Potential
- Suitable for all users
- Suitable for all kinds of mobility (commuting, every day errands, sport, spare time activities)
- Replaces cars

Properties / Materiality
- High weight
- Battery must not get wet
- Different designs for different purposes
- Recuperation (Promise)
- High costs

Actual Use
- Used for free time activities and little for commuting (urban and rural areas)
- Supports in particular the mobility of elderly/impaired/unathletic people (enabler technology)
- Different use in urban and rural areas
- Rarely replace cars

Explaining Factors
The discrepancy between potential and actual use can be explained by values, traffic system and E-Bike infrastructure

Values
1. The athletic and young ride normal bicycles
2. The elderly, unathletic, impaired ride e-bikes

Traffic System
1. Cities:
 - Commuting distances small
 - Little parking space
 - Traffic jams
 - Dense system of public transport
2. Rural areas:
 - Commuting distances larger
 - No problem with parking and traffic jam
 - Public transport little attractive

E-Bike Infrastructure
1. Cities
 - Little private and (inexpensive) public infrastructure for locking high value e-bikes in dry places
 - E-Bikes are heavy; tracks to move them over stairs are often missing
 - Appropriate bicycle lanes exist
 - Female user sometimes experience difficulties with heavy e-bike (carrying)
 - Bicycle lanes are for commuting and errand activities
2. Rural Areas
 - Bicycle lanes are touristic and for spare time activities

Recommendations for Urban Areas
Extend the network by turning existing charging stations into sharing stations and providing weather and theft proof shelter
So the problem of a
- the high weight,
- the high costs
- the missing private infrastructure could be solved

Join e-bikes as one element amongst others in an integrated mobility system of cities by addressing:
- lack of private, weather proof, easy accessible storage space;
- threat of theft

Abstract
E-bikes are often perceived as zero-emission vehicles that promise sustainability and energy efficiency. However, the concept of e-bikes as “green” innovation is contested. Therefore several questions can be raised: In what way is this seemingly green innovation really used? Does it actually contribute to sustainability? What is necessary that e-bikes replace cars and contribute to sustainable traffic?

The paper shows that several factors have a concrete impact on the use of e-bikes: design elements, available private and public infrastructure, values as well as the users’ everyday practices.

The research project “EnInnovAT—Diffusion of energy innovations in Austria”, was funded by the FFG and the 4th call of e!Mission.at from the Austrian Climate and Energy Fund.