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ADAPTIVE STOCHASTIC APPROXIMATIONS a
Karel JANAC, M.Sc., Ph.D.

Many of the present problems in automatic control economic
systems and living organism can be converted to parameter opti-
mization in stochastic systems. Foremost among these problems
are questions of the control of systems with incomplete in-
formation, learning problems, adaptive control, identification
of objects, and the automatic synthesis of objects.

___ Such problems can be solvec by stochastic approximation
‘methods which are, essentially, iterative procedures [1]. For
this reason, great attention is taid to these methods in
connection with practical applications. They were elaborated
as a purely mathematical problem a long time -ago and a number
of valuable rasults are now available [i]. Not orly the con-
ditions of convergence, but some properties of the asymptotic
speed of convergence are also known.

In some cases, however, a disadvantage of stoclastic
approximations is the slow convergence to the desired extreme
of the optimality criterion. At present, utmost attention is
devoted to the elimination of these undesirable properties}
Unfortunately, practical requirements are often in disagreement
with the assumptions from which we start when seeking more
effective algorithms [3,&1 . ‘One of the assumptions that cannot
be satisfied when applying this method is the execution of an
infinite number of iterative steps (n— o). This means that we
must confine ourselves to a finite n and adopt some method for
deciding whether the required optimal parameter values have
been attained. Let us assume axiomatically, that such a decision
is known. An algorithm leading within the shortest possible
time (or, equivalently, at minimum cost) to the decision
concerning the finding of the extreme will then be considered
to be the most suitable. Such an assessment involves not only
demande made on the optimal algorithm, but also on its com-
plexity and thus also on the time required for its implemen-
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tation. For the time being, the procedure of finding the
optimal algorithm for a finite n is theoretically impracti-
cable. It will therefore be advisable to investigate
algorithms which retain good asymtotic properties and are in
many cases of greater advantage than the algorithms commonly
used heretofore. Of course, they must also be easy to
implement. Several algorithms of this type will now be

discussed.

Let us consider the solution of the following problem.

k .
, over which a

Take a k-dimensional Euclidean space X = E
k-dimensional regression function R(x) is defined. R(x),
where x € X, has only one minimum for x = O. Known are only
estimates of this functions, ﬁ(x), but not the values of

R(x). Our task is to find the minimum of the function R(x).

New stochastic approximation methods have been presented
by Dr. Fabian LS} , who utilizes the recurrence relations

a
- n i .
X = X + 5 (hn - 1) ‘Yng sign Yn (1)

and the further m>dification

a
n

(h, - 1) sign Y (2)

n

Both methods converge with probability one under conditions
sufficiently general for practical application (for details
see [5])and for

i %9 %3 a_ 2

N , n _
c -»0, 2 a=+t__ , 2 ac crt__, ( ) <+ oo (3)
n fzy noee P L n n< oo 71 Cn ’

In both relations, h, equals the first uisuzcessful step in
the direction of the estimated gradient. The method thus
utilizes an estimate of the gradient of the function R(x)

for several working steps in the same direction., Thus, every
estimate of the gradient is utilized to a greater extent for
optimizing the function R(x). This is of speciai advantage

in the multidimensional case, where the determination of the

estimate of the gradient is highly time-consuming (reéuiring
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k or k+1 calculations).

When using the recurrence relation (1), both the length
and direction of the working step are determined by the value
of the estimated gradient. With the recurrence relation (2),
the length of the working step is independent of the estimated
gradient and its direction is determined by the diagonal of
a k-dimensional parallelepiped. This algorithm is of advantage
in case the regression function is flat for values of the

parameters x remote from the optimal ones. That is to say,

" in such a case the algorithm (1) (as well as other known

procedures) results in small working steps.

The author presents a new, very easily realizable modi-
fication of the algorithm, which combines the advantages of
the procedures (1) and (2). '

For this purpose, use is made of the non-linear re-
currence relation

an
.Xn+1 = Xn +

(hn - 1) f(Yn) (W)
n

where f is an odd, non-decreasing function, the absolute value
of which has positive constants for its upper and lower bounds.
Thus, f(-Y) = -f(Y¥); then f(Yz) = f(Yl) for every Y, = Y

Furthermore, K2 - if(Y)g'ﬂ: Kl'

2 1 (5

For practical reasons it is advisable to choose the

function f as follows:

f1 = K sign Y for O_i;‘Y{jg K
£, =Y | for K< |¥| < 1 (8)
£, = sign ¥ for 1< | Yl

The form of such a function is shown in Fig.1. Obviously, we

move in the direction of the gradient as long as the estimates
(i)
n

between K and unity. In all other casec it is certain that no

8oy a
parameter will change by less than K Eﬁ— and by more than cn .

n n -
The fact that the method (4) retains its properties of

convergence follows from the two considerations presented below

of the derivatives in the individual directions of Y lie
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and from the proof given in ES} . Let us first chsider a
recurrence relation that may be regarded as a modification
of the Blum method, \

a :
- n '
Xpar = Xy ¥ g £0I) (7

Then consider the relation given in |5] , for which convergence

is ensured, i.e.

N I N sign Y ‘ (8)

Let 1Xn be a Vector for which the relation (8) holds good when

K=Ky > {f(Y)*, and 2Xn a vector for which (8) holds good when
K = K, <iif(Y)4. For every step we have

, o a _
Hzxn+1 - Xn;‘ <1I’Xn+1 - XnH :llgiw f(Yn){m<|FXn+1 B Xn“ (9)

and the convergence of the relation (6) then follows from the

procedure used to prove the convergence of the relation (8).

The proof relating to the convergence of the method in-
volving several working steps [5} also applies to the properties

of convergence of the relation (4).

The method (4) combines the advantages of the two proce-
dures (1) and (2) and it is very easy to realize technically.
When solving prcblems by hybrid computation techniques, it can
be iﬁplemented as shown in Fig.2, i.e. by adding a single non-

linear function generator which produces the function £(Y).

An unpleasant feature appears when practically applying
the method which utilizes several working steps in the direc-
tion of the estimated gradient. Let us consider the situation
occuring when the sensitivity of the regres%}ﬁ%xfgnction
R(x), expressed by the partial derivatives _ETEE———’ is in some

region considerably larger for several parametePS'xi, RoseerX,




than its sénsitivity with respect to the parameteré X 410
Kipps +ves Xpo In this case there is a large probability

that the gradient of the regression function R(x) will be
correctly estimated for the parameters Xys Xy eees X but
incorrectly (with opposite sign) for some of the parameters
Xpeqs Xpagor tovs Xpo In consequence, even though the function
R(x) is optimized in the course of the working steps, some
parameters will recede considerably from the point of extremes
of R(x). This case cannot be considered as being favourable.
In order not to loose information on the form of the gradient
of the function R(x) for too long a period, it is possible to
use a modified recurrence relation which limits the number of

working steps, namely

a
= B - ‘
Xn+1 = Xn + c (Hn 1) f(Yn) (10)
where H = h for h, << A
n n n —
and Hn = A for hnf>> A,

A being a natural number (A > 2) suitably chosen with regard
to the number of parameters ys wees Ris ey Xy SO that a
certain equilibrium is reached between the number of calcula-
tions needed for estimating the gradient and the number of

working steps.

When using stochastic approximations, the sequences a
and c, must be chosen so as to satisfy the conditions for the
convergence of the method and to obtain, at the same time, the
maximum speed of convergence. For this purpose it is possible
to make use of a number of papers ( fﬁ][?] @]) which treat this
problem and seek sequences optimal in the asymptotic sense as
well. Attempts have also been made to find optimal sequences
for a finite n. At present, however, it seems that in the
general case there is no possibility of determining the optimal
length of the step an/cn for a finite n, and therefore it
appears reasonable to consider algorithms which would adapt

the lenght of the step to the course of the optimization process.
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This means using the principle of experience. Such an approach
has the advantage of not requiring any further estimates of
the function R(x) (e.g., when considering the form of the

second derivative).

The procedure outlined below derives the information needed
for adaptation from the requirement of a certain balance between
the number of working and trial steps and the mean value of
the variation in the direction of the parameters during the

last q steps.

Let the length of the working steps be

- \j(’n_ n | (11)

where 1 < @_f}c.

<

In addition, let us assume that

n ,.
a ¥ =J_ +d
) 4

for h_>A, and %%' é& ’ sign Y(i) | ~-gsign Y(i) <~—29£—

n 1 f%D =1 n-1-1 n-1 b1
where by<k; d<e -1 is a positive number, (12)

fi = 0t -
b Ynt1 Tyn ~ 9
q k (1) (1),
: < - ~, 29k

for h < A, and > ;ga sign Y 7;_q -sign Y _,|> B,

where b2<; bl’ A2<;A1 are natural numbers;

c¢) in all other cases,

J ntl - N7

o) o

The values Oft?n are, for example, integers between one and ten.
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The length of the steps is varied in the aforesaid
manner so that the number of working steps should not be larger
than A1 (increasing the length of the steps), but notsmaller
than A, (reducing the length of the steps). At the same time,
the mean number of variations in the direction of all para-
meters during the last q steps is taken into account. If we
have moved predominantly in the same direction and if hn.>5A19
the .length of the steps will have to be increased. If we have
moved predominantly in various directions and if hnei AZ’
the length of the steps will have to be reduced. In all other
casesaifn will not be changed and we proceed according to the

original sequence a_/c_. A,, A,, g9, b,, and b, must be chosen
n n 2 1 2

2
so as to utilize the adapt%ve propertizss of the procedure,
but so as to make the adaptation less dependent on random
observational errors of the function R(x). For example, if
we choose b1 = k and b2 = 0, we will have to increase the
working steps only if, during all g preceding steps, all the
parameters varied in the same direction, and we will have to
reduce them if the direction of the parameters has alter-

nated. (Analogously, c§ = %h'c can also be varied by the

same principle as an/cn). Fig.g., where the sums are evaluated
approximately by a simple analogue-digital element with memory,
shows how simple it is to implement the procedure presented
above. The change of 30(or %’) is produced by a digitally

switched voltage divider.

The function y7(or ¥/) has positive constants for its
upper and lower bounds, and for this reason the properties of
convergence of the recurrence relation (10) are not disturbed.
In the vicinity of the optimumg\y7min will obviously be treated

in a manner conforming to the method of adaptation (12).

When choosing anand c, by the criteria of maximum speed
of convergence, the value of an/cn drops in the asymptotic case
very rapidly from the original value al/cl. This circumstance
can lead to a situation where the optimum of the function
R(x) will be appreoached by steps too small even of the length

of the step is modified. Such a situation is indicated by the
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fact that ¥ =
J J max

can be utilized for a hierarchic control of the adaptive

for a number of steps. This information

properties of stocltastic approximations.

In case that

gig\yn_l. = f)max (13)

we take
X X X '
a a X
n _ n-N X _
X X - x 5 C = Cp-N
c c
n n-N
where N » 1.

This means that we return by N steps in the sequence of the
coefficients a, and c¢_. In this way it is possible to pass on
to considerably larger steps while the algorithm is imple-
mented in a rather simple manner. Stochastic approximations
controlled in this way can also be used for following the point
of optimum in slightly non~-stationary problems.

All the modifications presented above are characterized
by their simple realizability. If the length of the step is
varied separately for each individual parameter, the reali-
zation becomes far more complicated. Using the principle of

experience, it is possible to implement the following method of

adaptation:
4
a(l) . a
n _ U”(l) n (1)
(i)* ' %y
c
n
(i)
where 1 < ? -« ¢, and let

(1) _ (1) : . (i) . (i) 2
P fu'l v agor Jio |sien Th-1-1 ~Sign Yn»]_l <~b‘%—




N

] , i X N i . i . 2
b):y;i; = ;l) - d for ﬁi ’81gnYéii_l -sign Y;i{ ;'—Bﬂu
- 2
c)i?n+1 = 1 for ﬁ% 151gnlYéiinl -sign ¥ l! > -%9—
1=0 3
X

where 1<b3 <’b2<b1;
In cases where the change of parameters during the q last

steps does not proceed predominantly in the same direction,

condition c¢) is intended to help us quickly to progress again

in the direction of the estimated gradient.

The iterative procedures presented above cannot be con-
sidered as optimal, but the principle of adaptation of the
step length has a number of advantages, since it utilizes to a
greater extent the information on the form of the regression
R(x). Their application is of special.advantage in cases where
it is impossible to execute a large number of steps n and thus
to make full use of the work done by various authors on the
asymtotic properties of stochastic approximations. The new

methods described here are characterized by the ease with

which they can be implemented. Even in cases where the classical

Blum method would appear to be the best, the aforementioaed
methods exhibit properties that are only slightly worse
(especially in the multidimensional case). Their chief ad-

vantage thus lies in their greater versatility.
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Adaptive Stochastic Approximations

Karel Janasé, M.Sc. Ph. D.

Many of the present problems in automatic control can be

converted to the parameter optimization in stochastic systems.

Such problems can be solved by stochastic approximation
methods which consist, essentially, if iterative procedures.
However, in a number of cases they suffer from the disad-
vantage of a low speed of convergence to the desired extreme
of the optimality criterion. Inez aumber of practical cases,
the properties of asympttic convergence of stochastic approxi-

mations cannct be utilized.

In this paper the author presents several new algorithm

modifications which in some cases may be more advantageous

as regards the finite number o. steps n and still retain good

asynptotic properties.

The first method makes use of the non-linear recurrence

relation

a
n

) (h, - 1) f(Yn) (1)

where f is a special function. The method involves (hn - 1)
working steps in the direction of the estimated gradient.
h, is a natural number determining the order of the first

unsuccessful step.

Another modification limits the number of working step in
order to prevent loss of information concerning the form of the

gradient for excessive periods of time.

A further method consists in adapting the length of the
step (multiplying by}ﬂn) on the basis of the number of working
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steps and of experience gained during preceding steps.

a
n n
= , where 1 < < c (2)
x e =¥=

The hierarchic principle of adaptation can be used in
cases where a number of steps is performed w1th&%’=\y max"
We then assume that

X X X
an an-N

= = —x — » where N » 1 (3)
c c

n n-N

This means that we return N steps in the sequence of coeffi-

cients.

The last modification consists in adapting the length

of the step separately for each individual parameter,

(i)
a . a

n__ . \y7n(l) cn )
c(i) n

n

where 50;1) is changed on the basis of experience obtained in

the foregoing steps.

The stochastic apprcximations presented in this paper
are characterized by the ease with which they can be imple-~
mented. They are of special advantage in cases where it is
impossibel to execute a sufficiently large number of steps I
The procedures outlined here retain the good asymptotic pro-

perties of known stochastic approximations.
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