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ABSTRACT

This paper presents evidence on the following question: By how
much does an unexpected change in real GDP of 1 percent change
this series in the long-run? To shed light on the robustness of
the various methods suggested in the literature to answer +this
question, we filter quarterly Austrian data on real GDP by three
seasonal adjustment methods. Applying a variety of time series
techniques to the resulting series allows us to report two main
findings. First, unexpected shocks affect GDP in the long-run.
This finding contradicts conventional wisdom about the generating
mechanism of business cycles and confirms results by Campbell and
Mankiw (1987) for U.S. data. Second, quantitative measures of
persistence are not robust with respect to different seasonal
adjustment methods. In addition, we present Monte Carlo evidence
showing that the Census X-11 method for seasonal adjustment can be
a source of spuriously high measures of persistence if seasonal
differencing is the appropriate adjustment method.






1. Introduction

The nature of non-stationarity in macrceconomic time series is
currently the subject of an intense debate with possibly profound
implications for macroeconomic theorizing. The traditional view of
nonstationarity in economy wide output measures like gross
domestic product (GDpP) can be described as follows: The
nonstationary component of GDP, sometimes called "natural output",
follows a deterministic trend. Actual GDP fluctuates around this
trend, generating what is called a "business cycle". The business
cycle is viewed as a highly autocorrelated but stationary movement
of actual output around "natural output". Applied work embracing
this vision typically starts by regressing GDP on a deterministic
time trend and treats the residuals of +this regression as the

empirical phenomenon to be explained by business cycle theory.

Empirical work pioneered by Nelson and Plosser (1982) has led to a
very different perspective on non-stationarity: The trend in GDP
is envisaged as a random halk with drift. First differencing
instead of subtracting a deterministic time +trend is from this
perspective the appropriate method to handle non-stationarity in

macroeconomic time series like GDP.

If the non-stationarity in output is actually better described by
a stochastic trend, we would expect that innovations change the
level of the time series permanently. Shocks will be persistent.
In contradistinction, +the +traditional view implies +that shocks
induce only transitory movements around a fixed trend and will
consequently have no ultimate effect on the level of +the time
series. Acceptance of the view that non-stationarity in typical
macroeconomic time series is better characterized by a stochastic
trend, however, raises the question of the magnitude of
persistence of unexpected shocks as formulated by Campbell and
Mankiw (1987b): By how much does an innovation of 1 % in GDP
increase the level of this series in the long run? It is easy to
demonstrate that the realizations of a stochastic process could
well follow a stochastic trend but the persistence of unexpected
shocks could nonetheless be small.



Most studies measuring persistence in macroeconomic time series
use U.S. data usually adjusted for seasonal fluctuations by some
version of the Census X-11 method. Campbell and Mankiw (1887b)
report for U.S. GNP data that a shock of 1 % increases the level
of this series by more than 1 % in the long run. Campbell and
Mankiw (1988) extend their work to six other important
industrialized countries with similar results. Campbell and Deaton
(1987) f£find high persistence in U.S. labor income. Using a
somewhat different technigque Clark (1987) finds significantly
lower persistence in U.S. production series.

In this paper we first elaborate on the notion of persistence
formally. In the empirical part we use several unit root tests
suggested by Dickey and Fuller (1979) and Stock and Watson (1986)
to test for stochastic trend in quarterly real Austrian GDP. In
the next step, we investigate the persistence of innovations in
GDP, using ARMA-representations and a measure of persistence
suggested by Cochrane (1986). To shed light on the robustness of
the results with respect to seasonal adjustment, we employ three

different procedures to extract the seasonality from the raw data.

We report two main findings: First, innovations in Austrian real
GDP change the 1level of this series permanently. This finding
contradicts conventional wisdom but is consistent with the results
of recent U.S. investigations. Second, seasonal adjustment matters
for the quantitative importance of persistence. In particular, we
find for Austrian data that Census X-11 adjusted data exhibit
"excess persistence” in the sense that a 1 % innovation raises the
level of +the series by more than 1 %. Alternative seasonal
adjustment procedures like seasonal differencing or regression on
seasonal dummies produce series that exhibit lower measures of
persistence. We also report the results of several Monte Carlo
experiments showing that Census X-11 adjustment will in general be
a source of upward bias in measures of persistence if seasonal
differencing is the appropriate adjustment method.



2. Persistence

The following question is at the center of the persistence debate
(Campbell and Mankiw (1987), p. 857): "By how much does a shock of
1 % at time point t affect the level of a macroeconomic time
series in the 1long zrun?". The amount of the long-run change in

percentage points can be +taken as a heuristic definition of
persistence.

To derive a more formal definition of persistence, let us first
abandon the link to percentage points. Instead, we shall introduce
the concept of a "unit shock" at t=t and restrict ourselves to
processes whose asymptotic reaction to such a shock is not
influenced by the timing of the shock.

Assumption: Let (Y¢) be a stochastic process and Q¢ be the o-
algebra generated by the past of the process at t O(Yt, Yeu1,ees)

.

Further assume the s-step innovations Yi,.g-E(Y¢+g|Qt) to exist for

" all s and to obey stochastic properties which are independent of

Definition: Let (Y¢) be a process satisfying the assumption. Let
Q*
process, except for a unit shock at T, i.e. o(¥ +1,¥Y;_1,¥¢-2,...).
The difference E(Yt+s|ﬂt*)—E(Yt+S]9t) will be called the
persistence at s steps and its limit as s - «» will be called the

denote the o-algebra generated by the past of +the same

persistence at « or simply persistence.

Since Q¢ may be thought equivalently to be generated by the one-
step innovations €;=Y_.-E(Y.|Qc¢-1) plus deterministic information,

*
Qr

innovation sequence (€3+56.:%) where éji denotes Kronecker's §

can be defined equivalently as being generated by the

defined as 1 for i=j and 0 else (compare Abraham and Yatawara
(1988)). Note that our definition of persistence by a "unit shock"
argument is closely related to the concept of innovations outliers
(see Fox (1972)). Further note that, if any of the expectations or
limits are undefined, persistence will be undefined. Nevertheless,
if these functionals diverge towards « (or -=) we may define
persistence to be infinite.



The examples for various stochastic processes in table 0O
illustrate +the definition. It is particularly important to
remember that the persistencé of any stationary series is zero and
that, within the class of processes integrated of integer order,
only processes integrated of order one produce finite non-zero
persistence. This class of processes allows for a moving-average
(MA) representation of first differences and table 0 shows that it
suffices to calculate the sum of the MA coefficients to obtain an
estimate for persistence. The same can be done for rational
transfer (ARMA) models by calculating the sums of the AR as well
as that of the MA coefficients and dividing. Measures calculated
according to this strategy are called A-measures by Campbell and
Mankiw (1987a).

Let us consider the three examples at the bottom of table 0. These
are "seasonal" processes with an AR representation containing the
factor 1-L4. Since for these processes the s-step persistence does
not converge, their persistence is not defined. However, if the s-
step persistence values approach four different 1limit points
instead of a singular limit, we define "natural persistence” as
the average of the limit points, if necessary weighted by their
asymptotic frequency. Given this definition, the "seasonal random

walk" (1-L4)Yt=Et has a natural persistence of %.

For practical purposes, it is more straightforward to seasonally
adjust the series and to measure persistence on the adjusted
series. For a seasonal process of the above specification, the
correct adjustment is given by the seasonal moving average (SMA)
filter

YS=%(1+L+L2+L3) vy (1)

(since (1-L4)=(1-L)(1+L+L2+L3). The adjusted series retains the AR
root at 1 - the "trend" - but is free from the seasonal unit roots
at #i and -1. If Yy is a seasonal random walk, Y+% has a defined
persistence of 1. This motivates that the SMA filter multiplies
the natural persistence by four. For this reason, in the following
all measures of persistence taken from adjusted series generated
through the SMA filter will be divided by four to make them



comparable with the persistence of non-seasonal processes.

The SMA filter is not the only way to seasonally adjust the
series. A'popular alternative is to regress the data on seasonal
dummies and use the residuals as adjusted data. The official
alternatives are the intricate seasonal adjustment procedures of
national statistical Bureaus. The best known example is the Census
X-11 extensively used for U.S. data. Contrary to the SMA filter, a
data-independent factor to recover natural persistence does not
exist for these methods. The results of this paper's Monte Carilo,
- but also linear approximations of the X-11 filter as suggested by
Cleveland and Tiao (1976) indicate possible solutions to cope with
this question.



TABLE 0: Persistence for some standard time series models

Model Persistence at i Persistence at «
white noise 0 for all i>0 0
Ye=L0j€¢-4 81 0
0
random walk 1 1
o i . o
AYt=29'Et_' O+ 0
0 J 3 0 J 0 3

1 if 4 divides i

A4Y¢=€¢ 0 ol {0,1}
elise
o [1/4] ®
A4Y=L04€¢-3 ZBji-4j {Z6k+45 k=0,..,3}
Y j=0 0
AAgYe=€¢ [i/4] ©

Note: i and i4 denote 1-L and 1-L4, respectively. In cases where
i-step persistences approach several limit points instead of
limits, these are given in braces. [x] denotes entier(x).



3. Empirical results

The discussion in the previous section suggests the following
strategy for measuring persistence in macroeconomic time series. A
precondition for non-zero finite persistence is that the series is
integrated of order one. As a first step we therefore use unit
root tests to determine the order of integration. If the series
are indeed integrated of order one, persistence can be measured
either by ARMA models or via the nonparametric approach suggested
by Cochrane (1986).

3.1. The Data

We examine quarterly data on Austrian real Gross Domestic Product
(GDP). The seasonally unadjusted series ranges from 1964:1 to
1987:2 (94 observations). The data are taken from the data base of
the Austrian Institute for Economic Research.

We employ three different procedures to extract the seasonal
component from +the raw data: Census X-11, filtering by the
operator (1+L+L2+L3) and regression on four seasonal dummies.

Throughout the paper we use the following label conventions:

Label Description

GDPX Logarithm of GDP adjusted by Census X-11.

GDP4 Logarithm of GDP filtered by %(1+L+L2+L3).
GDPS Logarithm of GDP adjusted by seasonal dummies.
DGDPX First difference of GDPX.

DGDP4 First difference of GDP4.

DGDPS First difference of GDPS.

3.2. Tests for Unit Roots

Several authors have pointed out that the power of unit root tests
may be low for +typical economic time series with respect to
interesting alternatives of roots near the unit circle (see e.g.

Evans and Savin (1981,1984)). Keeping this caveat in mind we first



give a short description of the tests used and then report
empirical results.

Assume a finite ARMA representation of the series Y{ exists
#* (L)Y = 8(L)E¢ (2)

where &*(.) and 8(.) are lag polynomials of order p* and q,
respectively. A unit root in the AR part

#*(L) = #(L)(1-L) (3)

entails a permanent shift in the level of Y{ generated by a shock
at t.

A test for a unit root of +1 in the autoregressive operator was
suggested by Dickey and Fuller (1979). It relies on a simple
regression of differenced on level data

P
AY{ = a¥4¢.1 + T bija¥e g + €4 (4)
i=1

Testing is performed via the t-statistic of the coefficient a
which is not t-distributed. Fractiles are given in Fuller (1976).
Sometimes an intercept is introduced to allow for drift. p=0
defines the original DF-statistic whereas p>0 gives what is
sometimes called ADF (augmented DF). The significance of ADF might
depend on the order p of AR lags included. Since differences of
GDP seem to follow mixed ARMA models (see below), a search through

lag orders up to around 8 seems reasonable.

A different track was pursued by Stock and Watson (1986) whose
work on common trends generated a unit root test as a byproduct.
Their procedure relies on a decomposition of the unit root process
¥t into a pure random walk component Wt and a stationary part s¢

Y = Wg + s¢ (5)

If Yy follows an AR model with exactly one unit root, the



stationary part of the AR polynomial may be used to extract Wt
(1-L)2(L)Y¢ = €¢ =) ®(L)Y+ is random walk (6)

In their most recent version of the test as given in the RATS
procedure  "STOCKWAT.SRC", Stock and Watson do not simply
difference Y4 in order +to estimate ¢(L) but use an AR(1)
regression instead. Presumably, this is done to improve test
power. The estimated ¢(L) is then used +to filter ¥+ and to
generate an estimate ofv Wt. The asymptotic properties of the
statistic

SW = T(IWg-12)/(ZWg-14Wg) = TL(ZWWg-1-TM)/(IWg-12)-1] (7)

(T the sample size and M still to be explained) are known. An
alternative would be to estimate what Stock and Watson call the
"troublesome term M", following one of their approximation
suggestions, and base the statistic on the rightmost expression.
Both methods have been used here but only the results of the first
‘one are reported since the outcomes are very similar. Again, the
number of AR lags needed for estimating #(L) is unclear and was
varied from 1 to 8.

Empirical results of unit root tests for level and first
differences of the three series are displayed 'in tables la-c. The
first two columns of each table contain test statistics for the
augmented Dickey-Fuller (ADF) and the Stock-Watson test (SW). The
last two columns are formed by versions of the two tests allowing
for a linear deterministic time trend in the regression. Schwert
(1987) recommends including a time trend as a prudent strategy in
view of the fact +that in this case the distribution of the ADF-

statistic is independent of the unknown drift in the regression.

" For the level of the three series, the null hypothesis of a unit
root is rejected only for some lag specifications of the ADF-test.
This finding strongly supports the caveat by Schwert (1987)
concerning wuncritical use of the popular ADF-test in case of
moving average terms in the +true ARMA-representation of the
process. Indeed, 3judging from evidence on ARMA models to be

presented in the next subsection, moving average terms seem to be
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present in the series examined.

Loocking at the results for the first differences of the three
series, we find that +the null hypothesis of a unit root is
generally rejected. According to socme of the ADF-statistics, the
series DGDP4 still contains a unit root. Accepting this finding
would imply that the "mongrel operator"

1-14 = (1-L)(1+L+L2+L3) (8)

is not sufficient for handling stochastic trend and seasonal
adjustment simultaneously. According to table 0, persistence would
be infinite in this case. Given the other test results, however,
we interpret the overall evidence as being consistent with
occurrence of exactly onme factor (1-L) in the AR polynomial of the
series investigated.

3.3. Parametric tests for persistence: ARMA models

From table 0 we know that for an integrated ARMA process the sum
of coefficients in the MA representation, named A(1l) according to

(1-L)¥¢ = ¢~1(L)e(L)€¢ = A(L)E¢ (9)

is persistence. After estimation of the ARMA parameters, A(1l) can
be calculated easily. Information criteria could be used to select
the orders p and g in the ARMA(p,q) models. But we follow here the
strategy of Campbell and Mankiw (1987b) and search through all
possible parameter combinations (p,q) to provide for a summary
picture. For this paper, the restriction max(p,q)s<3 was imposed.
It may be argued that the true model could demand for higher
orders. Therefore, model orders were checked by "table methods"
(EACF by Tsay and Tiao (1984) and SCAN by Tsay and Tiao (1985))
allowing for p and q up to 8. For DGDPX, EACF suggested an
ARMA(1,2) model while SCAN indicated ARMA(1,1). DGDPS was
identified by both procedures to follow an ARMA(3,3) model. For
DGDP4, the +tables suggested ARMA(0,3). Thus, the assumption of
low-order ARMA models seems to be plausible.
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The estimates of the ARMA coefficients critically depend on the
parameter estimation procedure. In order to obtain <the most
reliable results, especially in the presence of suspected MA roots
near the unit circle, an "exact maximum-likelihood"” procedure was
used here. Whereas the maximum likelihood criterion was calculated
via the Mélard (1984) algorithm, a standard NAGLIB routine was
used for criterion optimization. The results for the three data
series are displayed in tables 2a-c.

The results in tables 2a-c illustrate the importance of taking
into account seasonal adjustment for measuring persistence. For
the series adjusted by the Census X-11 method in table 2a, we find
that an unexpected shock of 1 % will increase the seasonally
adjusted GDP in the long-run by more than 1 % if we consider the
mixed ARMA-models of higher order as plausible. This result quite
closely reproduces the evidence reported by Campbell and Mankiw
(1987b) for U.S. data. In table 2c for +the dummy adjusted GDP-
series, however, we find that the persistence measure is centered
around .7 whereas the series adjusted by seasonal differencing
give persistence measures that center around 1 in table 2b.
Seasonal adjustment procedures appear to have significant effects
on measures of persistence calculated by ARMA-modeling.

3.4. Non-parametric tests

Cochrane (1986) suggests a non-parametric approach to measure
persistence. If Ty is defined as the j-th autocorrelation, we may
"introduce a two-sided Laplace transform of the autocorrelation
function by

r(z) = ¢ rjzj . | (10)

j:—co

Cochrane's measure of persistence V is defined as r(.): evaluated
at 1, i.e. the sum of all autocorrelations. Campbell and Mankiw
(1987b) point out that V is related to the parametric measure A(1)

via
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A(1) = (V/(1-Rr2))1/2 (11)

with R2? defined as the fraction of variance that is predictable
from knowledge of the past of the process. In practice, only a
finite number, say k, of autocorrelation estimates can be used,
and these are weighted by the triangular Bartlett-1 kernel:

k

Vi = 1 + 28(1-3/(k+1))ry | (12)
j=1

and an approximation to A(l) may be evaluated from
Ak = (Vg/(1-v2))1/2 (13)

where r2 is the fraction of variance explained by an ARMA(3,3)
model. Campbell and Mankiw (1987b) use the estimated
autocorrelation of first differences to proxy R2 which, however,
turned out to be inappropriate in our work. The wvalues of Vi and
Ay for DGDPX, DGDPS and DGDP4 for varying k are given in table 3.
Again, for DGDP4 the integrated series %(1+L+L2+L3)log(GDP) is
taken to be the seasonally adjusted series. Consequently, V is
based on its first difference DGDP4. However, for calculating
A(l), the result from the formula must be divided by four. To
illustrate this, take the process (1-L4)Yt=et as an example. A
unit innovations shock at t will cause a change of (1+L+L2+L3)Yt

by 1/4 until infinity (see section 2).

Basically, the non-parametric measures confirm the conclusions of
the ARMA approach. BAgain, the Census X-11 adjusted data give
persistence measures significantly greater than 1 whereas the Ay's
for the series adjusted by seasonal differencing and dummies
closely cluster around 1. Note that only the Ar's but not the Vi's

from differently adjusted series are directly comparable.

The findings of this section can be summarized as follows: The
evidence for Austrian GDP is consistent with the view that an
innovation will raise the level of this series over a long horizon

permanently. When we adjust the raw series by the Census X-11
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method, the measures of persistence indicate "excess persistence”
in the sense that a 1 % innovation in GDP raises the level by more
than 1 %. These results are rather similar to those reported by
Campbell and Mankiw (1987bh). Using dummy variables for seasonal
adjustment, however, gives persistence measures well below or
equal to 1. Seasonally differenced data generally give persistence
measures near 1. These findings are insensitive to the use of
parametric ("ARMA-approach") or non-parametric ("V-measure")
methods.
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4. Monte Carle Evidence

To shed more light on the role of seasonal adjustment in
influencing the measurement of persistence in GDP, we conducted a

small Monte Carlo experiment. The true process takes alternatively
three forms:

Process True Persistence: A(1l)
(1) (1-L)(1-L4)Ye = €¢ w
(II) (1-L4)Yy = (1+.86L+.63L2+.68L3)€¢ .79
(III) (1-L4)Yg = €y .25

€+ ~ N(O,1)

All three processes assume that seasonal differencing is the
appropriate seasonal adjustment method. The first and the third
process are "extreme processes" in the sense that they depict two
"limit processes"” for GDP both presumably inconsistent with our
data. The second process is a rather crude approximation of actual
GDP behavior based on the "best model" suggested by the table
methods EACF and SCAN.

We generated 100 replications of these processes with 100
observations each. The raw data series are adjusted by two
seasonal adjustment procedures: Fourth differences and Census X-11
method (multiplicative adjustment as implemented in the IAS-system
econometric software package developed at the Institute for
Advanced Studies, Vienna). We did not consider regression on
seasonal dummies because it appears to be the least attractive
seasonal adjustment method, leaving strong seasocnal components at
the beginning and the end of the series.

Tables 4a-c contain the results of the Monte Carlo experiments. As
the non-parametric Vi-measures would not be comparable across the
three processes (I)-(III), we have converted them into Ap-measures
using the noise-signal ratios from ARMA(3,3) models fitted to the
generated data series. The double integrated process (I) has a
theoretical persistence of infinity. From the Monte Carlo results
in table 4a we see that the estimated persistence at all window
sizes is higher than 1 but smaller than 5. The magnitudes of these

measures depend, however, strongly on the kernel used for
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estimating the Vyi's. Comparing the persistence measures across the
two differently adjusted processes we find that the Census X-11
adjusted process indicates higher persistence than the process
(correctly) adjusted by seasonally differencing. In tables 4b and
4c, we report similar results for +the processes (II) and (III).
Persistence measures are higher for Census X-11 adjusted series
for all window sizes.
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5. Conclusion

Recent studies have concluded that fluctuations in U.S. output and
other macroeconomic time series appear highly persistent. In this
paper we have examined the robustness of persistence measurement
with respect +to different seasonal adjustment methods using
quarterly data on Austrian GDP.

We find that innovations in output affect the level of this series
in the long run regardless of the seasonal adjustment method.
However, conclusions about the quantitative importance of
persistence are affected by the choice of the seasonal adjustment
method. In particular, series adjusted by the widely used Census
X-11] method give persistence measures well above those for series
adjusted by seasonal differencing or regression on dummies. This
conclusion is also supported by Monte Carlo evidence.

The non-robustness of persistence measures should be taken into
account for judgments on the extent of persistence in
macroeconomic time series. In particular, the "excess persistence”
results reported by Campbell and Mankiw (1987b) for U.S. GNP and
Campbell and Deaton (1987) for U.S. labor income need not be
robust if a different and possibly more appropriate seasonal
adjustment method is applied to the raw data. Unfortunately, U.S.
data series appear to be available only in seasonally adjusted
form. Our results for Austrian GDP data point +to persistence
measures of smaller or equal to 1 as being most reasonable.
Interestingly, Campbell and Mankiw (1987b) and Romer (1987) report
persistence measures for vyearly data (but different time ranges)
also covering this range.

Acknowledgement: The authors thank Manfred Deistler and Roberto S.
Mariano for helpful comments. The usual proviso applies.
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TABLE la: Unit root test statistics for Census X-11 adjusted GDP

#lags

NGOG WN P

#lags

ONOU WK

Level of series (GDPX)

ADF  SW ADFg SWg
-2.73% -1.05 -.29 -.76
-3.12%%  -1.26 -.67 -1.85
~2.88*%%  -1.41 -1.00 -3.19
-2.77* -1.27 -.75 -2.38
-2.40 -1.27 -.83 -2.80
-2.40 -1.19 -.61 -2.30
-2.39 -1.20 -.61 -2.39
-2.94%*%  -1.20 -.46 -2.02

First difference of series (DGDPX)

ADF Sw ADFg SWqa
=6.73%%* ~107.45%*%* =7 .41%%* =113.74%%%
~4.13%%% ~106.71*** ~4.94%%*% =112.09%%**
~-4.04%%* -101.86%** =5.13%%** =109.41%%%*
~3.14%% =100.72%%* ~4.00%%* -108.02*%%%*
-4 .03%** -100.19%%** =4 .03%%* ~107.02%%*
-2.86** -99.84%** ~3.73%* =107 .45%*%*
=3.14%* -98.62%%* —4.30%%% ~102.83%*%%*
~2.41* -95.82%%*% -3.60%** ~102.83*%**

Notes: ADF and SW denote augmented Dickey-Fuller and Stock-Watson

test for unit roots. ADFg and SWg are versions of these
tests including a deterministic time trend. Critical values
for ADF and ADFg are from Fuller (1976, p.373), for SW from
Stock and Watson (1986, p. 24). The RATS-procedure
"STOCKWAT.SRC" was employed for calculating the test
statistics.
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ADF

-2.69%*
-2.66*
-2 .25%%%
-2.93%

-2.64
-3.01
-2.84
-3.01

First difference of Series (DGDP4)

ADF

-2.70%
-2.76%
-4, 02%%%*
-2.68%*

-2.48
-2.02
-2.07
-1.36

See table 1la.
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SwW

-1.33
-1.56
-1.32
-1.12
-1.26
-1.32
-1.39
-1.35

SW

-18.64%%*

-23.31%**
-24 51**%
-23.84%**
-23_.82%%%
-22.31%%%
=23 .37%**
-19.96%*

TABLE 1lb: Unit root test statistics _for GDP filtered by
seasonal operator %(1+L+LZ2+L3),

Level of Series (GDP4)

ADFg

-.75

-1.19

-.79
-.11
-.55
-.66
-.82
-.66

ADFg

-3.65%%*
-3.52%%

-5.18%%%

-3.79%%
-3.91%%*
-3.40%*%*
-3.64%%*
-2.85

SWg

-1.33
-3.19
-2.12
-.51
-1.66
-1.98
-2.21
-1.97

SWa

-29.91%%*
-34.61%**
-30.96%*%
-35.70%%%*
-35.37*%*%*
-33.54%*%
-33.54%%%
-29.74%*%%
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TABLE 1lc: Unit root test statistics for GDP adjusted by seasonal

4%
[
v

Q
/4]

OO0k WK

]
=t
]
Q
4]

OO WM

Notes:

dummies

Level of series (GDPS)

ADF

-2.09
-2.88%%*
-3.91%%%
-2.53
-2.57*%
-2.30
-2.74%*
-2.58%

Sw

-1.15
-1.26
-1.20
-1.28
-1.47
-1.29
-1.13
-1.22

ADFg

-.91
~-.78
-.28
-.74
-1.07
-.75
-.20
-.47

SWg

-2.69
-2.38
-1.30
-4.30
-5.52
-4.95
-3.10
-4.60

First difference of series (DGDPS)

ADF

-9, 15%%%
-8 .71**%
~3.75%%%
-2.80%*
-2.82%*
-3.64%%%
-2.80%*
-2.51%*

See table 1la.

SW

-113.76%%%
-122.01%*%*
=115.23%%*
-114.32%%%
=113.21%%%
-112.98%%%
~106.45%%*
-107.08%**

ADFg

-G T1lk%k%
-10.20%%%*
-4.68%%*%

-3.56%%*
-3.84%%*

-4 .81%%%

~3.76%%
-3.66%%

SWg

=115.34*%%
-128.94%%*
-116.36%***
~115.42%%%
~116.98%*%
~116.96*%*%*
=109.21%%%
-109.08%**
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TABLE 2a: ARMA models for DGDPX (adjusted by Census X-11)

P q #¢1 ®, @®3 61 6 63 A(1) L

o 1 -.14 .859 .01167
0 2 -.20 .19 .987 .01130
o 3 -.18 .11 .15 1.079 .01117
1 1 -.32 .14 .862 .01156
1 2 .55 -.75 .28 1.175 .01116
1 3 .10 -.29 .14 .12 1.085 .01117
2 1 -.09 .10 ~-.06 .957 .01147
2 2 .63 -.10 -.82 .38 1.169 .01116
2 3 -.09 .32 -.07 -.23 .30 1.313 .01094
3 1 .22 .18 .12 -.39 1.278 .01108
3 2 .23 .15 .12 -.40 .07 1.350 .01111
3 3 -.08 .42 .33 -.09 -.33 -.09 1.453 .01087

Notes: p and g are AR and MA model orders; ®; and 8; denote the AR
and MA coefficients; A(l) is the persistence measure, see

text; L is a sort of sum of squares to be minimized, see
Mélard (1984).



TABLE 2b: ARMA models for DGDP4 (adjusted by seasonal

Notes: see table 2a

differencing)
P q ®1 2 #3 03
0 1 .68
0 2 .25
0 3 .86
1 1 .80 - =-.20
1 2 .64 -.14
1 3 -.04 .65
2 1 .53 .03 -.22
2 2 .75 -.11 -.23
2 3 .01 .19 _ .83
3 1 .54 .28 -.04 -.23
3 2 .51 .28 -.01 -.23
3 3 (‘-.35 .20 .34 1.10

21

.63

.69

.41

.75

e e e A A S A F 5 5§ F F K B p R gy

.68

.47

.46

.48

.47

-.01

.57

.794
1.017
.916
.675
.443
.877
.853
.887
.869

1.053
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TABLE 2c: ARMA models for DGDPS (adjusted by seasonal dummies)

P q ®1 : 3} o3 91 82 63 A(l) L

0 1 -.39 .609 .02568
0 2 -.38 -.01 .610 .02567
0 3 -.55 .09 .27 .807 .02427
1 1 .03 -.41 .605 .02568
1 2 -.01 -.37 -.02 .605 .02567
1 3 .26 -.75 .19 .23 .908 .02388
2 1 -.12 -.11 -.20 .651 .02547
2 2 -.15 -.40 -.35 .23 .579 .02451
2 3 .26 -.81 -.71 .90 -.07 .717 .02065
3 1 ~-.54 -.36 ~-.12 .17 .579 .02476
3 2 -.17 -.46 -.05 -.36 .25 .530 .02428
3 3 -.68 -.60 -.87 .22 .46 .95 .834 -01766

Notes: see table 2a
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TABLE 3: Non-parametric persistence measures

DGDPX DGDPS DGDP4
nk Vk Ak* Vk Ak* Vk Ak*
5 1.009 1.046 .527 .934 .892 .716
10 1.147 1.115 .529 .935 1.140 .810
15 1.410 1.236 .592 .989 1.443 .911
20 1.619 1.324 .693 1.070 1.678 .982
25 1.751 1.378 .743 1.108 1.835 1.025
30 1.903 1.436 .813 1.158 1.977 1.066
35 2.014 1.477 .858 1.190 2.080 1.094
40 2.068 1.497 .885 1.209 2.120 1.104
Notes: The estimated non-explained variance from the

ARMA (3,3 )models used to calculate AR (see text) are for
DGDPX .923,DGDPS .608 and DGDP4 .435.
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TABLE 4a: Persistence and seasonal adjustment procedures. Monte

Carlo evidence

True process: (1-L)(1-L4)Yt = €4

Window Size Seasonal Adjustment Method
Seasonal X-11
Differences

5 1.79(.43) 2.75(.76)

10 2.29(.58) 3.51(1.03)

15 2.61(.71) 4.00(1.25)

20 2.82(.80) 4,33(1.40)

25 2.99(.94) 4.63(1.76)

30 3.05(.96) 4.77(1.84)

Notes: This table contains the results of a Monte Carlo

experiment. It displays the mean of the Ap-measure for
various sizes k. The standard deviations of the measures
are given in parentheses. These measures were calculated
from the corresponding Vyi-measures according to formula in
text. The noise-signal ratio, 1-R2, was taken from
estimates of ARMA(3,3) processes. The results are based on
100 replications of series of length 100 taken as the last
100 observations of a generated series of size 200.



TABLE 4b: Persistence and seasonal adjustment procedures. Monte

True process:

Carlo Evidence

Window Size

Notes:

10
15
20
25
30

See table 4a.
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(1-L4)¥y = (1+.86L+.63L2+.68L3)¢y

Seasonal Adjustment Method

Seasonal

Differences

.63(.09)
.64(.13)
.62(.16)
.60(.18)
.58(.20)
.56(.20)

X-11

.96(.12)
.92(.16)
.88(.20)
.83(.23)
.80(.25)
.78(.26)
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TABLE 4c: Persistence and seasonal adjustment procedures. Monte
Carlo Evidence

True process: (1—L4)Yt = €t

Window Size Seasonal Adjustment Method
Seasonal X~-11
Differences

5 .25(.03) .62(.25)

10 .23(.04) .51(.33)

15 .22(.05) .49(.50)

20 .21(.06) .45(.58)

25 .21(.07) .43(.61)

30 .20(.07) .42(.73)

Notes: See table 4a.
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