus the optimal behavior is characterized by avoiding any relative losses to happen or, in

other words, the household’s aspirations are fully attained. We note further that optimal

investment in the risky asset is strictly positive, i.e., α∗ > 0, which implies that the house-

hold takes on risk in the financial market. Total savings, however, can be either positive or

8



negative.8

Although the existence of the solution does depend on the loss aversion parameter λ,

the solution itself, (C∗
1 , α

∗), does not directly depend on it. The reason for this is that the

household’s optimal solution is reached in problem (P1), where the solution is found in the

domain given by C1 ≥ C̄1, C2b ≥ C̄2 and C2g ≥ C̄2, i.e., both periods’ consumption levels

are above their consumption reference levels and thus the utility does not depend on the loss

aversion parameter λ (see Appendix A). However, for this to happen the household needs to

be sufficiently loss averse, namely λ > max
{

1
Kγ

, λΩ≥0,
(

M
1+rf

)γ}

. Hence, if the household

is sufficiently loss averse it will make choices that avoid any relative losses from occurring.

As the domains of all remaining problems (P2)–(P8) contain a relative loss, see Appendix

A, a sufficiently loss averse household will never select solutions from these problems. This

behavior is only possible, however, when the household does not set its goals (consumption

reference levels) too high with respect to its income, thus, when Ω is positive.9 Note, finally,

that problem (P1) is known from the studies on habit formation, where the consumption

habits are addictive and never fall below certain consumption targets (see, for example, Yu,

2015).

Table 1 summarizes the sensitivity results related to the solution presented in Proposition

1, so for a sufficiently loss averse household with low aspirations. In particular, we present

the changes of the first and second period optimal consumption, of the optimal investment in

the risky asset, of the first and second period consumption gap, of optimal savings10 and of

happiness (first row) with respect to changes in the loss aversion parameter and the first and

second period consumption reference levels (first column). By “consumption gap” we mean

the distance between the optimal consumption and its reference level, |C∗
i − C̄i|, i = 1, 2, and

we use “happiness” to denote the household’s indirect utility (i.e., its value at the optimum).

We also use “relative consumption” to denote the difference between optimal consumption

and the reference level, which is closely related to the previously defined consumption gap.

The gap is always positive while relative consumption can be either positive or negative. Both

definitions coincide if optimal consumption is above the reference level.

Since the solution does not explicitly depend on the loss aversion parameter, as discussed

above, an exogenous increase in the loss aversion parameter, keeping everything else constant,

does not change the solution or the utility at the solution (happiness).

An exogenous increase in the first period consumption reference level, keeping everything

else constant, will increase the first period optimal consumption, decrease risky asset hold-

ings and also decrease savings. As less income is transferred to the second period we would

8The assumption required for S∗ > 0 is M(Y1− C̄1) > (Y2− C̄2). This breaks down to simpler formulations
in special cases.

9When Ω is negative, the household cannot totally avoid relative losses. It will have to face relative losses
in the first or second period, or in the good or bad state of nature.

10The results for optimal savings follow from
dC∗

1

dC̄1
and Y1 = C∗

1 + S∗.
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dC∗
1 dC∗

2g dC∗
2b dα∗ d(C∗

1 − C̄1) d(C∗
2g − C̄2) d(C∗

2b − C̄2) dS∗ d(E(U(C∗
1 , α

∗)))

dλ = 0 = 0 = 0 = 0 – – – = 0 = 0
dC̄1 > 0 < 0 < 0 < 0 < 0 – – < 0 < 0
dC̄2 < 0 ≶ 0 > 0 < 0 – < 0 < 0 > 0 < 0

Table 1: Sensitivity results when aspirations are low (Ω > 0)

expect consumption to decrease in the second period. This is what we indeed observe: the

second period consumption in either state of nature will fall with an increase in the first

period consumption reference level. Even though optimal first period consumption increases

in response to an exogenous increase in the first period consumption reference level, rela-

tive optimal consumption in the first period, i.e., the amount by which the reference level is

exceeded, decreases. This means that the extent of the increase in the first period consump-

tion reference level is not fully matched by the resulting increase in the first period optimal

consumption. In summary, if the household increases the first period consumption reference

level it will reduce the growth rate of consumption. Finally, an increase of the first period

consumption reference level decreases the happiness level.

An increase in the second period consumption reference level, keeping everything else

constant, will decrease the first period optimal consumption and risky asset holdings but

increase both total savings and the risk-free investment. However, the increase of the risk-

free investment is not sufficient to offset the reduction in risky assets in such a way that

second period consumption will increase in both states of nature. Only in the bad state of

nature optimal consumption in the second period will increase. In the good state of nature

the response can be either an increase or a decrease of consumption. Probably the reduced

risky investment – and hence the reduced potential to achieve high returns – is the reason why

this is the case. Relative optimal consumption in the second period decreases if the second

period consumption reference level is increased, which is in analogy to the situation when the

first period consumption level is increased. The happiness level is negatively related to the

second period consumption reference level, as it was to the first period consumption reference

level. So if a household is “more ambitious” (i.e., if it increases its consumption reference

level), in either the first or the second period, its happiness level will decrease.

The fact that consumption reference levels are exogenous gives us the opportunity to

present some interesting examples. Consider, for instance, the case when the first period

reference level is equal to the first period consumption level of other people that the household

is associated with, i.e., the household compares itself to neighbors or peers. Then, if the

first period consumption level of the other people increases, this household will respond by

increasing its first period reference consumption level and because of this it will increase its

first period optimal consumption level, reduce risk taking and reduce its future consumption

in both states of nature. Hence, the household’s behavior is one that “follows the Joneses”
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(i.e., the neighbors or peers the household wants to compare itself to).11 In addition, the gap

between the household’s first period consumption and its consumption reference level narrows

as the consumption level of the others increases. On the other hand, let the household’s second

period reference level be equal to the expected second period consumption level of other

associates. Then, if the household expects the other people to have a higher expected future

consumption, it will increase its second period consumption reference level, which will reduce

its first period consumption, reduce risk taking but increase risk-free investment leading to an

increase in consumption in the second period in the bad state of nature but not necessarily

in the good state of nature. Here it is not clear that the household follows the Joneses in

the second period, even when its first period consumption is reduced to achieve an increase

in future consumption like the household’s associates. However, the consumption gap in the

second period declines in both states of nature when the second period consumption reference

increases, bringing closer to the reference the consumption levels in the second period.

In what follows we will refer to “following the Joneses” in the first period when the

increase (or decrease) of the first period consumption of the Joneses (a reference household)

impacts this household such that its first period consumption will change in the same way

as the one of the Joneses. I.e., it will increase, if the first period consumption of the Joneses

increased and decrease if the first period consumption of the Joneses decreased. In our set-up

this works in the way that the household adjusts its consumption reference level according

to what the Joneses do. So it will increase its first period consumption reference level if the

Joneses increase their first period consumption. In addition, we will refer to the “following

the Joneses” in the second period when the increase (or decrease) of the expected second

period consumption of the Joneses impacts the second period expected consumption (of the

household under considerations) such that it will change in the same way as that of the

Joneses. As before, the household will increase its second period consumption reference level

if the Joneses increase their second period expected consumption. So the idea of “following

the Joneses” is to introduce external preferences into the household’s behavior. Based on this

terminology we can say that a sufficiently loss averse household with low aspirations follows

the Joneses in the first period but not necessarily in the second period.

If a household sets its reference levels according to the consumption of richer peers (the

rich Joneses) who consume at higher levels and wants to catch up by increasing its reference

levels, then this will decrease its happiness. If, on the other hand, a household compares itself

to poorer peers (the poor Joneses) that consume at lower levels and wants to adapt to the

others by decreasing its reference levels, then this will increase its happiness. So comparing

yourself to richer people makes you less happy while comparing yourself to poorer people

makes you happier.

11See Clark, Frijters and Shields, (2008).

11



Some examples of reference consumption levels for Ω > 0

In the following we present some additional interesting examples of reference consumption

levels C̄1 and C̄2.

Example 1 (Merton type expected utility): C̄1 = C̄2 = 0

A special case embedded in this behavioral study is the traditional expected utility (EUT),

where C̄1 = C̄2 = 0 and thus V (Ci) ≡
C1−γ

i
1−γ for C1, C2 ≥ 0. In this case we solve problem

(P1) and the solution is then identical to (10) and (11) for the prospect theory utility with

C̄1 = C̄2 = 0. Thus, the optimal consumption in the first period is

(C∗
1 )

EUT =
1 + rf

1 + rf +M

(

Y1 +
Y2

1 + rf

)

> 0

Note that in this case ΩEUT > Ω > 0, where Ω is related to a prospect theory (PT) household

and we assume that the PT household has at least one consumption reference level strictly

positive, i.e., either C̄1 > 0 or C̄2 > 0, otherwise it boils down to the expected utility case.

EUT optimal consumption is proportional to the present value of endowment income, where

the factor of proportionality, representing the marginal propensity to consume out of the

present value of total income, is less than unity. This marginal propensity to consume (out

of the present value of total income) is the same as the one under PT preferences, assuming

the curvature parameter γ remains unchanged.

In addition,

(α∗)EUT =

(

1−K
1
γ

0

)

M

rf − rb +K
1
γ

0 (rg − rf )

(C∗
1 )

EUT > 0

and thus the household’s investment in the risky asset is also proportional to the present value

of endowment income.12 However, the EUT household will always invest in the risky asset,

which is not necessarily the case for the PT household when Ω = 0 and thus it will not invest

in the risky financial market. The case when Ω = 0 is discussed in section 4. Note that for

the EUT household the savings, (S∗)EUT = Y1 − (C∗
1 )

EUT , are positive when MY1 > Y2, in

which case the household transfers some of its first period income into the second period.

Example 2 (comparison to poorer peers): C̄1 +
C̄2

1+rf
= Y P

1 +
Y P
2

1+rf
< Y1 +

Y2
1+rf

12In comparing optimal consumption and risky asset holdings between the two models one has to be careful
and remember that the types of utility functions suggested by these models are different. For example, the EUT
model implies a constant relative risk aversion, which is equal to γ, while the PT utility shows a decreasing
relative risk aversion, which is equal to γC1/(C1 − C̄1) for C1 6= C̄1 and γC2/(C2 − C̄2) for C2 6= C̄2. In
addition, the relative risk aversion for the EUT model is restricted to be below one (as a consequence from
our restriction on γ, which states 0 < γ < 1), while it has sometimes empirically been found to be larger than
one (see Ahsan and Tsigaris, 2009, who provide some empirical examples).

12



In this situation the household with income levels Y1 and Y2 sets its first and second period

consumption reference levels such that its present value of total reference consumption is equal

to the present value of the endowment income stream of some poorer household. By a poorer

household we mean a household whose total discounted endowment income is below the total

discounted endowment income of this household. Namely, Y P
1 +

Y P
2

1+rf
< Y1 +

Y2
1+rf

, where

Y P
1 and Y P

2 are the first and the second period income levels of the poorer household such

that Y P
1 ≥ 0 and Y P

2 ≥ 0. In this case Ω represents the household’s wealth net of the wealth

of the poorer household, i.e., Ω = (1 + rf )
[

Y1 +
Y2

1+rf
−
(

Y P
1 +

Y P
2

1+rf

)]

> 0. In other words,

less ambitious households place themselves into the comfort zone by comparing themselves to

peers with a smaller wealth level. The impact of changes in the poorer household’s income on

this household’s consumption and investment behavior were discussed previously as examples

of changes in the reference levels. Note that the EUT model, example 1, is observationally

equivalent to households who compare themselves to people that have no endowment income,

i.e., Y P
1 = Y P

2 = 0.

Example 3 (consumption overreaction to income): C̄1 = C̄+cY1, C̄2 = (1+rf )C̄+cY2

where C̄ ∈
[

−cmin
{

Y1,
Y2

1+rf

}

, 1−c
2

(

Y1 +
Y2

1+rf

))

and c ∈ (0, 1)

In this case, the consumption reference levels are set such that one part, C̄ or (1 + rf )C̄,

is independent of the household’s current income and the remaining part is a fraction of its

respective income.13 In order to satisfy the Ω = (1 − c) ((1 + rf )Y1 + Y2) − 2(1 + rf )C̄ > 0

assumption we require C̄ < 1−c
2

(

Y1 +
Y2

1+rf

)

. In addition we assume C̄ ≥ −cY1 such that

C̄1 ≥ 0 and we assume C̄ ≥ − c
1+rf

Y2 such that C̄2 ≥ 0. In this model the household increases

reference consumption levels if its endowment income increases, so aspirations increase with

growing income. The optimal first period consumption and investment in the risky asset are

C∗
1 =

M − (1 + rf )

1 + rf +M
C̄ +

1 + rf + cM

1 + rf +M
Y1 +

1− c

1 + rf +M
Y2 > C̄1 ,

α∗ =

(

1−K
1
γ

0

)

M

rf − rb +K
1
γ

0 (rg − rf )

(C∗
1 − C̄1) > 0

Note that now an increase in the first period income has a larger effect on optimal consumption

than in the case when the first period reference level is independent of income. The reason

why marginal propensity to consume is larger is that two effects are operating. First, the

household increases consumption because of the increase in income and second, this effect

is reinforced with an increase in the first period reference level. This situation can thus be

seen as a consumption overreaction to current income changes. Note, in addition, that the

13All the statements made for example 3 would not change qualitatively if one used the same exogenous
part of the reference level in both periods (C̄1 = C̄ + cY1, C̄2 = C̄ + cY2), different fractions of income in the
two periods (C̄1 = C̄ + c1Y1, C̄2 = (1 + rf )C̄ + c2Y2) or the same exogenous part of the reference level and
different fractions of income (C̄1 = C̄ + c1Y1, C̄2 = C̄ + c2Y2).
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marginal propensity to consume (out of the first period income) is less than unity. Risky

investment increases with an increase in the first period income but not as much as it would

without this dependency. An increase in the second period income has similar effects. First,

current period consumption increases but to a lower degree than in the independency case.

Second, investment in the risky asset also increases, and again to a smaller extent than in the

independency case.

If reference levels were set in this way households would be happier with an increase in

the reference level if driven (only) by an increase in current period income. Households would

be less happy, however, if the reference level was increased by a factor that is independent of

the income. This situation is different from the case when reference levels are independent

of income, where an increase in the reference level always decreases happiness. So now an

increasing reference point can have either a positive or a negative effect on the household’s

happiness, depending on the source of the increase.

Example 4 (risky asset overreaction to income): C̄1 = C̄ − cY1, C̄2 = (1 + rf )C̄ − cY2

where C̄ ∈
[

cmax
{

Y1,
Y2

1+rf

}

, 1+c
2

(

Y1 +
Y2

1+rf

))

and c ∈ (0, 1)

This is the opposite of the previous example with the household reducing the first (second)

period consumption reference level as its first (second) period income increases. Hence the

reference levels depend again partly on income and partly on a factor independent of income

(C̄ or (1 + rf )C̄). For Ω > 0 we assume that C̄ < 1+c
2

(

Y1 +
Y2

1+rf

)

, and to satisfy the

nonnegativity constraints on C̄1 and C̄2 we require C̄ ≥ cY1 and C̄ ≥ c
1+rf

Y2. The optimal

solution is

C∗
1 =

M − (1 + rf )

1 + rf +M
C̄ +

1 + rf − cM

1 + rf +M
Y1 +

1 + c

1 + rf +M
Y2 > C̄1 ,

α∗ =

(

1−K
1
γ

0

)

M

rf − rb +K
1
γ

0 (rg − rf )

(C∗
1 − C̄1) > 0

In this case the impact from a change in current income on optimal current consumption is

smaller than in the case when the first period reference level is independent of income. This

same impact is also smaller than in the previous example, because the increase in current

income reduces the household’s first period reference level. This indirect effect of current

income on current consumption is negative and would have to be smaller in absolute value

than the direct effect (which is positive) to make first period consumption a normal good.14

Risky investment increases with an increase in current income, and it does so by a larger

degree than when the reference level is independent of income. Hence, the household does

not overreact with respect to current consumption, as in the previous example, but with

14This would be the case, i.e.,
dC∗

1

dY1
> 0, if c <

1+rf
M

.
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respect to investment in the risky asset. We call this a risky asset overreaction to current

income changes.

Contrary to the previous example, and similar to cases when the reference levels are

independent of income, the increase of reference levels driven (only) by a decrease of the

income decreases the happiness level, which decreases also if the reference level is increased

by a factor that is independent of the income. So now an increasing reference point will

always have a negative effect on the household’s happiness, independent of the source of the

increase.

4 Balanced reference values relative to endowment income

(Ω = 0)

This case describes the situation when the household adjusts its consumption reference levels

such that they are completely in balance with its total income. In other words, the household’s

present value of endowment income matches exactly the discounted sum of its first and second

period reference consumption levels, i.e., Y1 + Y2
1+rf

= C̄1 + C̄2
1+rf

. This occurs when the

household’s goal is to achieve exactly what it can afford based on its endowment income

stream. In this case the household cannot set its reference consumption levels independently

in the first and second periods. It always has to balance the two targets in such a way that

their sum will exactly match the total endowment (after discounting). This means that one

reference level will be a function of the other, yielding

C̄1 = Y1 +
Y2 − C̄2

1 + rf
or

C̄2 = (1 + rf ) (Y1 − C̄1) + Y2

Depending on how one looks at it, the household either decides on its second period reference

level and sets the first period reference level accordingly, or it sets the first period reference

level and the second period reference level follows. In the latter case the household’s second

period consumption reference level will be equal to the sum of the second period income

and the amount by which the first period income exceeds consuming at the reference level,

transferred (through the risk-free asset) to the second period.

The dependence between the two reference levels implies that if the household, for some

reason, increases its first period reference level by some given amount then it has to decrease

the second period reference level by (1 + rf ) times this amount, i.e., by the same amount

transferred to second period value terms. If, on the other hand, the household increases

the second period reference level by some amount then it has to decrease its first period

reference level by 1/(1 + rf ) times this amount, i.e., by the same amount discounted to the

first period. The above definitions of the two reference levels together with the upper limits
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on the reference levels given in the problem set-up imply that the reference levels are bound

to be strictly positive, i.e., C̄1 > 0 and C̄2 > 0.

The following proposition presents the household’s optimal choice and states the required

assumptions when reference levels are balanced.

Proposition 2 Let Ω = 0 and λ > max

{(

1+rf
k +

(

1
Kγ

)
1
γ

)γ

,
(

M
1+rf

)γ
}

. Then problem (5)

obtains a unique maximum at (C∗
1 = C̄1, α

∗ = 0).

Proof. It follows directly from Lemma 1 in Appendix B.

First note that the household has to be sufficiently loss averse in order to make its optimal

choice. In fact the lower bounds on the loss aversion parameter are similar to the case when

the reference levels are low (Ω > 0), adjusted for the fact that Ω = 0.15

If the household is sufficiently loss averse then the first period optimal consumption is

exactly equal to the first period reference consumption, C∗
1 = C̄1. In addition, the household

does not invest in the risky asset, α∗ = 0, even though the expected return of the risky asset

exceeds the risk-free return. This is a major difference with respect to the traditional expected

utility model, where the household will always invest in the risky asset if the expected return

of risky asset is greater than the risk-free asset. Note, in addition (see equations (12) and

(13)), that also the second period optimal consumption in both states corresponds to the

second period reference consumption, namely, C∗
2g = C∗

2b = C̄2. The household may still

transfer part of its income from the first period to the second period, or vice versa, in order

to optimize its consumption path, but it will consume exactly at its reference level in both

periods. This is a very particular situation.

In the light of this solution the above restriction that both reference levels must be strictly

positive makes also sense from an economic point of view: assuming that a household lives for

two periods it seems reasonable to require that its consumption is non-zero in both periods,

which is guaranteed by C∗
1 = C̄1 > 0 and C∗

2g = C∗
2g = C̄2 > 0. It can easily be seen that

the savings, S∗ = m∗ = Y1 − C̄1, are strictly positive if the consumption reference in the first

period is below the first period income, i.e., when C̄1 < Y1, and thus the household wants

to transfer some of its first period income into the second period. To do this the household

will only invest in the risk-free asset and will consume in the second (e.g., retirement) period

the amount of (1 + rf )(Y1 − C̄1) plus any exogenous future income Y2. On the other hand,

savings are negative if the consumption reference in the first period is above the first period

income, i.e., when C̄1 > Y1. In this case the household will transfer some part of its second

period income, namely Y2 − C̄2, into its first period and thus consume in the first period the

amount Y2−C̄2
1+rf

+ Y1.

15Two of the previous lower bounds on the loss aversion parameter are now discarded as they are always
smaller than other lower bounds included in the proposition.
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We summarize the results on the sensitivity analysis related to the solution presented

in Proposition 2 in Table 2. It presents the changes of the first and second period optimal

consumption, of the optimal investment in the risky asset, of the consumption gap in the first

and second period, of optimal savings and of happiness (first row) with respect to changes

in the loss aversion parameter and the first and second period consumption reference levels

(first column).

dC∗

1 dC∗

2g dC∗

2b dα∗ d(C∗

1 − C̄1) d(C∗

2g − C̄2) d(C∗

2b − C̄2) dS∗ d(E(U(C∗

1 , α
∗)))

dλ 0 0 0 0 0 0 0 0 0
dC̄1 1 −(1 + rf ) −(1 + rf ) 0 0 – – -1 0
dC̄2 − 1

1+rf
1 1 0 – 0 0 1

1+rf
0

Table 2: Sensitivity results when aspirations are balanced (Ω = 0)

Similarly as for households with low reference levels an exogenous increase in the loss

aversion parameter, keeping everything else constant, does not affect the solution. Note that

now (Ω = 0) the household cannot set its first and second period reference levels indepen-

dently from each other. So if we want to analyze the effect of an exogenous increase in the

first period consumption reference level, for instance, we also have to consider the result-

ing change (a decrease) in the second period consumption reference level. Taking this into

consideration, an increase in the first period consumption reference will increase first period

optimal consumption, will not affect risky asset holdings (they are always equal to zero) and

will decrease (risk-free) savings. As less income is transferred to the second period, future

consumption will in fact decrease in both states of nature. Following the same argument,

an increase in the second period consumption reference level will increase the second period

optimal consumption and reduce the first period consumption, since more (risk-free) savings

have to be transferred to the second period. The consumption gap is equal to zero in both

periods, so it is not affected by a change in either of the two consumption reference levels.

It can easily be seen that the indirect utility is not affected by either of the two consump-

tion reference levels nor is it affected by the degree of loss aversion (as long as the household

is sufficiently loss averse). I.e., the household’s level of happiness will be insensitive to an

increase of the (first or second period) consumption reference level as well as to any changes

of the degree of loss aversion.

Continuing our following the Joneses example (where the household sets its reference

consumption level according to its neighbor’s consumption), the household actually mimics

the Joneses behavior in the first or the second period, but not necessarily in both periods.

If this household sets its first period reference level according to the Joneses then C∗
1 =

C̄1 = C∗
1,Joneses, so the optimal first period consumption levels of this household and of

the Joneses will be identical, and this household will follow the Joneses in the first period.
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Since the two reference levels are tied together, however, this also means that C∗
2 = C̄2 =

(1 + rf )(Y1 − C∗
1,Joneses) + Y2, so this household’s reaction in the second period will be to

decrease (increase) its optimal consumption provided the Joneses increased (decreased) their

consumption in the first period. If, on the other hand, this household sets its second period

reference level according to the Joneses, it mimics the Joneses in the second period in the

following sense: it consumes exactly at the expected optimal consumption of the Joneses,

namely, C∗
2 = C̄2 = E(C∗

2,Joneses), so this household will follow the Joneses in the second

period. Again, since the reference levels are not independent, this means at the same time

that C̄1 = Y1 + (Y2 − E(C∗
2,Joneses))/(1 + rf ) and hence the household’s reaction in the

first period would be to decrease (increase) its optimal consumption provided the Joneses

increase (decrease) their expected optimal consumption in the second period. In summary,

our results imply that the balanced household follows the Joneses either in the first or in the

second period but not in both, provided that the Joneses change their first and second period

consumption in the same direction, i.e, increase – or alternatively decrease – their (expected)

optimal consumption in both periods.

Some examples of reference consumption levels for Ω = 0

In the following we present some examples worth mentioning for the balanced household.

Example 5: C̄1 = Y1 and C̄2 = Y2

This situation occurs when the household sets its consumption reference levels equal to its

respective incomes in both periods. In this case the household will invest neither in the risky

asset nor in the risk-free asset, so no income is transferred to enable a larger future or current

consumption. The household will totally consume its first period income in the first period

and its second period income in the second period. Thus, households that belong to this

category do not save or borrow anything and rely exclusively on their exogenous income to

consume.

Example 6 (status quo): C̄2 = (1 + rf )(Y1 − C̄1) and Y2 = 0

In this case, the second period consumption reference level is set equal to the gross return

of investing the first period endowment income net of the first period consumption reference

level which can be considered as the counterpart to reference levels in one-period models,

which are equal to the gross return from investing all initial wealth into the risk-free asset.16

In our case the initial wealth would correspond to Y1 − C̄1. In addition, Y2 = 0, i.e., the

household does not receive any exogenous second period income (as in one-period models).

16See Hlouskova and Tsigaris (2012).
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5 High reference values relative to endowment income (Ω < 0)

Now we consider the case when the household sets its consumption reference levels such that

the present value is above the present value of its endowment income. This is done when the

household has high aspirations. Let us first introduce the following notation

M1(λ) = k

[

λ
1
γ −

(

1

Kγ

)
1
γ

]

(14)

c̃P2 =
(rg − rb)(−Ω)

(rg − rf )C̄2
(15)

C̄P2
2 =

rg − rb
rf − rb

(

(1 + rf )
(

Y1 − C̄1

)

+ Y2

)

(16)

δ+ =
1

1− p

[

rg − rf
(1 + rf )(rg − rb)

]1−γ

(17)

k =

[

δ(1 + rf )(1− p)

(

rg − rb
rg − rf

)1−γ
] 1

γ

(18)

k2 =

[

δ(1 + rf )p

(

rg − rb
rf − rb

)1−γ
]

1
γ

(19)

Note that M1(λ) is an increasing function in λ and if λ ≥ 1
Kγ

then M1(λ) ≥ 0. A simple

derivation shows that λ >
1+rf
k +

(

1
Kγ

)
1
γ
is sufficient for M1(λ) > 1 + rf . Note in addition

that for C̄2 < C̄P2
2 is c̃P2 < 1.

We introduce an additional notation

λ̂ =









k2

(

1 +K
1
γ
γ

)

1 + rf









γ

=









k

(

1 +
(

1
Kγ

)
1
γ

)

1 + rf









γ

(20)

λΩ<0
1 =







1+rf
k +

(

1
Kγ

) 1
γ

1− c̃P2







γ

if C̄2 < C̄P2
2 (21)

λΩ<0
2 = λ̂





C̄1

Y1 +
Y2−C̄2
1+rf





γ

(22)

λ̃Ω<0 =
1

p





1

δ

(

Y1 − C̄1 +
Y2

1+rf

C̄2

)1−γ

− (1− p)
(

1− c̃P2
)

λΩ<0
1



 if C̄2 < C̄P2
2 (23)
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The following proposition presents the household’s optimal choice and states the required

assumptions for high reference values relative to endowment income.

Proposition 3 Let Ω < 0, C̄2 < C̄P2
2 and λ > max

{

λΩ<0
1 , λΩ<0

2 , λ̃Ω<0
}

. Then the following

holds

C∗
1 =























CP2
1 = C̄1 +

−Ω
M1(λ)−1−rf

> C̄1 if δ ≤ δ+

0 < CP5
1 =

(

Y1+
Y2−C̄2
1+rf

)

λ
1
γ −C̄1λ̂

1
γ

λ
1
γ −λ̂

1
γ

< C̄1 if δ > δ+























(24)

α∗ =































αP2 =

(

(

1
K0

) 1
γ
+λ

1
γ

)

k

rg−rf
(C∗

1 − C̄1) > 0 if δ ≤ δ+

αP5 =
1−K

1
γ
0

rf−rb+K
1
γ
0 (rg−rf )

λ̂
1
γ

λ
1
γ −λ̂

1
γ
(−Ω) > 0 if δ > δ+































(25)

Proof. See Appendix C.

Proposition 3 is derived for a relatively low17 second period reference level, C̄2 < C̄P2
2 , and

for a sufficiently loss averse household, λ ≥ max
{

λΩ<0
1 , λΩ<0

2 , λ̃Ω<0
}

. The fact that Ω < 0

implies that the household’s aspirations are high, which should make it more difficult to exceed

the consumption reference levels than when the household’s aspirations are low. So, even if

the utility is such that consumption below the reference level is heavily penalized (large values

of the loss aversion parameter λ) we cannot expect optimal consumption levels to exceed their

reference levels at all times. This is indeed what we observe: in the first solution the second

period optimal consumption in the bad state of nature is below its reference level, while in

the second solution the first period optimal consumption is below its reference level. The first

solution is denoted by superscript P2, which refers to problem (P2) where the solution was

reached, and the second solution is denoted by superscript P5, which refers to problem (P5)

where the solution was reached, see Appendix A. Thus, when the household’s aspirations are

set above the present value of the endowment income, a relative loss (either in the first or

second period) cannot be avoided.

Unlike households with low aspirations, we now have two different solutions, denoted
(

CP2
1 , αP2

)

and
(

CP5
1 , αP5

)

,18 and which one applies depends on the rate δ at which future

utility is discounted. The first solution applies to households with lower discount factors

17Note that households cannot set arbitrarily high reference levels for a given endowment income.
18Again, for the proof of the household’s consumption decision we split problem (5) into eight separate

problems, (P1)–(P8), which differ in the respective domains of feasible solutions. These domains are specified
by whether (first and second period, good and bad state of nature) consumption is above or below the respective
reference level. See Appendix A.
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(δ ≤ δ+), which put relatively more emphasis on the well-being in the present and near

future and thus display a high time preference, while the second applies to households with

higher discount factors (δ > δ+), which care relatively more about the distant future and

discount future utility at a lower rate and thus show a low time preference. The threshold

value δ+ separating the two types is a function of the rates rf , rg and rb, of the probability

of the good state of nature p and of the curvature parameter γ, see equation (17). Note that

it is increasing in p and γ while it is decreasing in rf , all other things equal. The restriction

δ > δ+ only yields feasible candidates for the discount factor, which is bound to be below

one, if δ+ < 1. This is the case when the probability of the good state is not too large.19

We will discuss the two solutions separately starting with
(

CP2
1 , αP2

)

. First note that the

optimal consumption in the first period is strictly above the consumption reference level. As

the solution
(

CP2
1 , αP2

)

is reached in problem (P2) the optimal consumption in the second

period is above the reference level C̄2 in the good state of nature, CP2
2g > C̄2, and below C̄2

in the bad state of nature, CP2
2b < C̄2. Thus, the household cannot avoid a relative loss if the

bad state of nature materializes. Further, the optimal investment in the risky asset is strictly

positive. Like in the case for households with low aspirations, savings can be either positive

or negative in general.20 If, however, the household’s consumption reference level is equal to

or above its income in the first period21 then optimal savings are always negative, i.e., the

household will transfer future income to the present period in order to satisfy its optimal

consumption path. Given that optimal risky investment is positive, borrowing in the risk-free

market has to be sufficiently large then, in order to produce negative savings. In fact, in this

situation of negative savings the household will invest in the risky asset in order to (partially)

fund the borrowing and thus the income transfer from the second to the first period. If in one

period the household’s income is below the consumption reference level and vice versa in the

other period, then the answer to the question whether optimal savings are positive depends

(also) on the loss aversion parameter. Keeping everything else constant, a larger loss aversion

parameter will increase savings (see below). Note that the optimal savings of a household

with low aspirations did not depend on the loss aversion parameter.

For CP2
1 and αP2 given by (24) and (25) the following holds:

(i) limλ→∞CP2
1 = C̄1

(ii) limλ→∞CP2
2g = C̄2

(iii) limλ→∞CP2
2b =

rf−rb
rg−rf

(

C̄P2
2 − C̄2

)

< C̄2

19More precisely, p < 1−
(

1
1+rf

rg−rf
rg−rb

)1−γ

is needed in order to guarantee δ+ < 1. Note that there is always

a solution for p as the term in the brackets is smaller than one.
20The assumption required for S∗ > 0 is M1(λ)(Y1 − C̄1) > −(Y2 − C̄2).
21This condition is sufficient but not necessary.
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(iv) limλ→∞ αP2 = −Ω
rg−rf

≤ αP2

The following table summarizes the results on the sensitivity analysis of optimal consump-

tion in both periods, optimal risky investment, the consumption gap in both periods, optimal

savings and happiness (first row) with respect to the loss aversion parameter λ and the first

and second period consumption reference levels C̄1 and C̄2 (first column).

dCP2
1 dCP2

2g dCP2
2b dαP2 d(CP2

1 − C̄1) d(CP2
2g − C̄2) d(C̄2 − CP2

2b ) dSP2 dE(U(CP2
1 , αP2))

dλ < 0 < 0 > 0 < 0 < 0 < 0 < 0 > 0 < 0
dC̄1 > 0 > 0 < 0 > 0 > 0 – – < 0 < 0
dC̄2 > 0 > 0 < 0 > 0 – > 0 > 0 < 0 < 0

Table 3: Sensitivity results when aspirations are high (Ω < 0): solution
(

CP2
1 , αP2

)

As opposed to households with low aspirations the optimal consumption and optimal

investment in the risky asset of households with high aspirations are sensitive with respect to

the loss aversion parameter λ. An exogenous increase in the loss aversion parameter, keeping

everything else constant, will decrease the first and the second period optimal consumption in

the good state of nature, decrease the investment in the risky asset, increase savings and thus

increase the investment in the risk-free asset. In addition, increased loss aversion decreases

the consumption gap in both periods. Also the happiness level decreases with increasing loss

aversion, i.e., more loss averse households are less happy than less loss averse households.

An exogenous increase in the first period consumption reference level, keeping everything

else constant, will increase the first period optimal consumption as well as the second period

optimal consumption in the good state (which is above the consumption reference level) and

the investment in the risky asset, but will decrease the second period optimal consumption

in the bad state (which is below the consumption reference level). At the same time the

household will decrease optimal savings, which actually implies the observed decrease in

optimal consumption in bad state of nature. Not only does optimal consumption rise in the

first period and in the good state in the second period, but also the corresponding relative

optimal consumption rises. Note that the household’s happiness decreases with an increasing

consumption reference level, i.e., more ambitious households are less happy than less ambitious

ones. An exogenous increase in the second period consumption reference level yields exactly

the same sensitivities in terms of signs as an increase in the first period consumption reference

level.

Continuing our previous example, where the household compares its optimal consumption

to its neighbor’s consumption level we see that the household again follows the Joneses in

the first period.22 However, contrary to the case when Ω > 0 the household does not reduce

the consumption gap but widens this gap. This means that the household increases its

22Assuming the household increases its first period reference level as a response to an increase of the Joneses’
first period consumption, it will also increase its optimal consumption in the first period.
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consumption even more than the Joneses do. A household with high aspirations reacts thus

more intensely than one with low aspirations, even though both follow the Joneses.

As in the case when Ω > 0, it is not clear whether the household follows the Joneses in

the second period, since its second period consumption in the good and the bad states of

nature responds in opposite directions to the change in its second period reference level, and

thus it is not clear whether the expected household’s consumption will reflect an increase or

a decrease of consumption. In addition in the second period, in both the good and the bad

states of nature, the consumption gap will widen in response to an increase in the second

period reference level. This, however, implies a decrease of the optimal consumption when it

is below the reference level, which is the case in the bad state of nature.

Note, finally, that an infinitely loss averse household will optimally consume the consump-

tion reference level in the first period and in the second period in the good state of nature,

it will have strictly positive optimal consumption below its reference level in the bad state of

nature and will invest the strictly positive amount of −Ω/(rg − rf ) in the risky asset.

We now turn to the discussion of the second solution of Proposition 3,
(

CP5
1 , αP5

)

, which

holds for households with a low time preference, i.e., for households with a high discount

factor δ > δ+. As the notation suggests, this solution is reached in problem (P5), where the

first and second period consumption domains are given by 0 ≤ C1 ≤ C̄1 and C2g ≥ C2b ≥ C̄2.

The optimal consumption in the first period is thus below the reference level and the optimal

consumption in the second period is above the reference level C̄2 in both states of nature.

Even though the household is rather loss averse (and so the penalty for consumption below

the reference level is rather large) the optimal consumption in the first period is below the

consumption reference level. With a sufficiently low time preference, i.e., a sufficiently high

discount factor δ > δ+, the household values future consumption so much that it prefers to

consume above the reference level in both states of nature in the second period, accepting to

consume below the reference level in the first period. Again the optimal investment in the

risky asset is strictly positive.

As in the first solution, savings can be either positive or negative in general.23 If, however,

the household sets its consumption reference level equal to or below its income in the first

period24 then optimal savings are always positive, i.e., the household transfers current income

to the future period in order to satisfy its optimal consumption path. Note that a larger

loss aversion parameter will decrease savings while before (in the first solution) it increased

savings.

For the solution
(

CP5
1 , αP5

)

the following holds:

(i) limλ→∞CP5
1 = Y1 +

Y2−C̄2
1+rf

< C̄1

23The assumption required for S∗ > 0 is λ̂1/γ(Y1 − C̄1) < −λ1/γ Y2−C̄2

1+rf
.

24This condition is sufficient but not necessary.

23



(ii) limλ→∞CP5
2g = C̄2

(iii) limλ→∞CP5
2b = C̄2

(iv) limλ→∞ αP5 = 0

The following table summarizes the results on the sensitivity analysis of optimal consump-

tion in both periods, optimal risky investment, the consumption gap in both periods, optimal

savings and happiness (first row) with respect to the loss aversion parameter λ and the first

and second period consumption reference levels C̄1 and C̄2 (first column).

dCP5
1 dCP5

2g dCP5
2b dαP5 d(C̄1 − CP5

1 ) d(CP5
2g − C̄2) d(CP5

2b − C̄2) dSP5 dE(U(CP5
1 , αP5))

dλ > 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0 < 0
dC̄1 < 0 > 0 > 0 > 0 > 0 – – > 0 < 0
dC̄2 < 0 > 0 > 0 > 0 – > 0 > 0 > 0 < 0

Table 4: Sensitivity results when aspirations are high (Ω < 0): solution
(

CP5
1 , αP5

)

Again, as for households with a higher time preference (i.e., a lower discount factor), the

optimal consumption and optimal investment in the risky asset are sensitive with respect to

the loss aversion parameter λ. An exogenous increase in the loss aversion parameter, keeping

everything else constant, will increase first period optimal consumption (which is below the

reference level), and decrease everything else, i.e., the second period optimal consumption in

both states of nature (which is above the reference level), the investment in the risky asset,

savings, the consumption gaps in both periods as well as the level of happiness.

An exogenous increase in the first period consumption reference level, keeping everything

else constant, will decrease the first period optimal consumption and thus increase optimal

savings, and, additionally, increase the consumption in the second period in both states of

nature as well as investment in the risky asset. The level of happiness will again decrease

with an increasing reference level and thus more ambitious households are less happy than the

less ambitious ones. The sensitivity analysis with respect to the second period consumption

reference level (of all variables under consideration) is – in terms of signs – the same as with

respect to the first period consumption reference level.

Putting this into the context of following the Joneses we observe the following: the house-

hold does not follow the Joneses in the first period while it indeed follows the Joneses in the

second period. In addition, in the first period the household’s optimal consumption does not

only move in the opposite direction with respect to that of the Joneses also the consumption

gap increases. Note that – as in the first solution and contrary to the case when Ω > 0 –

the household increases its consumption even to a larger degree than the Joneses, provided it

does follow the Joneses. So households react stronger when they have high aspirations than

when they have low aspirations: in following the Joneses, households increase their optimal
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consumption even more than the Joneses do (i.e., they widen their consumption gaps). This

is true in the first period for households with a higher time preference and it is true in the

second period for households with a lower time preference.

Note, finally, that an infinitely loss averse household will optimally consume the first period

income plus the discounted relative consumption (i.e., the difference between the second period

income and the second period consumption reference level). It will consume at the reference

level in the second period in both states of nature and it will only invest in the risk-free asset.

Comparison to richer peers: Y1 +
Y2

1+rf
< Y R

1 +
Y R
2

1+rf
= C̄1 +

C̄2
1+rf

In this situation the household with income levels Y1 and Y2 sets its first and second period

consumption references such that the total reference consumption is equal to the total income

of some richer household (in the first or second period’s value terms). By a richer household we

mean a household whose total income is larger than the total income of this household; namely,

Y R
1 +

Y R
2

1+rf
> Y1+

Y2
1+rf

, where Y R
1 and Y R

2 are the first and the second period income levels of

the richer household such that Y R
1 > 0 and Y R

2 ≥ 0. In this case Ω represents the household’s

total income relative to the total income of the richer household, i.e., Ω = (1 + rf )Y1 + Y2 −
(

(1 + rf )Y
R
1 + Y R

2

)

< 0. In other words, more ambitious households place themselves into

the discomfort zone by comparing themselves to peers with a higher total income. The impact

of changes in the rich person’s consumption on this household’s consumption and investment

were discussed previously in the sensitivity analysis.

6 Concluding remarks and future extensions

We can conclude from this study that reference levels and loss aversion play a very important

role in determining not only optimal portfolio decisions, as has been found in the literature

until now,25 but also in determining inter-temporal decisions on current and future consump-

tion levels, which depend on the total savings transferred and the risky investment activity

undertaken. One-period models, investigated to date, impose the assumption that current

consumption is fixed at a certain level and hence the household invests the exogenous initial

wealth to the safe and the risky assets. In this model current consumption and savings are

not fixed but optimally selected by the household, which generalizes the one-period model

to a two-period model that can be thought of as a life cycle model. The optimal solutions

depend on the household’s choice of the present value of the reference levels relative to the

present value of its endowment incomes.

If the present value of the consumption reference levels is lower than the present value

of the endowment income (Ω > 0) then the household behaves in such a way to avoid any

relative losses, both in the current period and in any future states of nature (good or bad).

25See Hlouskova and Tsigaris (2012) for a literature review.
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As a consequence the degree of loss aversion does not directly affect optimal consumption

and risk taking activity. But loss aversion is needed to be sufficiently high to prevent relative

losses. On the other hand, also reference consumption levels play a significant role in affecting

consumption and risk taking activity. People often compare their own income or consumption

levels to that of others and hence use reference levels determined by other people’s income,

wealth or consumption. We find that following others in wanting to consume more may

actually hurt households and make them less happy. However, if the reference level depends

on endowment income this is not always true, in particular when reference levels increase with

growing income. In the first period we observe that the prospect theory household follows

what the Joneses are doing if the reference level is set equal to the consumption level of

the Joneses. In the second period, however, the household does not (necessarily) follow the

Joneses. In both periods, the gap between the household’s consumption and reference level

shrinks as the reference level increases. In addition, if the consumption reference levels are

increased then the investment in the risky asset is reduced.

On the other hand, if the discounted present value of the consumption reference levels

coincides with the present value of the endowment income, i.e., the household sets its reference

levels such that they are in balance with its total income (Ω = 0) then the household’s optimal

consumption is the reference consumption in both periods, and the investment in the risky

asset is zero. In addition, the household follows the Joneses only and exactly in one period,

either in the first one (and not in the second) or in the second one (and not in the first). Also

being more ambitious will not make the household more happy, e.g., when it compares itself

to richer households. In fact, just the opposite is true: households that are more ambitious

are less happy.

Finally, if the present value of the consumption reference levels is higher than the present

value of the endowment income (Ω < 0) then the household cannot avoid experiencing a rela-

tive loss, either today or in the future. As a result, loss aversion directly affects consumption

and risky investment. Here, too, the reference levels play an important role in affecting the

household’s behavior. For example, in half of the cases the household will follow the Joneses

if the reference levels are equal to the consumption levels of the Joneses. However, in this

case the gap between the household’s optimal consumption and its reference level widens as

the reference level increases.

If a prospect theory household is more ambitious, i.e., if it increases its consumption ref-

erence level, this will decrease its happiness. And this is equally true for all three types of

households, those with low, balanced and high aspirations. On the other hand, households

with low and high aspirations differ completely in their following the Joneses behavior, pro-

vided they do follow the Joneses. While households with low aspirations follow the Joneses

only under-proportionately (i.e., they increase their optimal consumption to a lower degree

than the Joneses) households with high aspirations follow the Joneses over-proportionately
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(i.e., they increase their optimal consumption even more than the Joneses do).

There are a number of extensions that might be worth undertaking in the future. One

could be to introduce uncertainty in the second period exogenous income instead of uncer-

tainty in the returns of the risky asset. Another extension could be to consider an endogenous

second period consumption reference instead of considering it exogenous, as we did in this

study.26 For example, the second period consumption reference level could be a weighted av-

erage of the first period reference level and the first period consumption (habit persistence).

Still another extension could be to develop a model where the utility includes consumption

reference levels directly (and not only through relative consumption) in order to give house-

holds not only disutility but also pleasure from having them to compare. Households would

then select the reference levels endogenously by setting the marginal benefit equal to the

marginal cost. Finally, one could explore the impact of taxation on the decisions to take risk

and to consume today. This could be either a tax on the exogenous endowment income or a

tax on capital income or a tax on both.

26This feature, however, allowed us to investigate certain types of reference levels which could not have been
done otherwise.

27



References

[1] Abel, A., 1990. Asset prices under habit formation and catching up with the Joneses,

American Economic Review, 80, 38–42.

[2] Achury, C., S. Hubar, and C. Koulovatianos, 2012. Saving rates and portfolio

choice with subsistence consumption, Review of Economic Dynamics, 15, 108–126.

[3] Barberis, N., 2013. Thirty years of prospect theory in economics: A review and assess-

ment, Journal of Economic Perspectives, 27, 173–196.

[4] Barberis, N. and M. Huang, 2001. Mental accounting, loss aversion and individual

stock returns, Journal of Finance, 56, 1247–1292.

[5] Barberis, N. and W. Xiong, 2009. What drives the disposition effect? An analysis

of a long-standing preference-based explanation, Quarterly Journal of Economics, 116,

1–53.

[6] Berkelaar, A., R., Kouwenberg, and T., Post, 2004. Optimal portfolio choice

under loss aversion, The Review of Economics and Statistics, 86, 973–987.

[7] Bernard C. and M. Ghossoub, 2010. Static portfolio choice under cumulative

prospect theory, Mathematics and Financial Economics, 2, 277–306.

[8] van Bilsen, S., R.J.A. Laeven and T.E. Nijman, 2014. Consumption and portfo-

lio choice under loss aversion and endogenous updating of the reference level, Netspar

discussion papers, DP 11/2014-048.

[9] Boldrin, M., L. Christiano, and J. Fisher, 2001. Habit persistence, asset returns,

and the business cycle, American Economic Review, 91, 149–166.

[10] Bowman, D., D. Minehart, and M. Rabin, 1999. Loss aversion in a consumption-

savings model, Journal of Economic Behavior and Organization, 38, 155–178.

[11] Campbell, J. and J.H. Cochrane, 1999. By force of habit: A consumption-based

explanation of aggregate stock market behavior, Journal of Political Economy, 107, 205–

251.

[12] Christiano, L., M. Eichenbaum, and C. Evans, 2005. Nominal rigidities and the

dynamic effects of a shock to monetary policy, Journal of Political Economy, 113, 1–45.

[13] Clark, A.E., P. Frijters, and M.A. Shields, 2008. Relative income, happiness, and

utility: An explanation for the Easterlin paradox and other puzzles Journal of Economic

Literature, 46, 95-144.

28



[14] Constantinides, G.M., 1990. Habit formation: A resolution of the equity premium

puzzle, Journal of Political Economy, 98, 531–552.

[15] DellaVigna, S., 2009. Psychology and economics: Evidence from the field, Journal of

Economic Literature, 47, 315–372.

[16] Falk A. and M. Knell, 2004. Choosing the Joneses: Endogenous goals and reference

standards, Scandinavian Journal of Economics, 106, 417–435.

[17] Fortin I. and J. Hlouskova, 2011. Optimal asset allocation under linear loss aversion,

Journal of Banking and Finance, 35, 2974–2990.

[18] Fortin I. and J. Hlouskova, 2015. Downside loss aversion: Winner or loser?, Math-

ematical Methods of Operations Research, 81, 181–233.

[19] Fortin I., J. Hlouskova and P. Tsigaris, 2015. Two-period model for consumption-

investment decision with a prospect theory household, mimeo.

[20] Geary R.C., 1951. A constant utility index of the cost of living, Review of Economic

Studies, 18, 65–66.

[21] Gomes F.J., 2005. Portfolio choice and trading volume with loss-averse investors, Jour-

nal of Business, 78, 675–706.

[22] He, X.D. and Zhou, X.Y., 2011. Portfolio choice under cumulative prospect theory:

An analytical treatment. Management Science, 57, 315–331.

[23] Hlouskova, J. and P. Tsigaris, 2012. Capital income taxation and risk taking under

prospect theory, International Tax and Public Finance, 19, 554–573.

[24] Kahneman, D. and A. Tversky, 1979. Prospect theory: An analysis of decision under

risk, Econometrica, 47, 363–391.

[25] Koszegi, B. and M. Rabin, 2006. A model of reference-dependent preferences, Quar-

terly Journal of Economics, 121, 1133–1165.

[26] Lettau, M. and H. Uhlig 2000. Can habit formation be reconciled with business cycle

facts?, Review of Economic Dynamics, 3, 79–99.

[27] Merton, R.C., 1969. Lifetime portfolio selection under uncertainty: The continuous

time case, Review of Economics and Statistics, 50, 247–257.

[28] Merton, R.C., 1971. Optimum consumptio and portfolio rules in a continuous time

model, Journal of Economic Theory, 3, 373–413.

29



[29] Sandmo, A., 1968. Portfolio choice in a theory of saving, Swedish Journal of Economics,

70, 106–122.

[30] Sandmo, A., 1969. Capital risk, consumption, and portfolio choice, Econometrica, 37,

586–599.

[31] Stone, R., 1954. Linear expenditure systems and demand analysis: An application to

the pattern of British demand, Economic Journal, 64, 511–527.

[32] Tversky, A. and D. Kahneman, 1992. Advances in prospect theory: Cumulative

representation of uncertainty, Journal of Risk and Uncertainty, 5, 297–323.

[33] Yu, X., 2015. Utility maximization with addictive consumption habit formation in in-

complete smimartingale markets, Annals of Applied Probability, 25, 1383–1419.

30



Appendix A: Optimization problems

There are eight cases to consider in proofs of lemmas 1 and 2 when α ≥ 0:

(P1) C1 ≥ C̄1, C2b ≥ C̄2 and C2g ≥ C̄2

(P2) C1 ≥ C̄1, C2b ≤ C̄2 and C2g ≥ C̄2

(P3) C1 ≥ C̄1, C2b ≥ C̄2 and C2g ≤ C̄2

(P4) C1 ≥ C̄1, C2b ≤ C̄2 and C2g ≤ C̄2

(P5) C1 ≤ C̄1, C2b ≥ C̄2 and C2g ≥ C̄2

(P6) C1 ≤ C̄1, C2b ≤ C̄2 and C2g ≥ C̄2

(P7) C1 ≤ C̄1, C2b ≥ C̄2 and C2g ≤ C̄2

(P8) C1 ≤ C̄1, C2b ≤ C̄2 and C2g ≤ C̄2

The corresponding problems are

Max(C1,α) : E(U(C1, α)) =

(C1−C̄1)1−γ

1−γ + δp
((1+rf )(Y1−C1)+(rg−rf )α+Y2−C̄2)1−γ

1−γ

+δ(1− p)
((1+rf )(Y1−C1)−(rf−rb)α+Y2−C̄2)1−γ

1−γ

such that : C̄1 ≤ C1 ≤ Y1 +
Y2−C̄2
1+rf

−
rf−rb
1+rf

α

max
{

0,− Ω
rg−rf

}

≤ α ≤ Ω
rf−rb


























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


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





























(P1)

Max(C1,α) : E(U(C1, α)) =

(C1−C̄1)1−γ

1−γ + δp
((1+rf )(Y1−C1)+(rg−rf )α+Y2−C̄2)1−γ

1−γ

−λδ(1 − p)
(C̄2−Y2−(1+rf )(Y1−C1)+(rf−rb)α)

1−γ

1−γ

such that : Y1 +
Y2−C̄2
1+rf

−
rf−rb
1+rf

α ≤ C1 ≤ Y1 +
Y2−C̄2
1+rf

+
rg−rf
1+rf

α

C̄1 ≤ C1 ≤ Y1 +
Y2

1+rf
−

rf−rb
1+rf

α

max
{

0, −Ω
rg−rf

}

≤ α ≤
(1+rf )(Y1−C̄1)+Y2

rf−rb
= Ω+C̄2

rf−rb


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
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



(P2)
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To guarantee that −Ω
rg−rf

≤ Ω+C̄2
rf−rb

the condition C̄2 ≤ C̄P2
2 ≡

rg−rb
rf−rb

(

(1 + rf )(Y1 − C̄1) + Y2

)

needs to be satisfied.27

Max(C1,α) : E(U(C1, α)) =

(C1−C̄1)1−γ

1−γ − λδp
(C̄2−Y2−(1+rf )(Y1−C1)−(rg−rf )α)

1−γ

1−γ

+δ(1 − p)
((1+rf )(Y1−C1)−(rf−rb)α+Y2−C̄2)1−γ

1−γ

such that : Y1 +
Y2−C̄2
1+rf

+
rg−rf
1+rf

α ≤ C1 ≤ Y1 +
Y2−C̄2
1+rf

−
rf−rb
1+rf

α

C̄1 ≤ C1 ≤ Y1 +
Y2

1+rf
+

rg−rf
1+rf

α

0 ≤ α ≤ min
{

0, Ω
rf−rb

}


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(P3)

Note that the only feasible solution is
(

C1 = Y1 +
Y2−C̄2
1+rf

, α = 0
)

when Ω > 0 and
(

C1 = C̄1, α = 0
)

when Ω = 0. There is no feasible solution when Ω < 0.

Max(C1,α) : E(U(C1, α)) =

(C1−C̄1)1−γ

1−γ − λδp
(C̄2−Y2−(1+rf )(Y1−C1)−(rg−rf )α)

1−γ

1−γ

−λδ(1 − p)
(C̄2−Y2−(1+rf )(Y1−C1)+(rf−rb)α)

1−γ

1−γ

such that : Y1 +
Y2−C̄2
1+rf

+
rg−rf
1+rf

α ≤ C1

C̄1 ≤ C1 ≤ Y1 +
Y2

1+rf
−

rf−rb
1+rf

α

0 ≤ α ≤ C̄2
rg−rb


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(P4)

Max(C1,α) : E(U(C1, α)) =

−λ (C̄1−C1)1−γ

1−γ + δp
((1+rf )(Y1−C1)+(rg−rf )α+Y2−C̄2)1−γ

1−γ

+δ(1 − p)
((1+rf )(Y1−C1)−(rf−rb)α+Y2−C̄2)1−γ

1−γ

such that : 0 ≤ C1 ≤ min
{

Y1 +
Y2−C̄2
1+rf

−
rf−rb
1+rf

α, C̄1

}

0 ≤ α ≤
(1+rf )Y1+Y2−C̄2

rf−rb
=

Ω+(1+rf )C1

rf−rb




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(P5)

27Note that the condition on C̄2 follows from the constraint C2b ≥ 0 given by C1 ≤ Y1 +
Y2

1+rf
−

rf−rb
1+rf

α.
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Max(C1,α) : E(U(C1, α)) =

−λ (C̄1−C1)1−γ

1−γ + δp
((1+rf )(Y1−C1)+(rg−rf )α+Y2−C̄2)1−γ

1−γ

−λδ(1 − p)
(C̄2−Y2−(1+rf )(Y1−C1)+(rf−rb)α)

1−γ

1−γ

such that : Y1 +
Y2−C̄2
1+rf

−
rf−rb
1+rf

α ≤ C1 ≤ Y1 +
Y2−C̄2
1+rf

+
rg−rf
1+rf

α

0 ≤ C1 ≤ min
{

Y1 +
Y2

1+rf
−

rf−rb
1+rf

α, C̄1

}

max
{

0, Ω
rf−rb

}

≤ α ≤
(1+rf )Y1+Y2

rf−rb






















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(P6)

Max(C1,α) : E(U(C1, α)) =

−λ (C̄1−C1)1−γ

1−γ − λδp
(C̄2−Y2−(1+rf )(Y1−C1)−(rg−rf )α)

1−γ

1−γ

+δ(1 − p)
((1+rf )(Y1−C1)−(rf−rb)α+Y2−C̄2)1−γ

1−γ

such that : Y1 +
Y2−C̄2
1+rf

+
rg−rf
1+rf

α ≤ C1 ≤ min
{

Y1 +
Y2−C̄2
1+rf

−
rf−rb
1+rf

α, C̄1

}

0 ≤ α ≤ min
{

0,− Ω
rg−rf

}


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(P7)

Note that the only feasible solution is
(

C1 = Y1 +
Y2−C̄2
1+rf

, α = 0
)

when Ω < 0 and
(

C1 = C̄1, α = 0
)

when Ω = 0. There is no feasible solution when Ω > 0.

Max(C1,α) : E(U(C1, α)) =

−λ (C̄1−C1)1−γ

1−γ − λδp
(C̄2−Y2−(1+rf )(Y1−C1)−(rg−rf )α)

1−γ

1−γ

−λδ(1− p)
(C̄2−Y2−(1+rf )(Y1−C1)+(rf−rb)α)

1−γ

1−γ

such that : Y1 +
Y2−C̄2
1+rf

+
rg−rf
1+rf

α ≤ C1 ≤ min
{

Y1 +
Y2

1+rf
−

rf−rb
1+rf

α, C̄1

}

0 ≤ α ≤ − Ω
rg−rf


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(P8)

Appendix B: Ω ≥ 0

Before proceeding further, we introduce the following notation

M = k

[

1 +

(

1

Kγ

) 1
γ

]

= k2

[

1 +K
1
γ
γ

]

= k + k2
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In addition notice that

kγ = Kγk
γ
2 (26)

K
1
γ

0 +K
1
γ
γ =

rg − rb
r − rb

K
1
γ

0 =
rg − rb
rg − rf

K
1
γ
γ

(

1

K0

) 1
γ

+

(

1

Kγ

) 1
γ

=

(

1

K0

) 1
γ rg − rb
rg − rf

where k and k2 are defined by (18) and (19).

Lemma 1 Let C̄1 ≤ Y1 + Y2−C̄2
1+rf

, i.e., Ω ≥ 0 and λ > max
{

1
Kγ

, λΩ≥0,
(

M
1+rf

)γ}

. Then

problem (5) obtains a unique maximum at (C∗
1 , α

∗) where

C∗
1 = C̄1 +

Ω

1 + rf +M

= C̄1 +
1 + rf

1 + rf +M

[(

Y1 +
Y2

1 + rf

)

−

(

C̄1 +
C̄2

1 + rf

)]

≥ C̄1 (27)

α∗ =

(

1−K
1
γ

0

)

M

rf − rb +K
1
γ

0 (rg − rf )

(C∗
1 − C̄1) ≥ 0 (28)

Proof. We proceed in two steps. At first we assume that C1 ≤ Y1 + Y2−C̄2
1+rf

and then

C1 > Y1 +
Y2−C̄2
1+rf

. Note that as we assume that C̄1 ≤ Y1 +
Y2−C̄2
1+rf

, i.e., Ω ≥ 0, then in case

C1 > Y1 +
Y2−C̄2
1+rf

only problems (P1)–(P4) are feasible.

Problem (P1). Note at first that there is no feasible solution for (P1) if C1 > Y1+
Y2−C̄2
1+rf

.

If C1 = Y1 +
Y2−C̄2
1+rf

then the only feasible solution is
(

C1 = Y1 +
Y2−C̄2
1+rf

, α = 0
)

. Let C1 <

Y1 +
Y2−C̄2
1+rf

. At first we solve the concave programming problem (P1) as an unconstrained

problem, i.e., we solve two equations in two unknown variables C1 and α, namely dE(U)
dC1

= 0

and dE(U)
dα = 0 (∇E(U) = 0), obtain the optimum solution (C∗

1 , α
∗) and finally verify that

C∗
2b ≥ C̄2 and C∗

2g ≥ C̄2, C
∗
1 ≥ C̄1 and − Ω

rg−rf
≤ α∗ ≤ Ω

rf−rb
, i.e. that the solution is also

feasible.

The first order conditions are

dE(U)
dC1

= (C1 − C̄1)
−γ −δp

[

(1 + rf )(Y1 − C1) + (rg − rf )α+ Y2 − C̄2

]−γ
(1 + rf )

−δ(1− p)
[

(1 + rf )(Y1 − C1)− (rf − rb)α+ Y2 − C̄2

]−γ
(1 + rf ) = 0

dE(U)
dα = δp

[

(1 + rf )(Y1 − C1) + (rg − rf )α+ Y2 − C̄2

]−γ
(rg − rf )

−δ(1− p)
[

(1 + rf )(Y1 − C1)− (rf − rb)α+ Y2 − C̄2

]−γ
(rf − rb) = 0




























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(29)
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dE(U)
dα = 0 from (29) implies the following

p
[

(1 + rf )(Y1 − C1)− (rf − rb)α+ Y2 − C̄2

]γ
(rg − rf )

= (1− p)
[

(1 + rf )(Y1 −C1) + (rg − rf )α+ Y2 − C̄2

]γ
(rf − rb)

which after using the definition of Kγ as given by (7) gives

K
− 1

γ

0

[

(1 + rf )(Y1 − C1)− (rf − rb)α+ Y2 − C̄2

]

= (1 + rf )(Y1 − C1) + (rg − rf )α+ Y2 − C̄2

This implies that

α =
1−K

1
γ

0

rf − rb +K
1
γ

0 (rg − rf )

((1 + rf )(Y1 − C1) + Y2 − C̄2) (30)

If we plug the last expression for α into the C1 part of the FOC in (29) we obtain

(C1 − C̄1)
−γ

δ(1 + rf )
= p



Ω− (1 + rf )(C1 − C̄1) +
(1−K

1
γ

0 )(rg − rf )

rf − rb +K
1
γ

0 (rg − rf )

(

Ω− (1 + rf )(C1 − C̄1)
)





−γ

+ (1− p)



Ω− (1 + rf )(C1 − C̄1)−
(1−K

1
γ

0 )(rf − rb)

rf − rb +K
1
γ

0 (rg − rf )

(

Ω− (1 + rf )(C1 − C̄1)
)





−γ

=





rf − rb +K
1
γ

0 (rg − rf )
(

Ω− (1 + rf )(C1 − C̄1)
)

(rg − rb)





γ

[

p
(

1−K−1
0

)

+K−1
0

]

(31)

with assuming that Ω− (1 + rf )(C1 − C̄1) > 0 which is equivalent to C1 < Y1 +
Y2−C̄2
1+rf

.

After some simplifications we obtain

(1 + rf )(Y1 − C1) + Y2 − C̄2 = (C1 − C̄1)
rf − rb +K

1
γ

0 (rg − rf )

rg − rb

[

δ(1 + rf )p
rg − rb
rf − rb

]
1
γ

= (C1 − C̄1)M (32)

which gives C1 = C∗
1 ≥ C̄1. Note that (27) and the assumption Ω ≥ 0 imply that C∗

1 ≥ C̄1. In

addition, after plugging C∗
1 into (30) we obtain α∗ as given in (28). Note that C∗

1 < Y1+
Y2−C̄2
1+rf

and α∗ ≥ 0 as K0 < 1 (which follows from E(r) > rf ).

Using (29), it is easy to verify that d2E(U)
dC2

1
< 0, d2E(U)

dα2 < 0, and ∇2
E(U(C1, C2)) =

d2E(U)
dC2

1

d2E(U)
dα2 −

(

d2E(U)
dC1dα

)2
> 0 and thus problem (P1) is a concave programming problem and

(C∗
1 , α

∗) is its unique global maximum.
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Finally, C∗
2g and C∗

2b can be written as

C∗
2g = C̄2 +

MΩ

(1 + rf +M)

(

1 +K
1
γ
γ

)

rg − rb
rf − rb

C∗
2b = C̄2 +

MΩ

(1 + rf +M)

(

1 +K
1
γ
γ

)

rg − rb
rf − rb

K
1
γ

0

and thus they both are such that C∗
2g ≥ C̄2 and C∗

2b ≥ C̄2 as K0 ≥ 0 and rb < rf < rg.

It can be shown that

(1− γ)E(U(C∗
1 , α

∗)) =

(

Ω

1 + rf

)1−γ (

1 +
M

1 + rf

)γ

=
Ω1−γ

1 + rf
(1 + rf +M)γ (33)

As we have already mentioned the only feasible solution for C1 = Y1 +
Y2−C̄2
1+rf

is
(

C1 = Y1 +
Y2−C̄2
1+rf

, α = 0
)

with

(1− γ)E

(

U

(

Y1 +
Y2 − C̄2

1 + rf
, 0

))

=

(

Ω

1 + rf

)1−γ

(34)

which is below the value of the expected utility function at (C∗
1 , α

∗
1), see (33), as M > 0.

Thus, the maximum of (P1) is reached at (C∗
1 , α

∗).

If Ω = 0 then definition of problem (P1) implies that the only feasible solution is (C1, α) =

(C̄1, 0) which is then also the maximum. I.e., (C∗
1 , α

∗) = (C̄1, 0) and C∗
2b = C∗

2g = C̄2 ≥ 0.

Note in addition that E(U(C∗
1 , α

∗)) = 0.

Next we show that for Ω ≥ 0 and C1 ≤ Y1+
Y2−C̄2
1+rf

all possible candidates for maximum in

problems (P2), (P3) and (P4) are also feasible solutions of (P1) and as the expected utilities

of problems (P2), (P3) and (P4) in these points coincide with the expected utility of (P1)

then utility of (P1) at (C∗
1 , α

∗) exceeds utility functions of problems (P2), (P3) and (P4) at

their feasible solutions.

Problem (P2). Let C1 ≤ Y1+
Y2−C̄2
1+rf

. From the proof of Proposition 3 (problem (P2)) it

can be seen that its stationary point exists only for C1 > Y1+
Y2−C̄2
1+rf

, so there are no stationary

points when C1 > Y1 +
Y2−C̄2
1+rf

. Note that the utility of (P2) is a decreasing function in α for

any fixed C1

dE(U)

dα
= δp

[

(1 + rf )(Y1 − C1) + Y2 − C̄2 + (rg − rf )α
]−γ

(rg − rf )

−λδ(1 − p)
[

(1 + rf )(C1 − Y1) + C̄2 − Y2 + (rf − rb)α
]−γ

(rf − rb) < 0
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if

λ >
p(rg − rf )

(1− p)(rf − rb)

[

(1 + rf )(C1 − Y1) + C̄2 − Y2 + (rf − rb)α

(1 + rf )(Y1 − C1) + Y2 − C̄2 + (rg − rf )α

]γ

The latter is achieved if

1

Kγ
≥

p(rg − rf )

(1− p)(rf − rb)

[

(1 + rf )(C1 − Y1) + C̄2 − Y2 + (rf − rb)α

(1 + rf )(Y1 − C1) + Y2 − C̄2 + (rg − rf )α

]γ

(35)

as it is assumed that λ > 1
Kγ

where Kγ is given by (7). It can be shown that (35) is satisfied

if C1 ≤ Y1+
Y2−C̄2
1+r which is our assumption. In addition, the set of feasible solutions for (P2)

can be written as

C̄1 ≤ C1 ≤ Y1 +
Y2−C̄2
1+rf

(

C2b ≤ C̄2 ⇒
)

Y1 +
Y2−C̄2
1+rf

−
rf−rb
1+rf

α ≤ C1 ≤ Y1 +
Y2

1+rf
−

rf−rb
1+rf

α (⇐ C2b ≥ 0)

0 ≤ α ≤
(1+rf )(Y1−C̄1)+Y2

rf−rb















(36)

Let C̃1 be fixed and such that C̄1 ≤ C̃1 ≤ Y1 +
Y2−C̄2
1+rf

. Based on the first inequality in the

second row of (36) and the fact that the utility of (P2) is decreasing in α for given C1 = C̃1,

the smallest possible α = α̃ such that (C̃1, α̃) remains feasible is given by

Y1 +
Y2 − C̄2

1 + rf
−

rf − rb
1 + rf

α̃ = C̃1

and thus C̃2b = C̄2 and

α̃ =
(1 + rf )(Y1 − C̃1) + Y2 − C̄2

rf − rb
∈

[

0,
Ω

rf − rb

]

Note that (C̃1, α̃) completes also the second inequality in (36), namely: C̃1 ≤ Y1 +
Y2

1+rf
−

Y1 + C̃1 −
Y2−C̄2
1+rf

= C̃1 +
C̄2

1+rf
i.e., C̃2b = C̄2 ≥ 0, as C̄2 ≥ 0. Thus, for any given C̃1 that

satisfies C̄1 ≤ C̃1 ≤ Y1 +
Y2−C̄2
1+rf

is the point
(

C̃1,
(1+rf )(Y1−C̃1)+Y2−C̄2

rf−rb

)

where the utility of

(P2) achieves its maxima. As point (C̃1, α̃) is feasible also for (P1) and as utilities of (P1)

and (P2) coincide at this point then the utility function of (P1) at (C∗
1 , α

∗) is bigger or equal

to the utility function of (P2) at any point (C̃1, α̃).

Note that for C̃1 = Y1+
Y2−C̄2
1+rf

is α̃ = 0 and point
(

Y1 +
Y2−C̄2
1+rf

, 0
)

is feasible also for (P1)

and for Ω = 0 is the maximum reached at (C̄1, 0).

Let C1 ≥ Y1+
Y2−C̄2
1+rf

≥ C̄1. From the proof of Proposition 3 (problem (P2)) it can be seen

that its stationary point (which is the same as in this case) happens to be (CP2
1 , αP2), see (24).

For Ω > 0 is this stationary point infeasible for (P2) as CP2
1 < C̄1 and thus the maximum will
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occur at the border. The feasible solutions at the border for (P2) that come into consideration

are given by: (i) C2g = C̄2, (ii) C2b = C̄2, (iii) C2b = 0 and (iv) C1 = Y1 +
Y2−C̄2
1+rf

. On the

other hand, for Ω = 0 the stationary point is C̄1, 0 and the utility function at this point can

also be compared to the value of the utility function at the feasible solutions at the border.

Case (i). C2g = C̄2 when C1 = Y1 +
Y2−C̄2
1+rf

+
rg−rf
1+rf

α and 0 ≤ α ≤ C̄2
rg−rb

. It can be seen

that

(1− γ)E

(

U

(

Y1 +
Y2 − C̄2

1 + rf
+

rg − rf
1 + rf

α,α

))

=

(

Ω+ (rg − rf )α

1 + rf

)1−γ

− λδ(1 − p)(rg − rb)
1−γα1−γ (37)

and thus the potential maximum occurs either at α = 0 or α = C̄2
rg−rb

or at the stationary point

of function given by (37) which can be easily derived and has the value α = ᾱ ≡ λ
1
γ k

1+rf−λ
1
γ k

Ω
rg−rf

when λ <
(

1+rf
k

)γ
. For λ ≥

(

1+rf
k

)γ
is function (37) decreasing in α and thus the maximum

occurs at α = 0 where point
(

Y1 +
Y2−C̄2
1+rf

, 0
)

is feasible also for (P1). Note in addition that

(1− γ)E

(

U

(

C1 = Y1 +
Y2 − C̄2

1 + rf
+

rg − rf
1 + rf

ᾱ, ᾱ

))

=
Ω1−γ

1 + rf

(

1 + rf − λ
1
γ k
)γ

≤

(

Ω

1 + rf

)1−γ

= (1− γ)E

(

U

(

Y1 +
Y2 − C̄2

1 + rf
, 0

))

when λ <
(

1+rf
k

)γ
and thus point

(

C1 = Y1 +
Y2−C̄2
1+rf

+
rg−rf
1+rf

ᾱ, ᾱ
)

can not be a maximum.

Regarding the end-point α = C̄2
rg−rb

, one can see that

(1− γ)E

(

U

(

C1 = Y1 +
Y2 − C̄2

1 + rf
+

rg − rf
rg − rb

C̄2

1 + rf
, α =

C̄2

rg − rb

))

=





Ω+
rg−rf
rg−rb

C̄2

1 + rf





1−γ

− λδ(1− p) C̄1−γ
2

≤
Ω1−γ

1 + rf
(1 + rf +M)γ = (1− γ)E (U (C∗

1 , α
∗))

if

λ ≥ λ̃ ≡
Ω1−γ

δ(1 − p)(1 + rf )C̄
1−γ
2

[

(1 + rf )
γ

(

1 +
rg − rf
rg − rb

C̄2

Ω

)1−γ

− (1 + rf +M)γ

]

(38)

As we assume that λ > λΩ>0, see (9), then (38) holds as λΩ>0 ≥ λ̃.

There is no feasible solution for case (ii), i.e., when C2b = C̄2.
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Case (iii). C2b = 0 when C1 = Y1 +
Y2

1+rf
−

rf−rb
1+rf

α and C̄2
rg−rb

≤ α ≤ C̄2
rf−rb

. It can be seen

that

(1− γ)E

(

U

(

Y1 +
Y2

1 + rf
−

rf − rb
1 + rf

α,α

))

=

(

Y1 − C̄1 +
Y2

1 + rf
−

rf − rb
1 + rf

α

)1−γ

+ δp
(

(rg − rb)α − C̄2

)1−γ
− λδ(1 − p)C̄1−γ

2

(39)

As function (39) is concave in α the maximum is reached at the stationary point ᾱ, i.e.

dE

(

U

(

Y1+
Y2

1+rf
−

rf−rb
1+rf

α,α

))

dα

∣

∣

∣

α=ᾱ
= 0 which is given as follows

ᾱ =
k2((1 + rf )(Y1 − C̄1) + Y2) +

rf−rb
rg−rb

(1 + rf )C̄2

(1 + rf + k2)(rf − rb)

=
1 + rf

1 + rf + k2

C̄2

rg − rb
+

k2
1 + rf + k2

(1 + rf )(Y1 − C̄1) + Y2

rf − rb

The expected utility is at this point is given by

(1− γ)E

(

U

(

Y1 +
Y2

1 + rf
−

rf − rb
1 + rf

ᾱ, ᾱ

))

=
(1 + rf + k2)

γ

1 + rf

(

(1 + rf )(Y1 − C̄1) + Y2 −
rf − rb
rg − rb

C̄2

)1−γ

− λδ(1 − p)C̄1−γ
2 (40)

If λ > λΩ>0, see (9), then the utility given by (40) will be below the utility of (P1) at its

maximum, which is given by Ω1−γ

1+rf
(1 + rf +M)γ , see (33).

Case (iv). C1 = Y1 +
Y2−C̄2
1+rf

for 0 ≤ α ≤ C̄2
rf−rb

with the utility function being

(1− γ)E

(

U

(

Y1 +
Y2 − C̄2

1 + rf
α,α

))

=

(

Ω

1 + rf

)1−γ

+ δp(rg − rf )
1−γα1−γ

−λδ(1 − p)(rf − rb)
1−γα1−γ

which is decreasing in α for λ > 1
Kγ

and thus the maximum is reached at
(

Y1 +
Y2−C̄2
1+rf

, 0
)

which is feasible also for (P1).

It follows from the proof above that for Ω = 0 the maximum, for λ >

(

1+rf
k +

(

1
Kγ

)
1
γ

)γ

,

is achieved at (C1 = C̄1, α = 0) where the value of the expected utility is zero.

Problem (P3). The only feasible solution is
(

Y1 +
Y2−C̄2
1+rf

, 0
)

which is feasible also for

(P1).
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The set of feasible solutions for problem (P4)

Y1 +
Y2 − C̄2

1 + rf
+

1

1 + rf
(rg − rf )α ≤ C1

implies C1 ≥ Y1 +
Y2−C̄2
1+rf

. The other set of feasible solutions

C1 ≤ Y1 +
Y2

1 + rf
−

rf − rb
1 + rf

α

gives C1 ≤ Y1 +
Y2

1+rf
, which implies that Y1 +

Y2−C̄2
1+rf

≤ C1 ≤ Y1 +
Y2

1+rf
.

The only feasible solution for C1 = Y1 +
Y2−C̄2
1+rf

is (C1 = Y1 +
Y2−C̄2
1+rf

, α = 0) at which the

utility function is below the utility function at (C∗
1 , α

∗).

Let C1 > Y1 + Y2−C̄2
1+rf

. As d2E(U)
dα2 > 0 then there is no local interior maximum which

implies that the maximum will occur at the border. The cases when this could happen are:

(i) C2g = C̄2, (ii) C2b = C̄2, (iii) C2g = 0 and (iv) C2b = 0. Note that case (i) coincides with

case (i) when proving (P2) and the only feasible solution in case (ii) is (C1 = Y1+
Y2−C̄2
1+rf

, α = 0)

which is feasible for (P1).

Case (iii). The only feasible solution for C2g = 0 is (C1 = Y1 +
Y2

1+rf
, α = 0) with the

utility function being

(1− γ)E

(

U

(

Y1 +
Y2

1 + rf
, 0

))

=

(

Y1 − C̄1 +
Y2

1 + rf

)1−γ

− λδC̄1−γ
2

which is dealt in case (iv) below.

Case (iv). C2b = 0 when C1 = Y1 +
Y2

1+rf
−

rf−rb
1+rf

α and 0 ≤ α ≤ C̄2
rg−rb

and thus

(1− γ)E

(

U

(

C1 = Y1 +
Y2

1 + rf
−

rf − rb
1 + rf

α,α

))

=

(

Y1 − C̄1 +
Y2

1 + rf
−

rf − rb
1 + rf

α

)1−γ

−λδp
(

C̄2 − (rg − rb)α
)1−γ

− λδ(1 − p) C̄1−γ
2 (41)

The potential candidates for maximum are α = 0, α = C̄2
rg−rb

and α = ᾱ where ᾱ is a unique

stationary point such that dE(U)
dα

∣

∣

∣

α=ᾱ
= 0 where

ᾱ =
(λδp(rg − rb))

1
γ

(

Y1 − C̄1 +
Y2

1+rf

)

−
(

rf−rb
1+rf

) 1
γ
C̄2

(λδp(rg − rb))
1
γ

rf−rb
1+rf

−
(

rf−rb
1+rf

) 1
γ
(rg − rb)

Note that Ω ≥ 0 and rf > 0 imply that ᾱ > C̄2
rg−rb

and thus infeasible. For α = C̄2
rg−rb

is

C2g = C̄2 and thus the point
(

C1 = Y1 +
Y2

1+rf
−

rf−rb
1+rf

C̄2
rg−rb

, α = C̄2
rg−rb

)

is feasible for (P2).
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Finally, we show that the utility function at α = 0 is below the utility function at (C∗
1 , α

∗).

Namely

(

Y1 − C̄1 +
Y2

1 + rf

)1−γ

−λδC̄1−γ
2 =

(

Ω+ C̄2

1 + rf

)1−γ

−λδC̄1−γ
2 ≤

(

Ω

1 + rf

)1−γ (

1 +
M

1 + rf

)γ

which holds if

λ >
Ω1−γ

δ(1 + rf )C̄
1−γ
2

[

(

1 +
C̄2

Ω

)1−γ

(1 + rf )
γ − (1 + rf +M)γ

]

The last inequality holds as λ > λΩ≥0 and

λΩ≥0 >
Ω1−γ

δ(1 + rf )C̄
1−γ
2

[

(

1 +
C̄2

Ω

)1−γ

(1 + rf )
γ − (1 + rf +M)γ

]

For Ω = 0 the conclusions obtained in (P2) apply, i.e., if

λ >

(

1+rf
k +

(

1
Kγ

) 1
γ

)γ

then maximum is reached at (C1 = C̄1, α = 0).

Regarding problem (P5) we show that for C1 ≤ Y1 +
Y2−C̄2
1+rf

and Ω ≥ 0 is its maximum

reached at the point that is feasible also for (P1), namely at (C̄1, ᾱ) (with ᾱ being defined

later), and as utility functions of (P1) and (P5) coincide at this point then the utility function

of (P1) at (C∗
1 , α

∗) exceeds the one at (C̄1, ᾱ).

In more detail, as dE(U)
dα is the same for both (P1) and (P5) then the second equation in

(29) implies that for any fixed C1 is the expected utility of (P5) concave and thus its maximum

is achieved at (30). I.e., if C̃1 is such that 0 ≤ C̃1 ≤ C̄1 ≤ Y1 +
Y2−C̄2
1+rf

then for this fixed C̃1 is

maximum of (P5) reached at (C̃1, α̃) where α̃ =
1−K

1
γ
0

rf−rb+K
1
γ
0 (rg−rf )

((1+ rf )(Y1− C̃1)+Y2− C̄2).

Note that (C̃1, α̃) is feasible for (P5). Thus, the only candidates for the maximum for (P5)

are (C̃1, α̃) with 0 ≤ C̃1 ≤ C̄1. By plugging this point into the expected utility of (P5) we

obtain

(1− γ)E(U) = −λ(C̄1 − C̃1)
1−γ

+ δp

[

(1 + rf )(Y1 − C̃1) + Y2 − C̄2 +
(rg − rf )(1−K

1/γ
0 )

rf − rb +K
1/γ
0 (rg − rf )

(

(1 + rf )(Y1 − C̃1) + Y2 − C̄2

)

]1−γ

+ δ(1 − p)

[

(1 + rf )(Y1 − C̃1) + Y2 − C̄2 −
(rf − rb)(1 −K

1/γ
0 )

rf − rb +K
1/γ
0 (rg − rf )

(

(1 + rf )(Y1 − C̃1) + Y2 − C̄2

)

]1−γ
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which after some derivations gives

(1− γ)E(U) = −λ(C̄1 − C̃1)
1−γ + δ

(

(1 + rf )(Y1 − C̃1) + Y2 − C̄2

)1−γ
(

rg − rb

rf − rb +K
1/γ
0 (rg − rf )

)1−γ

×

(

p+ (1− p)K
1−γ
γ

0

)

= −λ(C̄1 − C̃1)
1−γ +









k2

(

1 +K
1
γ
γ

)

1 + rf









γ

(

Y1 − C̃1 +
Y2 − C̄2

1 + rf

)1−γ

If the expected utility of (P5) is increasing function in C̃1, i.e.,
dE(U)

dC̃1
> 0 then the maximum

will be reached at (C̄1, ᾱ), where ᾱ =
1−K

1
γ
0

rf−rb+K
1
γ
0 (rg−rf )

Ω. In more detail, the inequality below

dE(U)

dC̃1

= λ(C̄1 − C̃1)
−γ −









k2

(

1 +K
1
γ
γ

)

1 + rf









γ

(

Y1 − C̃1 +
Y2 − C̄2

1 + rf

)−γ

> 0

holds if

λ >









k2

(

1 +K
1
γ
γ

)

1 + rf









γ
(

C̄1 − C̃1

Ω
1+rf

+ C̄1 − C̃1

)γ

(42)

If C̃1 < C̄1 then the right hand side of the inequality (42) is below







k2

(

1+K
1
γ
γ

)

1+rf







γ

=
(

M
1+rf

)γ
,

where M is defined by (8), and as this is exceeded by λ, i.e., λ >
(

M
1+rf

)γ
, see assumptions of

Proposition 1, then E(U) is increasing in C̃1 and the maximum is reached at (C̄1, ᾱ), what we

wanted to show. Finally, there is no feasible solution for the case when C̄1 ≥ C1 > Y1+
Y2−C̄2
1+rf

as it implies that Ω < 0 which is in contradiction with our assumption.

It can be derived in the same way that for Ω = 0 the utility of (P5)

(1− γ)E(U) = (C̄1 − C̃1)
1−γ









−λ+









k2

(

1 +K
1
γ
γ

)

1 + rf









γ







is an increasing function in C̃1 for λ >
(

M
1+rf

)γ
and thus the maximum will be reached for

(C1 = C̄1, α = 0).
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Finally, in the identical way as in problem (P2) it can be shown for Ω ≥ 0 that all possible

candidates for maximum in problem (P6) are also feasible solutions of (P5) and as the

expected utility function of problem (P6) in these points coincide with the expected utility

function of (P5) then utility of (P5) in its maximum exceeds the utility function of problem

(P6) at its feasible solutions. Note that there is no feasible solution of problem (P7)when

Ω > 0 and the only feasible solution for Ω = 0 is (C1 = C̄1, α = 0).

Problem (P8) has no feasible solution.

Appendix C: Ω < 0

Proof of Proposition 3.

As in the proof of Lemma 1 we proceed in two steps. At first we assume that C1 ≤

Y1 +
Y2−C̄2
1+rf

and then C1 > Y1 +
Y2−C̄2
1+rf

. Note that for C1 ≤ Y1 +
Y2−C̄2
1+rf

< C̄1 (as Ω < 0) it

follows that only cases C1 < C̄1 could be considered and thus only problems (P5)–(P8) need

to be solved.

Problem (P1). For Ω < 0 there is no feasible solution for (P1).

Problem (P2). There is no feasible solution for C1 ≤ Y1+
Y2−C̄2
1+rf

. Let C1 > Y1+
Y2−C̄2
1+rf

and in

addition we assume λ > λΩ<0
1 and C̄2 <

rg−rb
rf−rb

(

(1 + rf )
(

Y1 − C̄1

)

+ Y2

)

= C̄P2
2 . We proceed

in the following way: At first we solve the problem (P2) as an unconstrained problem i.e.,

we solve ∇E(U) = 0, so that the FOC are satisfied, obtain the unique solution (CP2
1 , αP2),

verify that the objective function of (P2) is concave at (CP2
1 , αP2) and that the solution

is also feasible. As the utility function is differentiable at the domain under consideration,

(CP2
1 , αP2) is the only local extrema (namely local maximum) and if the objective function

at the border of (P2) does not exceed its value at (CP2
1 , αP2), then this point is also a global

maximum of (P2) when λ > λΩ<0
1 .

The first order conditions are

dE(U)
dC1

= (C1 − C̄1)
−γ −δp

[

(1 + rf )(Y1 − C1) + Y2 − C̄2 + (rg − rf )α
]−γ

(1 + rf )

−λδ(1− p)
[

C̄2 − Y2 − (1 + rf )(Y1 −C1) + (rf − rb)α
]−γ

(1 + rf ) = 0

dE(U)
dα = δp

[

(1 + rf )(Y1 − C1) + Y2 − C̄2 + (rg − rf )α
]−γ

(rg − rf )

−λδ(1− p)
[

C̄2 − Y2 − (1 + rf )(Y1 −C1) + (rf − rb)α
]−γ

(rf − rb) = 0































(43)

dE(U)
dα = 0 from (43) implies the following

p
[

C̄2 − Y2 − (1 + rf )(Y1 − C1) + (rf − rb)α
]γ

(rg − rf )

= λ(1− p)
[

(1 + rf )(Y1 − C1) + Y2 − C̄2 + (rg − rf )α
]γ

(rf − rb)
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which gives

(

1

K0

)
1
γ
[

C̄2 − Y2 − (1 + rf )(Y1 − C1) + (rf − rb)α
]

= λ
1
γ
[

(1 + rf )(Y1 − C1) + Y2 − C̄2 + (rg − rf )α
]

This implies that

α =
λ

1
γ +

(

1
K0

)
1
γ

λ
1
γ (rg − rf )−

(

1
K0

) 1
γ
(rf − rb)

(C̄2 − Y2 − (1 + rf )(Y1 − C1))

=
λ

1
γ +

(

1
K0

)
1
γ

(

λ
1
γ −

(

1
Kγ

)
1
γ

)

(rg − rf )

(C̄2 − Y2 − (1 + rf )(Y1 − C1)) (44)

If we plug the last expression for α into the C1 part of the FOC in (43) we obtain

(C1 − C̄1)
−γ

δ(1 + rf )
=

[

C̄2 − Y2 − (1 + rf )(Y1 −C1)
]−γ

×









p







(

1
K0

) 1
γ
+
(

1
Kγ

) 1
γ

λ
1
γ −

(

1
Kγ

) 1
γ







−γ

+ λ(1− p)






1 +

λ
1
γ +

(

1
K0

) 1
γ

λ
1
γ −

(

1
Kγ

) 1
γ

rf − rb
rg − rf







−γ







After some simplifications we obtain

C̄2 − Y2 − (1 + rf )(Y1 − C1) = (C1 − C̄1)
rg − rf
rg − rb

[

δ(1 + rf )(1 − p)
rg − rb
rg − rf

]
1
γ

[

λ
1
γ −

(

1

Kγ

)
1
γ

]

= (C1 − C̄1)M1(λ) (45)

which gives (24). In addition, after plugging CP2
1 into (44) we obtain αP2 as given in (25).

Note that

C̄2 − Y2 − (1 + rf )(Y1 − CP2
1 ) =

M1(λ)(−Ω)

M1(λ)− 1− rf

and thus assumption C1 > Y1 +
Y2−C̄2
1+rf

is satisfied for C1 = CP2
1 only if Ω < 0 which happens

to be our assumption.

Note that (24), the assumptions Ω < 0 and λ > λΩ<0
1 (which gives M1(λ) > 1+ rf ) imply

that CP2
1 > C̄1.

What remains to be shown is when is the expected utility function strictly concave at

(CP2
1 , αP2). For this to hold it is sufficient to show that the following holds at (CP2

1 , αP2):
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d2E(U)
dα2 < 0 and D ≡ ∇2

E(U(C1, C2)) =
d2E(U)
dC2

1

d2E(U)
dα2 −

(

d2E(U)
dC1dα

)2
> 0. Note that

CP2
2g − C̄2 =

(

1
K0

) 1
γ
(rg − rb)

(rg − rf )

(

λ
1
γ −

(

1
Kγ

) 1
γ

)

M1(λ)

M1(λ)− 1− rf

(

C̄2 − Y2 − (1 + rf )(Y1 − C̄1)
)

= k
−Ω

M1(λ)− 1− rf

rg − rb
rg − rf

(

1

K0

) 1
γ

(46)

C̄2 − CP2
2b =

λ
1
γ (rg − rb)

(rg − rf )

(

λ
1
γ −

(

1
Kγ

)
1
γ

)

M1(λ)

M1(λ)− 1− rf

(

C̄2 − Y2 − (1 + rf )(Y1 − C̄1)
)

= k
−Ω

M1(λ)− 1− rf

rg − rb
rg − rf

λ
1
γ (47)

and thus C̄2 − CP2
2b = (K0λ)

1
γ (CP2

2g − C̄2). Using (43), (46) and (47) we obtain the following

1

γ

d2E(U)

dC2
1

|(C1,α)=(CP2
1 ,αP2) =

[

−Ω

M1(λ)− 1− rf

]−1−γ

×

[

−1 +
1 + rf

k

(

rg − rf
rg − rb

)2(

λ
− 1

γ −K
1
γ

0

rf − rb
rg − rf

)

]

(48)

1

γ

d2E(U)

dα2
|(C1,α)=(CP2

1 ,αP2) =
(rf − rb)

2

k(1 + rf )

(

rg − rf
rg − rb

)2 [ −Ω

M1(λ)− 1− rf

]−1−γ (

λ− 1
γ −K

1
γ
γ

)

(49)

1

γ

d2E(U)

dC1dα
|(C1,α)=(CP2

1 ,αP2) =
rf − rb

k

(

rg − rf
rg − rb

)2 [ −Ω

M1(λ)− 1− rf

]−1−γ (

λ−
1
γ +K

1
γ

0

)

Note that (49) and λ > 1
Kγ

imply that d2E(U)
dα2 |(C1,α)=(CP2

1 ,αP2) < 0. In addition,

1

γ2

[

−Ω

M1(λ)− 1− rf

]2(1+γ)

D =

[

−1 +
1 + rf

k

(

rg − rf
rg − rb

)2(

λ−
1
γ −

rf − rb
rg − rf

K
1
γ

0

)

]

×
rf − rb

k(1 + rf )

(

rg − rf
rg − rb

)2 [

(rf − rb)λ
− 1

γ − (rg − rf )K
1
γ

0

]

−

(

rf − rb
k

)2(rg − rf
rg − rb

)4(

λ
− 1

γ +K
1
γ

0

)2

and thus

1

γ2

[

−Ω

M1(λ)− 1− rf

]2(1+γ) ( rg − rb
rg − rf

)2 k

rf − rb
D =

1

1 + rf

[

(rg − rf )K
1
γ

0 − (rf − rb)λ
− 1

γ

]
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+
1

k

(

rg − rf
rg − rb

)2(

λ
− 1

γ −
rf − rb
rg − rf

K
1
γ

0

)[

(rf − rb)λ
− 1

γ − (rg − rf )K
1
γ

0

]

−
rf − rb

k

(

rg − rf
rg − rb

)2(

λ−
1
γ +K

1
γ

0

)2

After some derivations we obtain

1

γ2

[

−Ω

M1(λ)− 1− rf

]2(1+γ) ( rg − rb
rg − rf

)2 k

rf − rb
D =

1

1 + rf

[

(rg − rf )K
1
γ

0 − (rf − rb)λ
− 1

γ

]

−
rg − rf

k
λ− 1

γK
1
γ

0

Now it can be easily shown that if λ >

[

1+rf
k +

(

1
Kγ

)
1
γ

]γ

, which follows from assumption

λ > λΩ<0
1 and (21), then D > 0.

Regarding the feasibility, note that (46) and (47) imply that CP2
2g > C̄2 and CP2

2b < C̄2. In

addition, (47), C̄2 ≤ C̄P2
2 and λ > λΩ<0

1 imply that CP2
2b ≥ 0.28

Note that

(1− γ)E(U(CP2
1 , αP2)) =

(

−Ω

M1(λ)− 1− rf

)1−γ
[

1 +
k

1 + rf

(

(

1

Kγ

)
1
γ

− λ
1
γ

)]

= −
(−Ω)1−γ

1 + rf

[

k

(

λ
1
γ −

(

1

Kγ

)
1
γ

)

− 1− rf

]γ

= −
(−Ω)1−γ

1 + rf
kγ
[

λ
1
γ − (1− c̃P2)

(

λΩ<0
1

)
1
γ

]γ

= −
(−Ω)1−γ

1 + rf
(M1(λ)− 1− rf )

γ (50)

What remains to show is that feasible solutions at the border do not exceed the expected

utility at (CP2
1 , αP2), where (P2) obtains its local maximum. The feasible solution at the

border that come into consideration are: (i) C2g = C̄2, (ii) C2b = C̄2, (iii) C2b = 0 and (iv)

C1 = C̄1.

Case (i). C2g = C̄2 when C1 = Y1 +
Y2−C̄2
1+rf

+
rg−rf
1+rf

α for −Ω
rg−rf

≤ α ≤ C̄2
rg−rb

and thus

(1− γ)E

(

U

(

Y1 +
Y2 − C̄2

1 + rf
+

rg − rf
1 + rf

α, α

))

=

(

Ω+ (rg − rf )α

1 + rf

)1−γ

−λδ(1 − p)(rg − rb)
1−γα1−γ

28Note that if we would not want to guarantee C2b ≥ 0 then it would be sufficient to have λΩ<0
1 =

[

1+rf
k

+
(

1
Kγ

) 1
γ

]γ

. The more complicated expression of λΩ<0
1 defined by (21) follows from the constraint

C2b ≥ 0. Also condition C̄2 < C̄P2
2 is implied by the constraint C2b ≥ 0.
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The following can be easily shown

lim
α→+ −Ω

rg−rf

dE
(

U
(

Y1 +
Y2−C̄2
1+rf

+
rg−rf
1+rf

α, α
))

dα
= +∞

and
dE
(

U
(

Y1 +
Y2−C̄2
1+rf

+
rg−rf
1+rf

α, α
))

dα

∣

∣

∣

α=α1

= 0

where

α1 =
kλ

1
γ (−Ω)

(

kλ
1
γ − 1− rf

)

(rg − rf )

Note in addition that α1 ≤
C̄2

rg−rb
for λ >

[

1+rf
k(1−c̃P2)

]γ
, where c̃P2 =

(rg−rb)(−Ω)
(rg−rf )C̄2

and that

d2E
(

U
(

Y1 +
Y2−C̄2
1+rf

+
rg−rf
1+rf

α, α
))

dα2

∣

∣

∣

α=α1

< 0

Thus, for λ >
[

1+rf
k(1−c̃P2)

]γ
is the maximum reached at α1. As

(1− γ)E

(

U

(

Y1 +
Y2 − C̄2

1 + rf
+

rg − rf
1 + rf

α1, α1

))

= −
(−Ω)1−γ

1 + rf

(

kλ
1
γ − 1− rf

)γ
(51)

then based on this it can be shown that for λ > λΩ<0
1

(1− γ)E

(

U

(

Y1 +
Y2 − C̄2

1 + rf
+

rg − rf
1 + rf

α1, α1

))

< (1− γ)E
(

U
(

CP2
1 , αP2

))

where (1− γ)E
(

U
(

CP2
1 , αP2

))

= − (−Ω)1−γ

1+rf

[

k

(

λ
1
γ −

(

1
Kγ

) 1
γ

)

− 1− rf

]γ

, see (50). In sum-

mary, there are only two possible candidates for the maximum: (1) α = C̄2
rg−rb

, which is tackled

in case (iii) and (2) α = α1 for λ >
[

1+rf
k(1−c̃P2)

]γ
where we have shown that expected utility at

(

C1 = Y1 +
Y2−C̄2
1+rf

+
rg−rf
1+rf

α1, α1

)

is smaller than the expected utility at
(

CP2
1 , αP2

)

.

Case (ii). C2b = C̄2 when C1 = Y1 +
Y2−C̄2
1+rf

−
rf−rb
1+rf

α. This case has no feasible solution as

C1 can not exceed Y1 +
Y2−C̄2
1+rf

.

Case (iii). C2b = 0 when C1 = Y1 +
Y2

1+rf
−

rf−rb
1+rf

α for C̄2
rg−rb

≤ α ≤
(1+rf )(Y1−C̄1)+Y2

rf−rb
and

thus

(1− γ)E

(

U

(

Y1 +
Y2

1 + rf
−

rf − rb
1 + rf

α, α

))

=

(

(1 + rf )(Y1 − C̄1) + Y2 − (rf − rb)α

1 + rf

)1−γ

+δp
(

(rg − rb)α− C̄2

)1−γ
− λδ(1 − p)C̄1−γ

2
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It can be shown that this expected utility function is concave and thus its maximum is reached

either at αP20 where

dE
(

U
(

Y1 +
Y2

1+rf
−

rf−rb
1+rf

α, α
))

dα

∣

∣

∣

α=αP20
= 0

or at one of the end-points. After some derivations we obtain

αP20 =
1 + rf

k2 + 1 + rf

C̄2

rg − rb
+

k2
k2 + 1 + rf

(1 + rf )(Y1 − C̄1) + Y2

rf − rb
(52)

which is a convex combination of the end-points and thus the maximum is reached at α = αP20

such that C̄2
rg−rb

< αP20 <
(1+rf )(Y1−C̄1)+Y2

rf−rb
. The last inequalities imply that optimal C1 is

strictly above C̄1 and optimal C2g is strictly above C̄2. Further derivations give

(1− γ)E

(

U

(

CP20
1 = Y1 +

Y2

1 + rf
−

rf − rb
1 + rf

αP20, αP20

))

=

=
kγ

1 + rf

(

rg − rf
rg − rb

C̄2

)1−γ
[(

(

1

Kγ

) 1
γ

+
1 + rf

k

)γ

(1− c̃P2)1−γ − λ

]

= δ(1 − p) C̄1−γ
2

[

λΩ<0
1 (1− c̃P2)− λ

]

(53)

Finally, based on this and (50) it can be shown that for λ > λΩ<0
1

(1− γ)E
(

U
(

CP20
1 , αP20

))

< (1− γ)E
(

U
(

CP2
1 , αP2

))

(54)

if

(

λ
1
γ −

(

1

Kγ

) 1
γ

−
1 + rf

k

)γ
(

c̃P2
)1−γ

< λ−

(

(

1

Kγ

) 1
γ

+
1 + rf

k

)γ
(

1−
(

c̃P2
))1−γ

or if

F (λ) ≡ λ−

(

(

1

Kγ

) 1
γ

+
1 + rf

k

)γ
(

1−
(

c̃P2
))1−γ

−

(

λ
1
γ −

(

1

Kγ

) 1
γ

−
1 + rf

k

)γ
(

c̃P2
)1−γ

> 0

The last inequality holds as F (λ) is a convex function with the minimum being reached at

λ = λΩ<0
1 , see (21), where F (λΩ<0

1 ) = 0.

Case (iv). C1 = C̄1 for −Ω
rg−rf

≤ α ≤
(1+rf )(Y1−C̄1)+Y2

rf−rb
and thus

(1− γ)E
(

U
(

C̄1, α
))

= δp (Ω + (rg − rf )α)
1−γ − λδ(1− p) (−Ω+ (rf − rb)α)

1−γ (55)
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The following can be easily shown

lim
α→+ −Ω

rg−rf

dE
(

U
(

C̄1, α
))

dα
= +∞ (56)

and
dE
(

U
(

C̄1, α
))

dα

∣

∣

∣

α=α3

= 0

for

α3 =
λ

1
γ +

(

1
K0

)
1
γ

λ
1
γ −

(

1
Kγ

)
1
γ

(−Ω)

rg − rf

and λ > 1
Kγ

. As

(1− γ)E
(

U
(

C̄1, α3

))

= −
kγ(−Ω)1−γ

1 + rf

(

λ
1
γ −

(

1

Kγ

) 1
γ

)γ

(57)

then based on this and (50) it can be shown that for λ > λΩ<0
1

(1− γ)E
(

U
(

C̄1, α3

))

< (1− γ)E
(

U
(

CP2
1 , αP2

))

Note that the maximum can not be reached at −Ω
rg−rf

, see (56), and another end-point, α =

(1+rf )(Y1−C̄1)+Y2

rf−rb
, is tackled in case (iii).

There is no feasible solution for problem (P3) when Ω < 0.

Problem (P4). There is no feasible solution for C1 ≤ Y1 +
Y2−C̄2
1+rf

. Let C1 ≥ Y1 +
Y2−C̄2
1+rf

.

At first we show that no local extreme can be a local maximum. This implies that, as the

function is continuous, a maximum will occur at the border of the set of feasible solutions.

In more detail

dE(U)

dα
= λδp

[

C̄2 − Y2 − (1 + rf )(Y1 − C1)− (rg − rf )α
]−γ

(rg − rf )

−λδ(1 − p)
[

C̄2 − Y2 − (1 + rf )(Y1 − C1) + (rf − rb)α
]−γ

(rf − rb)

and thus

d2E(U)

dα2
= λγδp

[

C̄2 − Y2 − (1 + rf )(Y1 − C1)− (rg − rf )α
]−γ−1

(rg − rf )
2

+λγδ(1 − p)
[

C̄2 − Y2 − (1 + rf )(Y1 − C1) + (rf − rb)α
]−γ−1

(rf − rb)
2 > 0

This excludes the possibility of the objective function of (P4) to obtain its maximum in

the interior and thus it would occur at the border of the feasible solutions of problem (P4).
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Now we will consider feasible solutions at the border, namely: (i) C2g = C̄2, (ii) C2b = C̄2,

(iii) C2g = 0, (iv) C2b = 0 and (v) C1 = C̄1. Note that case (i) coincides with case (i)

when proving (P2) and there is only one feasible solution in cases (ii) and (iii), namely
(

C1 = Y1 +
Y2−C̄2
1+rf

, α = 0
)

, which is feasible also for (P2).

Case (iii). The only feasible solution for C2g = 0 is (C1 = Y1 +
Y2

1+rf
, α = 0) with the

utility function being

(1− γ)E

(

U

(

Y1 +
Y2

1 + rf
, 0

))

=

(

Y1 − C̄1 +
Y2

1 + rf

)1−γ

− λδC̄1−γ
2

which is dealt in case (iv) below.

(1− γ)E(U(C1, α)) =

(

(1 + rf )(Y1 − C̄1) + Y2 − (rf − rb)α

1 + rf

)1−γ

− λδp(C̄2 − (rg − rb)α)
1−γ

−λδ(1 − p)C̄1−γ
2 (58)

Case (iv). C2b = 0 when C1 = Y1 +
Y2

1+rf
−

rf−rb
1+rf

α and 0 ≤ α ≤ C̄2
rg−rb

and the utility function

is given by (41). The potential candidates for maximum are α = 0, α = C̄2
rg−rb

and α = ᾱ

where ᾱ is a unique stationary point such that dE(U)
dα

∣

∣

∣

α=ᾱ
= 0 where

ᾱ =
(λδp(rg − rb))

1
γ

(

Y1 − C̄1 +
Y2

1+rf

)

−
(

rf−rb
1+rf

)
1
γ
C̄2

(λδp(rg − rb))
1
γ

rf−rb
1+rf

−
(

rf−rb
1+rf

)
1
γ
(rg − rb)

Note that for C̄2 < C̄P2
2 is ᾱ infeasible and for C̄2 = C̄P2

2 is ᾱ = C̄2
rg−rb

. For α = C̄2
rg−rb

is the

point
(

C1 = Y1 +
Y2

1+rf
−

rf−rb
1+rf

C̄2
rg−rb

, α = C̄2
rg−rb

)

feasible for (P2). Finally, we show that the

utility function at α = 0 is below the utility function at
(

CP2
1 , αP2

)

; i.e., that

E

(

U

(

Y1 +
Y2

1 + rf
, 0

))

≤ E
(

U
(

CP2
1 , αP2

))

(59)

We proceed in two steps. If λ̃Ω<0 ≥ λΩ<0
1 then we show that

E

(

U

(

Y1 +
Y2

1 + rf
, 0

))

≤ E
(

U
(

CP20
1 , αP20

))

(60)

where
(

CP20
1 , αP20

)

and E
(

U
(

CP20
1 , αP20

))

are given by (52) and (53). Inequality (60) holds

for λ ≥ λ̃Ω<0 which implies that also (59) holds as for λ > λΩ<0
1 is E

(

U
(

CP20
1 , αP20

))

<

E
(

U
(

CP2
1 , αP2

))

. On the other hand, if λ̃Ω<0 < λΩ<0
1 then (59) can be shown directly.
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Let λ̃Ω<0 ≥ λΩ<0
1 . Then (60) holds if

(

Y1 − C̄1 +
Y2

1 + rf

)1−γ

− λδ C̄1−γ
2 ≤ δ(1 − p)C̄1−γ

2

[(

1− c̃P2
)

λΩ<0
1 − λ

]

which holds if

λ ≥ λ̃Ω<0 ≡
1

p





1

δ

(

Y1 − C̄1 +
Y2

1+rf

C̄2

)1−γ

− (1− p)
(

1− c̃P2
)

λΩ<0
1





Let λ̃Ω<0 > λΩ<0
1 . Then for λ > λΩ<0

1 (59) holds if

(−Ω)1−γ

1 + rf
kγ

(

λ
1
γ −

(

1

Kγ

)
1
γ

−
1 + rf

k

)γ

≤ λδ C̄1−γ
2 −

(

Y1 − C̄1 +
Y2

1 + rf

)1−γ

Let

G(λ) ≡
(−Ω)1−γ

1 + rf
kγ

(

λ
1
γ −

(

1

Kγ

)
1
γ

−
1 + rf

k

)γ

− λδ C̄1−γ
2 +

(

Y1 − C̄1 +
Y2

1 + rf

)1−γ

(61)

As G(λ) is a continuous decreasing function in λ29 and as G(λ̃Ω<0) ≤ 0 ≤ G(λΩ<0
1 ) then there

exists λP2
0 ∈

[

λΩ<0
1 , λ̃Ω<0

]

such that G(λP2
0 ) = 0. Thus, is obtained at

(

C1 = CP2
1 , α = αP2

)

if λ > λP2
0 .

Thus, (59) holds for λ > max
{

λ̃Ω<0, λΩ<0
1

}

.

Case (v). The utility function of (P4) with C1 = C̄1 is

E(U(C1, α)) = −λδp
(−Ω− (rg − rf )α)

1−γ

1− γ
− λδ(1 − p)

(−Ω+ (rf − rb)α)
1−γ

1− γ

for 0 ≤ α ≤
−Ω

rg − rf
(62)

when C̄2 ≤ C̄P2
2 . It can be easily shown that utility function (62) is convex and thus its

maximum is reached at either α = 0, for which is C1 = C̄1, α = 0 infeasible, or α = −Ω
rg−rf

, for

which is
(

C̄1,
−Ω

rg−rf

)

feasible for (P2).

Problem (P5). Note that for C1 ≥ Y1 +
Y2−C̄2
1+rf

there is only one feasible solution, namely

(C1 = Y1 +
Y2−C̄2
1+rf

, α = 0), which is thus feasible for case when C1 ≤ Y1 +
Y2−C̄2
1+rf

(see below).

When C1 ≤ Y1 + Y2−C̄2
1+rf

it is easy to show that for any fixed C̃1 such that 0 ≤ C̃1 ≤

29This follows from λ ≥ λΩ<0
1 ≥





(

1
Kγ

) 1
γ
+

1+rf
k

1−(1−p)
1

1−p c̃P2





γ

where the latter inequality follows from λΩ<0
1 ≤ λ̃Ω<0.
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Y1 +
Y2−C̄2
1+rf

is the expected utility of (P5) concave and thus its maximum is achieved at

α̃ =
1−K

1
γ

0

rf − rb +K
1
γ

0 (rg − rf )

((1 + rf )(Y1 − C̃1) + Y2 − C̄2) ≥ 0 (63)

Note also that (C̃1, α̃) is feasible for (P5). Thus, the candidates for the maximum for (P5)

are (C̃1, α̃) with 0 ≤ C̃1 ≤ Y1 +
Y2−C̄2
1+rf

and α̃ given by (63). By plugging this point into the

expected utility of (P5) we obtain (after some derivations)

(1− γ)E(U) = −λ(C̄1 − C̃1)
1−γ + λ̂

(

Y1 − C̃1 +
Y2 − C̄2

1 + rf

)1−γ

(64)

where

λ̂ =









k2

(

1 +K
1
γ
γ

)

1 + rf









γ

=









k

(

1 +
(

1
Kγ

)
1
γ

)

1 + rf









γ

As this expected utility is not monotone or concave – in C̃1 such that 0 ≤ C̃1 ≤ Y1 +
Y2−C̄2
1+rf

–

the maximum of (64) can be reached at either end points (see cases (i) and (ii) below) or at

the point (see case (iii) below) where dE(U)

dC̃1

∣

∣

∣

C̃1=CP5
1

= 0 with E(U) being given by (64). Thus,

the cases under consideration are

(i) C̃1 = 0 where

UP5i ≡ (1− γ)E(U) = −λC̄1−γ
1 + λ̂

(

Y1 +
Y2 − C̄2

1 + rf

)1−γ

(ii) C̃1 = Y1 +
Y2−C̄2
1+rf

where

UP5ii ≡ (1− γ)E(U) = −λ

(

−Ω

1 + rf

)1−γ

(iii) C̃1 = CP5
1 ≡

(

Y1+
Y2−C̄2
1+rf

)

λ
1
γ −C̄1λ̂

1
γ

λ
1
γ −λ̂

1
γ

for λ ≥ λΩ<0
2 where

λΩ<0
2 = λ̂





C̄1

Y1 +
Y2−C̄2
1+rf





γ

to guarantee that 0 ≤ C̃1 ≤ Y1+
Y2−C̄2
1+rf

. Note in addition that CP5
1 is the only stationary
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point of E(U) given by (64). Thus,

UP5 ≡ (1− γ)E(U) = −

(

−Ω

1 + rf

)1−γ









λ
1
γ −

k2

(

1 +K
1
γ
γ

)

1 + rf









γ

(65)

= −

(

−Ω

1 + rf

)1−γ (

λ
1
γ − λ̂

1
γ

)γ

It can be shown that E(U) given by (64) is concave at C1 = CP5
1 given by case (iii) as CP5

1

is the only stationary point there. Thus, the maximum for (P5) with λ ≥ λΩ<0
2 is reached in

case (iii), i.e., at point



0 < CP5
1 =

(

Y1 +
Y2−C̄2
1+rf

)

λ
1
γ − C̄1λ̂

1
γ

λ
1
γ − λ̂

1
γ

< C̄1, α
P5 =

1−K
1
γ

0

rf − rb +K
1
γ

0 (rg − rf )

λ̂
1
γ

λ
1
γ − λ̂

1
γ

(−Ω) > 0





Let

UP2 ≡ (1− γ)E(U(CP2
1 , αP2)) = −

(−Ω)1−γ

1 + rf

[

k

(

λ
1
γ −

(

1

Kγ

) 1
γ

)

− 1− rf

]γ

Note that (65) can be written also as

UP5 = (1− γ)E
(

U
(

CP5
1 , αP5

))

= −

(

−Ω

1 + rf

)1−γ









λ
1
γ −

k

(

1 +
(

1
Kγ

) 1
γ

)

1 + rf









γ

Then for λ ≥ λΩ<0
2 the utility function of problem (P2) at its maxima is related to the utility

function of (P5) at its maximum as follows: UP2 > UP5 for k < 1 + rf , U
P2 = UP5 for

k = 1 + rf and UP2 < UP5 for k > 1 + rf . Note in addition that condition k ≤ 1 + rf is

equivalent to δ ≤ δ+ and condition k2 ≤ 1 + rf is equivalent to δ ≤ δ−.

Problem (P6). We proceed in two steps: for case C1 ≥ Y1 +
Y2−C̄2
1+rf

we show that there is

no interior local maximum or minimum for (P6) which implies that the maximum will occur

at the border of the set of feasible solutions for (P6). Then we check all potential feasible

solutions at the border. For case C1 ≤ Y1 +
Y2−C̄2
1+rf

we show that all possible candidates for

maximum are also feasible solutions of (P5) which is the case we have already dealt with.

53



Let C1 ≥ Y1 +
Y2−C̄2
1+rf

. The first order conditions are

dE(U)
dC1

= λ(C̄1 − C1)
−γ −δp

[

(1 + rf )(Y1 − C1) + Y2 − C̄2 + (rg − rf )α
]−γ

(1 + rf )

−λδ(1− p)
[

C̄2 − Y2 − (1 + rf )(Y1 −C1) + (rf − rb)α
]−γ

(1 + rf ) = 0

dE(U)
dα = δp

[

(1 + rf )(Y1 − C1) + Y2 − C̄2 + (rg − rf )α
]−γ

(rg − rf )

−λδ(1− p)
[

C̄2 − Y2 − (1 + rf )(Y1 −C1) + (rf − rb)α
]−γ

(rf − rb) = 0































(66)

dE(U)
dα = 0 from (66) implies the expression for α given by (44) and if we plug it into the C1

part of the FOC in (66) we obtain after some simplifications

λ
1
γ (C̄2 − Y2 − (1 + rf )(Y1 − C1)) = (C̄1 − C1)

rg − rf
rg − rb

[

δ(1 + rf )(1− p)
rg − rb
rg − rf

] 1
γ

[

λ
1
γ −

(

1

Kγ

) 1
γ

]

= (C̄1 − C1)M1(λ)

which gives

C+
1 =

C̄1M1(λ) + λ
1
γ [(1 + rf )Y1 + Y2 − C̄2]

M1(λ) + λ
1
γ (1 + rf )

= C̄1 +
Ω

M1(λ)

λ
1
γ

+ 1 + rf
(67)

In addition, after plugging C+
1 from (67) into (44) we obtain

α+ =
k

rg − rf

[

(

1

K0

)
1
γ

+ λ
1
γ

]

−Ω

M1(λ) + λ
1
γ (1 + rf )

Next we show that the expected utility function is indifferent at (C+
1 , α

+), namely, we show

that at (C+
1 , α+) are d2E(U)

dα2 < 0, and D3 ≡ ∇2
E(U(C1, C2)) =

d2E(U)
dC2

1

d2E(U)
dα2 −

(

d2E(U)
dC1dα

)2
< 0.

Note that

C+
2g − C̄2 = k

−Ω

M1(λ) + λ
1
γ (1 + rf )

rg − rb
rg − rf

(

1

K0

)
1
γ

(68)

C̄2 − C+
2b = k

−Ω

M1(λ) + λ
1
γ (1 + rf )

rg − rb
rg − rf

λ
1
γ (69)
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and thus C̄2− (C+
2b) = (K0λ)

1
γ ((C+

2g)− C̄2). Using (66), (68) and (69) we obtain the following

1

γ

d2E(U)

dC2
1

|(C+
1 ,α+) =

[

−Ω

M1(λ) + λ
1
γ (1 + rf )

]−1−γ

×

[

1

λ
1
γ

+
1 + rf

k

(

rg − rf
rg − rb

)2(

λ− 1
γ −K

1
γ

0

rf − rb
rg − rf

)

]

(70)

1

γ

d2E(U)

dα2
|(C+

1 ,α+) =
(rf − rb)

2

k(1 + rf )

(

rg − rf
rg − rb

)2
[

−Ω

M1(λ) + λ
1
γ (1 + rf )

]−1−γ
(

λ
− 1

γ −K
1
γ
γ

)

(71)

1

γ

d2E(U)

dC1dα
|(C+

1 ,α+) =
rf − rb

k

(

rg − rf
rg − rb

)2
[

−Ω

M1(λ) + λ
1
γ (1 + rf )

]−1−γ
(

λ− 1
γ +K

1
γ

0

)

(72)

Note that (71) and λ > 1
Kγ

implies that d2E(U)
dα2 |(C+

1 ,α+) < 0. In addition,

1

γ2

[

−Ω

M1(λ) + λ
1
γ (1 + rf )

]2(1+γ)

D =

[

1

λ
1
γ

+
1 + rf

k

(

rg − rf
rg − rb

)2(

λ−
1
γ −

rf − rb
rg − rf

K
1
γ

0

)

]

×
(rf − rb)

2

k(1 + rf )

(

rg − rf
rg − rb

)2 [

λ−
1
γ −K

1
γ
γ

]

−

(

rf − rb
k

)2(rg − rf
rg − rb

)4(

λ
− 1

γ +K
1
γ

0

)2

where D = ∇2
E(U(C1, C2))(C+

1 ,α+) =
d2E(U)
dC2

1

d2E(U)
dα2 −

(

d2E(U)
dC1dα

)2 ∣
∣

(C+
1 ,α+)

. Thus,

1

γ2

[

−Ω

M1(λ) + λ
1
γ (1 + rf )

]2(1+γ) (
rg − rb
rg − rf

)2 k

rf − rb
D =

rf − rb
1 + rf

[

λ
− 1

γ −K
1
γ
γ

]

−
rg − rf

k
λ
− 1

γK
1
γ

0 < 0

for λ > 1
Kγ

which gives that D = ∇2
E(U(C1, C2)) =

d2E(U)
dC2

1

d2E(U)
dα2 −

(

d2E(U)
dC1dα

)2
< 0. Thus, the

expected utility is indifferent at (C+
1 , α1), also for λ ≤ 1

Kγ
, which is the only point satisfying

the FOC and thus the maximum will occur at the border.

The feasible solutions at the border for (P6) that come into consideration are given by:

(i) C2g = C̄2, (ii) C2b = C̄2, (iii) C2b = 0, (iv) C1 = C̄1 and (v) C1 = 0.

Case (i): C2g = C̄2 when C1 = Y1 +
Y2−C̄2
1+rf

+
rg−rf
1+rf

α and 0 ≤ α ≤ −Ω
rg−rf

. It can be seen
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that

(1− γ)E

(

U

(

Y1 +
Y2 − C̄2

1 + rf
+

rg − rf
1 + rf

α,α

))

= −λ

(

−Ω− (rg − rf )α

1 + rf

)1−γ

−λδ(1 − p)(rg − rb)
1−γα1−γ

is a convex function in α and thus its maximum is reached either for α = 0 or α = −Ω
rg−rf

.

Thus, the potential candidates for maximum in this case are
(

C1 = Y1 +
Y2−C̄2
1+rf

, α = 0
)

or
(

C1 = C̄1, α = −Ω
rg−rf

)

. Note that point
(

C1 = Y1 +
Y2−C̄2
1+rf

, α = 0
)

is feasible also for (P5) and

is also the only feasible solution for case (ii). On the other hand, point
(

C1 = C̄1, α = −Ω
rg−rf

)

is feasible solution for (P2).

Case (iii). C2b = 0 when C1 = Y1 +
Y2

1+rf
−

rf−rb
1+rf

α which is feasible for

(1+rf )(Y1−C̄1)+Y2

rf−rb
≤ α ≤ C̄2

rf−rb
. It can be seen that

(1− γ)E

(

U

(

Y1 +
Y2

1 + rf
−

rf − rb
1 + rf

α,α

))

= −λ

(

C̄1 − Y1 −
Y2

1 + rf
+

(rf − rb)

1 + rf
α

)1−γ

+δp((rg − rb)α− C̄2)
1−γ − λδ(1 − p)C̄1−γ

2

(73)

The potential maximum of (73) thus can be reached either at the endpoints α =
(1+rf )(Y1−C̄1)+Y2

rf−rb

and α = C̄2
rf−rb

or at the point αP6 such that
dE

(

U

(

Y1+
Y2

1+rf
−

rf−rb
1+rf

α,α

))

dα

∣

∣

∣

αP6
= 0. Simple

derivation gives

αP6 ≡
λ1/γ − k2

1+rf

C̄P2
2

C̄2

λ1/γ − k2
1+rf

C̄2

rg − rb
(74)

which for C̄2 < C̄P2
2 is below

(1+rf )(Y1−C̄1)+Y2

rf−rb
and thus infeasible. This implies then that for

C̄2 < C̄P2
2 the maximum of (73) can be reached only at the end points, namely

(

C1 = C̄1, α =
(1+rf )(Y1−C̄1)+Y2

rf−rb

)

or
(

C1 = Y1 +
Y2−C̄2
1+rf

, α = C̄2
rf−rb

)

where the former is fea-

sible also for (P2) and the latter for (P6) which will be dealt with later (in case when

C1 ≤ Y1 +
Y2−C̄2
1+rf

).

In case (iv) any feasible solution is also feasible for (P2). There is no feasible solution in

case (v).

Let C1 ≤ Y1 +
Y2−C̄2
1+rf

. Note that the utility of (P6) is a decreasing function in α for any fixed
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C1

dE(U)

dα
= δp

[

(1 + rf )(Y1 − C1) + Y2 − C̄2 + (rg − rf )α
]−γ

(rg − rf )

−λδ(1 − p)
[

(1 + rf )(C1 − Y1) + C̄2 − Y2 + (rf − rb)α
]−γ

(rf − rb) < 0

if

λ >
p(rg − rf )

(1− p)(rf − rb)

[

(1 + rf )(C1 − Y1) + C̄2 − Y2 + (rf − rb)α

(1 + rf )(Y1 − C1) + Y2 − C̄2 + (rg − rf )α

]γ

The latter is achieved if

1

Kγ
≥

p(rg − rf )

(1− p)(rf − rb)

[

(1 + rf )(C1 − Y1) + C̄2 − Y2 + (rf − rb)α

(1 + rf )(Y1 − C1) + Y2 − C̄2 + (rg − rf )α

]γ

as it is assumed that λ > 1
Kγ

where Kγ is given by (7). It can be shown that the above

inequality holds if C1 ≤ Y1 + Y2−C̄2
1+r which is our assumption. In more detail, the set of

feasible solutions for (P6) can be written as

0 ≤ C1 ≤ Y1 +
Y2−C̄2
1+rf

Y1 +
Y2−C̄2
1+rf

−
rf−rb
1+rf

α ≤ C1 ≤ Y1 +
Y2

1+rf
−

rf−rb
1+rf

α

0 ≤ α ≤
(1+rf )Y1+Y2

rf−rb

Let C̃1 be fixed and such that 0 ≤ C̃1 ≤ Y1 +
Y2−C̄2
1+rf

. Based on the first inequality in the

second row of the inequalities above and the fact that the utility of (P6) is decreasing in α it

follows that the smallest possible α̃ such that the feasible set is satisfied for C1 = C̃1 is given

by

Y1 +
Y2 − C̄2

1 + rf
−

rf − rb
1 + rf

α̃ = C̃1

and thus

α̃ =
(1 + rf )(Y1 − C̃1) + Y2 − C̄2

rf − rb
∈

[

0,
(1 + rf )Y1 + Y2

rf − rb

]

Note that (C̃1, α̃) completes C̃1 ≤ Y1 +
Y2

1+rf
−

rf−rb
1+rf

α̃ = C̃1 +
C̄2

1+rf
as C̄2 ≥ 0. Thus, for any

given C̃1 that satisfies 0 ≤ C̃1 ≤ Y1 +
Y2−C̄2
1+rf

is the point
(

C̃1,
(1+rf )(Y1−C̃1)+Y2−C̄2

rf−rb

)

where the

utility of (P6) achieves its maxima. As point (C̃1, α̃) is feasible also for (P5) and as utilities

of (P5) and (P6) coincide at this point then the utility function of (P5) at its maximum is

bigger or equal to the utility function of (P6) at any point (C̃1, α̃).

Problem (P7). The only feasible solution is
(

Y1 +
Y2−C̄2
1+rf

, 0
)

which is feasible also for (P5).

Problem (P8). Note that the only feasible solution for case when C1 ≤ Y1 + Y2−C̄2
1+rf

is
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(

C1 = Y1 +
Y2−C̄2
1+rf

, α = 0
)

. Let C1 ≥ Y1 +
Y2−C̄2
1+rf

. As d2E(U(C1,α))
dα2 > 0 then no local extreme

can be a local maximum. Thus, an maximum will occur at the border of the set of feasible

solutions. The feasible solutions at the border that come into considerations are: (i) C2g = C̄2,

(ii) C2b = C̄2, (iii) C2g = 0, (iv) C2b = 0, (v) C1 = C̄1 and (vi) C1 = 0. Note that case (i)

was already dealt with in case (i) of problem (P6) and the only feasible solution in case (ii) is
(

Y1 +
Y2−C̄2
1+rf

, 0
)

which is feasible also for (P5). In addition, there are no feasible solutions in

cases (iii) and (vi) and neither in case (iv) for C̄2 < C̄P2
2 . Finally, if C1 = C̄, case (v), then

any feasible solution will be feasible also for (P4).
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