
IHS Economics Series
Working Paper 297

June 2013

Doubly Robust Estimation of
Causal Effects with Multivalued

Treatments

S. Derya Uysal



Impressum

Author(s):
S. Derya Uysal
Title:
Doubly Robust Estimation of Causal Effects with Multivalued Treatments
ISSN: Unspecified 

2013 Institut für Höhere Studien - Institute for Advanced Studies 
(IHS)
Josefstädter Straße 39, A-1080 Wien
E-Mail:   office@ihs.ac.at  
Web: ww      w  .ihs.ac.  a  t  
All IHS Working Papers are available online: 
http://irihs.  ihs.  ac.at/view/ihs_series/   
This paper is available for download without charge at: 
https://irihs.ihs.ac.at/id/eprint/2207/

mailto:o%EF%AC%83ce@ihs.ac.at
mailto:o%EF%AC%83ce@ihs.ac.at
http://irihs.ihs.ac.at/view/ihs_series/
http://irihs.ihs.ac.at/view/ihs_series/
http://irihs.ihs.ac.at/view/ihs_series/
http://www.ihs.ac.at/
http://www.ihs.ac.at/
http://www.ihs.ac.at/
http://www.ihs.ac.at/
http://www.ihs.ac.at/
mailto:o%EF%AC%83ce@ihs.ac.at


 

 

 

 
 

  

Doubly Robust Estimation of 
Causal Effects with 

Multivalued Treatments 
S. Derya Uysal 

297 

Reihe Ökonomie 

Economics Series 



 



 

 
 

 

  

297 

Reihe Ökonomie 

Economics Series 

 

Doubly Robust Estimation of 
Causal Effects with 

Multivalued Treatments 
S. Derya Uysal 

 
June 2013 

 
 

Institut für Höhere Studien (IHS), Wien 
Institute for Advanced Studies, Vienna 



 

Contact: 
 
S. Derya Uysal 
Department of Economics and Finance 
Institute for Advanced Studies 
Stumpergasse 56 
1060 Vienna, Austria.  
: +43/1/599 91-156 
email: uysal@ihs.ac.at 

 

Founded in 1963 by two prominent Austrians living in exile – the sociologist Paul F. Lazarsfeld and the 
economist Oskar Morgenstern – with the financial support from the Ford Foundation, the Austrian 
Federal Ministry of Education and the City of Vienna, the Institute for Advanced Studies (IHS) is the 
first institution for postgraduate education and research in economics and the social sciences in 
Austria. The Economics Series presents research done at the Department of Economics and Finance 
and aims to share “work in progress” in a timely way before formal publication. As usual, authors bear 
full responsibility for the content of their contributions.  
 
 
Das Institut für Höhere Studien (IHS) wurde im Jahr 1963 von zwei prominenten Exilösterreichern – 
dem Soziologen Paul F. Lazarsfeld und dem Ökonomen Oskar Morgenstern – mit Hilfe der Ford-
Stiftung, des Österreichischen Bundesministeriums für Unterricht und der Stadt Wien gegründet und ist 
somit die erste nachuniversitäre Lehr- und Forschungsstätte für die Sozial- und Wirtschafts-
wissenschaften in Österreich. Die Reihe Ökonomie bietet Einblick in die Forschungsarbeit der 
Abteilung für Ökonomie und Finanzwirtschaft und verfolgt das Ziel, abteilungsinterne 
Diskussionsbeiträge einer breiteren fachinternen Öffentlichkeit zugänglich zu machen. Die inhaltliche 
Verantwortung für die veröffentlichten Beiträge liegt bei den Autoren und Autorinnen. 
 



Abstract 

This paper provides doubly robust estimators for treatment effect parameters which are 
defined in multivalued treatment effect framework. We apply this method on a unique data 
set of British Cohort Study (BCS) to estimate returns to different levels of schooling. Average 
returns are estimated for entire population, as well as conditional on having a specific 
educational achievement. The analysis is carried out for female and male samples 
separately to capture possible gender differences. The results indicate that, on average, the 
percentage wage gain due to higher education versus any other lower educational 
attainment is higher for highly educated females than highly educated males. 
 

Keywords 
Multivalued treatment, returns to schooling, doubly robust estimation 

JEL Classification 
C21, J24, I2 

  



Comments 
Supported by funds of the Oesterreichische Nationalbank (Anniversary Fund, project number: 14986) 



Contents 

1 Introduction 1 

2 Econometric Method 3 

3 Monte Carlo Evidence 9 

4 Empirical Study 11 
4.1 Data   ..........................................................................................................................   11 
4.2 Empirical Results   ......................................................................................................   15 

5 Conclusion 18 

References 20 

A Proofs 25 

B Tables: Monte Carlo Evidence  28 

C Tables: Empirical Study 31 

D Figures 37 
 

 





1 Introduction

Estimation of the causal effects of a binary treatment under the conditional in-
dependence assumption has been studied extensively in the program evaluation
literature (see for example Wooldridge 2007, Heckman et al. 2007, Imbens 2004,
Rosenbaum & Rubin 1983, among others). While the literature dealing with the bi-
nary treatment variables is comprehensive, the discussion on multivalued treatment
variables is more recent and sparse. Given that in many empirical applications the
programs which are being evaluated offer more alternatives than just one possible
treatment the methods dealing more general treatment effect regimes are partic-
ularly valuable. For example, from policy makers point of view it is usually more
preferable to get information on the causal effects of different labor market programs
rather than just looking at the effect of participating in any one of the programs
versus not participating. Similarly, the effects of different doses of a drug or, as in
this paper, the effects of different levels of educational attainment might be more
interesting than just looking at the binary cases.

This study provides a simple method to estimate the causal effects of a multival-
ued treatment variable which possesses a property known as double robustness. In
general, doubly robust methods combine two estimations methods each of which
estimates the same parameter(s) of interest but uses different model specifications.
Thus, doubly robust methods require both models specifications. The advantage
of using both model specifications is that the parameter(s) of interest can be con-
sistently estimated even if one of the model specifications is wrong which is not
the case when the methods are used alone.1 In other words, using doubly robust
methods provides the practitioners more chances to get consistent estimators. Since
in most of the applied works it is not possible to determine whether the model is
correctly specified or not, having a doubly robust estimator for the parameter of
interest might be quite useful. The method proposed here is closely related with the
method used by Hirano & Imbens (2001) for the binary treatment case. We gener-
alize the doubly robust estimator they are using for the potential outcome model
with a multivalued treatment variable. The asymptotic distribution of the general-
ized doubly robust estimator is derived based on the results by Wooldridge (2002)
and Wooldridge (2007). Additionally, the small sample properties of the proposed
method and the underlying single methods are evaluated by a small Monte Carlo
study. The interest of the simulation experiment lies on the demonstration of the
double robustness property of the combination method under misspecified models as
well as comparison of the small sample properties under correct model specifications.
Furthermore, the doubly robust method is applied on the unique data set of British
Cohort Study to estimate the returns to different levels of schooling.

Although this study is related to the several papers in different branches of the lit-
erature, it also differs from the existing literature in many ways. The interest on

1For further discussion on double robustness see Robins & Rotnitzky (1995), Robins et al. (1995),
Robins & Ritov (1997), Hirano & Imbens (2001), Wooldridge (2007), Bang & Robins (2005), Tan
(2006a), Tan (2006b), Tan (2010).
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multivalued treatment effect in the program evaluation literature has been increas-
ing mostly after Imbens (2000) and Lechner (2001). Imbens (2000) and Lechner
(2001), almost simultaneously, define the assumptions, treatment effect parameters
and the potential outcome framework for multivalued treatment parameter.2 Fol-
lowing these papers, several papers contribute to the literature by extending the
existing methods such as matching, weighting and regression, for different treat-
ment parameters when a whole range of treatments are available (see Lechner 2002,
Frölich 2004, Blundell et al. 2005). Tan (2010) considers the combination of the re-
gression and weighting methods for multivalued treatment parameter. In fact, Tan
(2010) investigates theoretical properties of another type of doubly robust estima-
tor for unconditional means. Not only the form of the doubly robust estimator we
are considering here is different, but also with our proposed model under the be-
low described setup we are able to get doubly robust estimators for the conditional
treatment effects. Another related paper is by Cattaneo (2010). He provides very
general results on the efficient semi parametric estimation of multivalued treatment
effects. Different from Cattaneo (2010) we only consider the parametric estima-
tion of the probabilities. Despite the similarities, this study provides a contribution
by explicitly investigating a specific type of doubly robust estimator for the con-
ditional and unconditional mean effects in multivalued treatment effect framework.
On the other hand, not only the econometric method we consider is different from
the existing literature, but also the empirical study here differs in several ways from
existing literature. First, the econometric approach proposed has not been applied
on this question previously. Furthermore, due to the doubly robustness property of
the proposed method, the results can be interpreted with more confidence. Another
difference is that the returns to schooling are estimated using education as a multival-
ued treatment variable instead of a binary treatment variable or years of education.
Taking into account the multivalued nature of education can provide further insights
regarding the returns to education. Moreover, using the highest degree achieved as
a treatment variable makes it possible to account for the fact that different levels of
educational qualifications do not differ only in years but also in qualitative input they
provide. Last but not least, the usage of the unique data set 1970 British Cohort
Study (BCS70) with extensive control measures on cognitive and noncognitive abil-
ity as well as child’s behavior justifies the identifying assumption at a reliable degree.
Given that many recent papers like Heckman et al. (2006), Carneiro et al. (2007),
Heineck et al. (2010), Uysal & Pohlmeier (2011), Blanden et al. (2007), Feinstein
(2000) and Murasko (2007) provide empirical evidence on the importance of noncog-
nitive and cognitive skills in determining different outcomes such as school perfor-
mance, earnings, labor force participation, and job finding success, it is advantageous
that the BCS70 gives the possibility to measure certain dimensions of noncognitive
skills and cognitive skills besides the usual control variables.

The organization of the paper is as follows: Section 2 introduces the parameters
of interest for multivalued treatment and proposes a weighted regression method to
get doubly robust estimators of the treatment parameters of interest. In Section 3,

2See also Hirano & Imbens (2004) and Imai & van Dyk (2004) for the extension of this idea to the
continuous treatment variable.
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theoretical results on double robustness are illustrated by means of a small Monte
Carlo Study. Section 4 motivates the empirical study and describes the data set
used for the application. Moreover, in Section 4 the proposed estimator is applied to
estimate causal effects of different educational levels on earnings and the estimation
results are discussed in detail. Finally, Section 5 summarizes the main results and
concludes the paper.

2 Econometric Method

The basic setup for the proposed doubly robust estimation method is based on
Imbens (2000) and Lechner (2001). The interest lies in the causal effects of the
treatment on some outcome variable, where the treatment of interest, Ti, takes the
integer values between 0 and K. Consider N units which are drawn from a large
population. For each individual i, i = 1, ..., N , in the sample the triple (Yi, Ti, Xi) is
observed. Dit(Ti) is the indicator of receiving the treatment t for individual i:

Dit(Ti) =

{

1, if Ti = t
0, otherwise

The vector of characteristics (covariates) for the ith individual is denoted by Xi. For
each individual there is a set of potential outcomes (Yi0, . . . , YiK). Yit denotes the
outcome for each individual i, for which Ti = t where t ∈ T = {0, . . . , K}. Only one
of the potential outcomes is observed depending on the treatment status. Adopting
the potential outcomes framework pioneered by Rubin (1974), the observed out-
come, Yi, can be written in terms of treatment indicator, Dit(Ti), and the potential
outcomes, Yit,:

Yi =

K
∑

t=0

Dit(Ti)Yit. (2.1)

Lechner (2001) defines several pairwise treatment effects. The first is the average
effect of the treatment m relative to treatment l. It measures the mean effect of
treatment over the entire population:

τml = E [Yim − Yil] = µm − µl. (2.2)

The second treatment effect is the expected effect for an individual randomly drawn
from the population of participants who receive the treatment m:

γml|m = E [Yim − Yil|Ti = m] = µm|m − µl|m (2.3)

The average treatment effects τml and τ lm are symmetric, i.e. τml = −τ lm, but
γml|m 6= −γlm|l. γml|m measures the effect of the treatment m with respect to the
treatment l for the subpopulation of individuals who receive the treatment m. On
the other hand, −γlm|l measures the treatment effect of m with respect to the l for
the subpopulation of individuals who receive the treatment l.

Since only one of the potential outcomes is observed, the above defined average treat-
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ment effects cannot be identified from observed data without further assumptions.
For the rest of the paper the Conditional Independence Assumption as defined by
Imbens (2000) assumed to be satisfied:

Definition 1. Conditional Independence Assumption (CIA)
Yit⊥Dit(Ti)|Xi, ∀ t ∈ T, where ⊥ stands for independence.

This implies that the assignment to the treatment is weakly unconfounded given
pre-treatment variables X . As noted by Imbens (2000), this assumption is similar
to the missing at random assumption of Rubin (1976) and Little & Rubin (1987)
in the missing data literature. Under this assumption one can identify E [Yit] by
adjusting for X :

E [Yit|Xi] = E [Yit|Dit(Ti) = 1, Xi] = E [Yi|Dit(Ti) = 1, Xi]

= E [Yi|Ti = t, Xi] ∀t ∈ T

Thus, the unconditional means can be estimated by averaging these conditional
means, i.e.

µt ≡ E [Yit] = E [E [Yit|Xi]] . (2.4)

Based on this identification result one can use regression adjustment to estimate
K +1 conditional mean functions by a parametric regression as in the binary treat-
ment case (see for example Hirano & Imbens 2001, Rubin 1977, for the regression
adjustment of a binary treatment variable). The conditional mean functions of the
potential outcomes are specified as follows:

E [Yit|Xi] = E [Yi| Ti = t, Xi] = β0t +X ′
iβ1t, (2.5)

where βt = [β0t β ′
1t]

′ is the vector of unknown parameters and β1t has the same
dimension as Xi. After estimating the parameter vector βt the treatment effect
parameters, τml and γml|m, can be estimated by the following:

τ̂ml = (β̂0m − β̂0l) +
1

N

N
∑

i=1

X ′
i(β̂1m − β̂1l) (2.6)

γ̂ml|m = (β̂0m − β̂0l) +
1

Nm

∑

i:Dim(Ti)=1

X ′
i(β̂1m − β̂1l), (2.7)

where Nt is the number of observations who take part in the treatment Ti = t.
Instead of specifying the (K + 1) regression models, one can define one regression
equation depending on the treatment parameter of interest to get estimates of µl
or µl|m directly (see Appendix A for the derivations). Using the definition of the
observed outcome in Equation (2.1), the regression model can be rewritten as in
Equation (2.8) to estimate the unconditional means, µt, as parameters of the regres-
sion model.

Yi =
K
∑

t=0

µtDit(Ti) +
K
∑

t=0

Dit(Ti)(Xi − X̄)′αt + εi (2.8)

where X̄ = 1
N

∑N

i=1Xi. The parameters µt and αt are estimated by minimizing the
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objective function which is the sum of squared residuals:

min
µt,αt

1

N

N
∑

i=1

(

Yi −
K
∑

t=0

µtDit(Ti)−
K
∑

t=0

Dit(Ti)(Xi − X̄)′αt

)2

≡ min
µt,αt

1

N

N
∑

i=1

ε2i . (2.9)

If the conditional mean function in Equation (2.5) is correctly specified µ̂t
p→ µt =

E [Yit]. Thus, using the estimators for µ̂m and µ̂l, τ
ml can be estimated as:

τ̂ml = µ̂m − µ̂l. (2.10)

If the interest lies in the treatment effect parameter γml|m, one can reformulate the
regression model in Equation (2.8) as follows:

Yi =

K
∑

t=0

µt|mDit(Ti) +

K
∑

t=0

Dit(Ti)(Xi − X̄m)
′αt|m + εi (2.11)

where X̄m = 1
Nm

∑

i:Dim(Ti)=1Xi. The minimization problem for this regression model
is given by:

min
µt|m,α1t|m

1

N

N
∑

i=1

(

Yi −
K
∑

t=0

µt|mDit(Ti)−
K
∑

t=0

Dit(Ti)(Xi − X̄m)
′αt|m

)2

≡ min
µt|m,α1t|m

1

N

N
∑

i=1

ε2i .

(2.12)
The coefficients of the treatment indicator variables, µmt|m, estimate E [Yit|Ti = m] ≡
µt|m consistently if the conditional mean of Yit is correctly specified. Thus,

γ̂ml|m = µ̂m|m − µ̂l|m. (2.13)

Another estimation approach is to construct propensity score weighting type esti-
mators for the relevant treatment effect parameters. For weighting type estimators,
one needs to generalize the concept of propensity score for the case of multivalued
treatment effect.3 Imbens (2000) defines the Generalized Propensity Score as follows:

Definition 2. The Generalized propensity score (GPS) is the conditional probability
of receiving a particular level of the treatment given the pre-treatment variables:

r(t, x) ≡ Pr [Ti = t |Xi = x ] = E [Dit(Ti)|Xi = x] . (2.14)

Using the GPS Imbens (2000) shows that, similar to the binary treatment case, one
can identify the unconditional means of the potential outcomes by weighting:

E

[

YiDit(Ti)

r(t, Xi)

]

= E [Yit] (2.15)

3In binary treatment analysis, the conditional probability of receiving the treatment is called the
Propensity score.
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Based on this identification result, the treatment effect estimators are given by:

τ̂ml =
1

N

N
∑

i=1

YiDim(Ti)

r̂(m,Xi)
− 1

N

N
∑

i=1

YiDil(Ti)

r̂(l, Xi)
(2.16)

γ̂ml|m =
1

Nm

N
∑

i=1

YiDim(Ti)−
1

Nm

N
∑

i=1

Dil(Ti)Yi
r̂(m,Xi)

r̂(l, Xi)
(2.17)

where r̂(t, Xi) is the estimated GPS. One can estimate r(t, Xi) by discrete response
models if the multivalued treatment does not have a logical ordering, or by ordered
response models if the treatment corresponds to ordered levels (Imbens 2000).

To get doubly robust estimators for the treatment effect parameters we propose to
combine the GPS weighting approach with the regression approach. Basically, we
are using a weighted regression method with the weights related to the weighting
identification. Hirano & Imbens (2001) use the same approach to estimate binary
treatment effects. By generalizing their approach for multivalued treatment we in-
crease the applicability of doubly robust methods on more general treatment regimes.
The double robustness for the proposed estimation method implies that if the weights
are estimated based on a correct GPS specification or if the potential outcomes are
correctly specified, the resulting estimator will be consistent. The doubly robust es-
timator of τml can be derived by estimating the regression model in Equation (2.8)
by a weighted least squares regression with the following estimated weights:

K
∑

t=0

Dit(Ti)

r̂(t, Xi)
. (2.18)

Thus, the minimization problem for doubly robust estimation is given by

min
µt,αt

1

N

N
∑

i=1

(

K
∑

t=0

Dit(Ti)

r̂(t, Xi)

)(

Yi −
K
∑

t=0

µtDit(Ti)−
K
∑

t=0

Dit(Ti)(Xi − X̄)′αt

)2

.

(2.19)
The resulting estimators, µ̂wt , are consistent for µt if (i) the conditional mean of Yit
is correctly specified, (ii) the conditional mean of Dit(Ti) is correctly specified or (iii)
both. By using µ̂wm and µ̂wl instead of the unweighted regression estimators µ̂m and
µ̂l in Equation (2.10), the treatment effect τml is estimated doubly robustly (see A
for the demonstration of the double robustness), i.e.:

τmldr = µ̂wm − µ̂wl . (2.20)

For doubly robust estimation of γml|m, one can use the regression model given in
Equation (2.11) with the following weights:

K
∑

t=0

Dit(Ti)
r̂(m,Xi)

r̂(t, Xi)
. (2.21)
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Accordingly, the weighted regression estimators of µt|m and α1t|m solve the following
minimization problem

min
µt|m,α1t|m

1

N

N
∑

i=1

(

K
∑

t=0

Dit(Ti)
r̂(m,Xi)

r̂(t, Xi)

)(

Yi −
K
∑

t=0

µt|mDit(Ti)−
K
∑

t=0

Dit(Ti)(Xi − X̄m)
′αt|m

)2

.

(2.22)
µ̂wt|m for t = 0, . . . , K, which is derived as the solution to the above given minimization
problem, is doubly robust estimator of µt|m. Hence, µ̂wm|m and µ̂wl|m are used to

estimate γml|m doubly robustly:

γ
ml|m
dr = µ̂wm|m − µ̂wl|m. (2.23)

To estimate the standard errors, one might use bootstrap methods as it has been
done in most of the applications in programm evaluation or one could estimate the
standard errors based on the asymptotic variance. In the following, we derive the
asymptotic distribution for the estimators of the treatment parameters where the
GPS is estimated by multinomial response models, however one easily follow the
results for ordered response models. First, the asymptotic distribution of the esti-
mators which are solutions to the minimization problems given by Equations (2.19)
and (2.22) has to be derived. It is important to consider that the weights are es-
timated. The approach of Wooldridge (2007) and Wooldridge (2002) for two step
estimation with generated regressors is used to derive the asymptotic distribution.
Wooldridge (2007) derives the asymptotic distribution for the estimates of a weighted
regression with binary treatment variable. This can be easily adjusted for the case of
multivalued treatment effect. The advantage of using the models in Equation (2.8)
and (2.11) is that by deriving the asymptotic distribution of the parameter estimates
one also obtains the asymptotic distribution of µ̂wt and µ̂wt|m. Since the treatment
parameters of interest are simple functions of µ̂wt and µ̂wt|m, simple application of the
Delta Method will be sufficient to derive the asymptotic distribution of the treat-
ment parameters.

Let r(t, Xi;ψt) be the parametric model for r(t, x), i.e. Pr [Ti = t |Xi ] = r(t, Xi;ψt),
where ψ ∈ Ψ ⊂ R

M×(K+1) with ψ = [ψ′
0 ψ′

1 . . . ψ
′
K ]

′. The estimator ψ̂ solves a
conditional likelihood problem of the form

max
ψ∈Ψ

N
∑

i=1

lnL(ψ;Dit(Ti), Xi) =
N
∑

i=1

K
∑

t=0

Dit(Ti) ln r(t, Xi;ψt).

Since the probabilities sum up to one, parameter identification requires a normal-
ization such as ψ0 = 0. Thus the individual score functions of dimension M × 1 are
given by:

cti(ψ;Dit(Ti), Xi) ≡
∂ lnL(ψ;Dit(Ti), Xi)

∂ψt
, t = 1, . . . , K.

Let θ be P × 1 parameter vector contained in a parameter space Θ ⊂ R
P . θ denotes
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either (µt, αt) or (µt|m, αt|m). Thus, θ̂ solves the following minimization problem:

min
θ∈Θ

1

N

N
∑

i=1

ω̂iε
2
i ,

where εi is the sum of squared residuals for the corresponding regression model

and ω̂i =
∑K

t=0
Dit(Ti)

r(t,Xi;ψ̂t)
or ω̂i =

∑K
t=0Dit(Ti)

r(m,Xi;ψ̂m)

r(t,Xi;ψ̂t)
depending on the treatment

parameter of interest. Since the estimation problem in the multivalued treatment
case is same as the binary treatment case, Theorem 3.1 in Wooldridge (2007) applies

immediately.4 Define si = s(Yi, Xi, Ti; θ, ψ) ≡ ωi
∂ε2

i

∂θ
as the P × 1 weighted score of

the (unweighted) objective function q(·), H(Yi, Xi; θ) =
∂2ε2

i

∂θ∂θ′
as the P × P Hessian

of the objective function q(·). Under standard regularity conditions,

√
N(θ̂ − θ)

d→ N
(

0, A−1DA−1
)

, (2.24)

where A ≡ E [H(Yi, Xi; θ)], D ≡ E [eie
′
i], ei ≡ si − E [sic

′
i] [E [cic

′
i]]

−1ci, ci ≡ ci(ψ) =
[c′1i . . . c

′
Ki]

′ is the MK × 1 score for the MLE of ψ. Since the term D in the
asymptotic distribution includes the score of the first step estimation, the result-
ing asymptotic distribution for second step takes into account that the weights are
estimated. Wooldridge (2007) proposes consistent estimators of A and D in the bi-
nary treatment framework, which can be generalized to the following for multivalued
treatment case:

Â ≡ 1

N

N
∑

i=1

ω̂iH(Yi, Xi; θ̂) (2.25)

and

D̂ ≡ 1

N

N
∑

i=1

êiê
′
i (2.26)

are consistent estimators of A and D where the
êi ≡ ŝi− (N−1

∑N

i=1 ŝiĉ
′
i)(N

−1
∑N

i=1 ĉiĉ
′
i)
−1ĉi are the P × 1 residuals from the multi-

variate regression of ŝi on ĉi and hatted quantities are evaluated at θ̂ or ψ̂. Since the
treatment effects τml and γml|m are estimated as differences of regression parame-
ters (Equations (2.20) and (2.23)), a straightforward application of Delta-method is
sufficient to derive the variances of τml and γml|m after getting a variance-covariance
estimate of θ̂.

4Wooldridge (2007) derives in Theorem 3.1 the asymptotic distribution of the weighted regression
parameter with estimated weights under CIA, where the weights are the estimated probabilities of
receiving a binary treatment. Since his results follow the maximum likelihood theory (generalized
conditional information matrix equality) and standard results on M-Estimation, the application of
the theorem in multivalued treatment problem under CIA requires a straightforward adjustment
of the score function. See for example Wooldridge (2002) Section 13.7 and Newey (1985).
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3 Monte Carlo Evidence

This section presents a small Monte Carlo study to demonstrate the double robust-
ness of the proposed method. Simulations are based on 2000 Monte Carlo samples
with sample sizes n = 500, 2000 and 8000.5 The data generating processes of D∗

i (t)
and Yit for t ∈ T = {0, 1, 2} are given below in Table 3.1.

Table 3.1: DGPs for D∗
i (t) and Yit

DGP1 D∗
i (t) = ψ0t + ψ1tXi1 + ψ2tXi2 + ψ3tXi3 + νit

Yit = β0t + β1tXi1 + β2tXi2 + β3tXi3 + εit

DGP2 D∗
i (t) = ψ0t + ψ1tXi1 + ψ2tXi2 + ψ3tXi3 + νit

Yit = β0t + β1tXi1 + β2tXi2 + β3tXi3 + β4tX
2
i3 + εit

DGP3 D∗
i (t) = ψ0t + ψ1tXi1 + ψ2tXi2 + ψ3tXi3 + ψ4tX

2
i3 + νit

Yit = β0t + β1tXi1 + β2tXi2 + β3tXi3 + εit

The value of the treatment variable, Ti, and the observed outcome variable, Yi, are
generated by the following observation rules:

Ti = argmax
t∈T

{D∗
i (t)} (3.27)

Dit(Ti) = 1l{Ti = t} (3.28)

Yi =

K=2
∑

t=0

Dit(Ti)Yit. (3.29)

X1i, X2i and X3i are correlated uniform random variables distributed over [−0.5, 0.5]
with the correlation matrix VX which is given by

VX =





1.0 0.7 0.6
0.7 1.0 0.6
0.6 0.6 1.0



 .

Error terms νi0, νi1 and νi2 are drawn from independent Gumbel (0,1) distribution.
This implies a multinomial logistic model for the GPS. εi0, εi1 and εi2 are independent
standard normal variables. Table 3.2 summarizes the parameter values.

Table 3.2: Parameter Values for the Simulation Study

Treatment Model Outcome Model
t ψ0t ψ1t ψ2t ψ3t ψ∗

4t β0t β1t β2t β3t β∗
4t

0 0 0 0 0 0 0 0.5 0.5 0.5 0.5
1 1 1 1 1 1 1 0.5 0.5 0.5 0.5
2 2 2 2 2 2 2 0.5 0.5 0.5 0.5

Note: ψ∗
4t is only used for DGP3 and β∗4t is only used for DGP2.

5The sample sizes are unconventionally large, because otherwise with three treatment groups the
number of observations in each group would have been too small. The data generation process
used here creates subsamples with the treatment Ti = 0, Ti = 1 and Ti = 2 approximately 10%,
25%, 65% of the total observations, respectively.
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For all three DGPs, the unconditional means of the potential outcomes, E [Yit] = µt
∀t ∈ T, the treatment parameters τml as well as γml|m for all possible combinations
of m and l are estimated by three methods: weighting, regression and the doubly
robust method. Weighting model requires specification of GPS model, whereas re-
gression method requires specification of outcome model. The doubly robust method
requires both specifications. The GPS is estimated by multinomial logit based on
the following model specification:

r(t, xi) ≡ Pr [Ti = t |Xi ] =
exp(ψ0t + ψ1tXi1 + ψ2tXi2 + ψ3tXi3)

∑2
j=0 exp(ψ0j + ψ1jXi1 + ψ2jXi2 + ψ3jXi3)

, (3.30)

and the outcome model for Yit is specified as follows:

E [Yit|Xi] = β0t + β1tXi1 + β2tXi2 + β3tXi3. (3.31)

The model specification given in Equation 3.30 is correct for DGP1 and DGP2, but
it is wrong for DGP3. Thus, weighting estimators which relies on the estimated
GPS based on this model specification will not be consistent for DGP3, but will be
consistent for the other DGPs. The outcome model in Equation (3.31) is only correct
for DGP1 and DGP3. Hence, the regression estimators will be inconsistent for
DGP2. However, the doubly robust estimators which use both model specifications
will be consistent for all three DGPs, since for each DGP at least one of the model
specifications is correct.

Table 3.3: Summary of Monte Carlo Results

DGP1 DGP2 DGP3
Both Correct Outcome Wrong GPS Wrong

N 500 2000 8000 500 2000 8000 500 2000 8000

W
E

ABIAS 0.01 0.00 0.00 0.01 0.00 0.00 0.02 0.02 0.02
ASE 0.19 0.09 0.04 0.19 0.09 0.05 0.18 0.09 0.04
ARMSE 0.19 0.09 0.04 0.19 0.09 0.05 0.18 0.09 0.05

R
E
G ABIAS 0.00 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.00

ASE 0.16 0.08 0.04 0.16 0.08 0.04 0.16 0.08 0.04
ARMSE 0.16 0.08 0.04 0.16 0.08 0.04 0.16 0.08 0.04

D
R

ABIAS 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
ASE 0.18 0.08 0.04 0.18 0.08 0.04 0.18 0.09 0.04
ARMSE 0.18 0.08 0.04 0.18 0.08 0.04 0.18 0.09 0.04

AABIAS: average of absolute bias, ASE: average standard error, ARMSE: aver-
age root of the mean squared error over twelve parameter estimates.

The results of the Monte Carlo experiment are summarized in Table 3.3. Here, only
the averages of absolute biases (AABIAS), standard errors (ASE) and root of the
mean squared errors (ARMSE) over twelve parameters for each DGP are reported.
Tables B.1-B.3 display detailed simulation results for each µt, τ

ml and γml|m. The re-
sults clearly demonstrate the double robustness of the proposed estimation method.
Under correct specification of the relevant models, all three methods estimate the
parameters consistently. The most efficient method is the regression method, fol-
lowed by the doubly robust method. The efficiency difference, however, is negligible.
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Interestingly, the efficiency of weighting method is only slightly less than the doubly
robust method. This might be due to the treatment homogeneity, i.e. treatment
effects do not change with the covariates. Under both types of misspecifications,
doubly robust estimators stay consistent, whereas the misspecification of the out-
come model leads to inconsistent regression estimators and misspecification of the
GPS leads to inconsistent weighting estimators, i.e. the biases do not decrease as
the sample size increases. Obviously this Monte Carlo study does not consider more
general cases like heterogeneous treatment or overlap problems, but it demonstrates
the double robustness of the proposed method under misspecification of one of the
models. A more comprehensive Monte Carlo study with a more general design is
necessary to evaluate the properties of these methods more in detail. This, however,
is beyond the scope of this paper.

4 Empirical Study

In the empirical part of this study, the returns to education at different levels are
estimated by the doubly robust estimation method explained in Section 2. Estima-
tion of causal effects of education on earnings is not trivial. Card (1999) provides a
comprehensive review on problems associated with the estimation of the returns to
education. The identification of the casual effects requires some strong assumptions
on the selection to the participation mechanism either in terms of unobservables
or observables. The usual method under assumption of selection on unobservables
is the Instrumental Variable (IV) method, where the biggest challenge is to find a
valid instrument. Card (1999), Card (2001) review the empirical results based on IV
methods. On the other hand, if the assumption of conditional independence, i.e. se-
lection on observables, is satisfied, there is no need for an instrumental variable and
the causal effects can be identified by controlling for observable characteristics. This
assumption however puts strong requirement on the data set. The variables available
in a data set should be rich enough such that none of the important confounders of
the treatment and outcome variable is left out. Due to data limitations, there are
few studies where the causal effects are estimated by methods based on CIA (for
example Blundell et al. 2005, Pohlmeier & Pfeiffer 2004, Flossmann & Pohlmeier
2006). The strong data requirement is not a restriction for this study because the
data set provides standard control variables like gender, family background etc., as
well as variables which are less common in surveys, such as several IQ measures,
noncognitive skill measures and behavioral measures. The richness of the control
variables makes unobserved ability problem less severe. Moreover, since all the vari-
ables are measured during the childhood before the measurement of the wages or
any schooling choice is made, the problem of reverse causality is also avoided.

4.1 Data

1970 British Cohort Study (BCS70) is a longitudinal study which includes all the
children born in the UK in the first week of April 1970. Since BCS70 began, there
have been seven full data collection exercises in order to monitor the cohort mem-
bers’ health, education, social and economic circumstances. These took place when
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respondents were aged 5, in 1975, aged 10, in 1980, aged 16, in 1986, aged 26, in
1996, aged 30, in 1999-2000, aged 34, in 2004-2005, and aged 38, in 2008-2009. For
the empirical study, we use the birth survey, the surveys at the age of 10 and 30.
The birth survey provides background information on the newborn and the parents.
The second sweep, additional to the classical variables, includes very comprehensive
measures on noncognitive and cognitive abilities, as well as child’s behavioral prob-
lems. The last sweep is used to construct wages and the highest qualification level
attained. After dropping all observations with missing information on any of the
variables used and removing the children with congenital abnormalities, the sample
used consists of 2424 males and 2261 females.

The richness of the measures available in the data set is important for the justifica-
tion of the econometric method used in the current study. The crucial assumption is
the conditional independence assumption which is not testable; though, it requires
having all the important variables which affect both the treatment variable and the
outcome variable in the data. Blundell et al. (2005) use another longitudinal study
from UK and estimate the returns to schooling using various methods which rely
on CIA. They use a rich data set and show some evidence that the assignment to
the treatment is unconfounded given pre-treatment variables X . The data set used
here contains equivalent information to their data set and some other measures on
noncognitive, cognitive ability, as well as child’s behavior. Since the data used here
contain comprehensive measures, the CIA is not too unrealistic to hold. Another
important issue for the CIA is that the covariates have to be unaffected by the treat-
ment. This requirement in our study is fulfilled since the covariates are measured
before the minimum school leaving age in the UK.

The outcome variable is the log hourly wages at the time of the fifth sweep. Therefore
our sample consists of individuals who were employed at the time of the fifth sweep.
We use the information on the last net payment they received, the period the period
that corresponds to the payment and the weekly working hours.6 The educational
attainment, the treatment variable, is measured in detail in BCS70. For the empirical
analysis, the educational attainment is categorized in four groups, which have a
sequential nature. Table 4.1 summarizes which qualifications the categories include.

6In order to construct the outcome variable, as well as the treatment variable, the Appendix by
Bynner et al. (2000) is followed.

12



Table 4.1: Educational qualifications and mapping to level of qualification

T Level General Vocationally-related Occupational
(Academic) (Applied) (Vocational)

0 No qualification No qualification Foundation GNVQ NVQ level 1
GCSE grade D-G Other GNVQ Other NVQ
CSEs grades 2-5 Units towards NVQ
Scottish standard RSA Cert/Other
grades 4-5 Pitmans level 1
Other Scottish Other vocational
school qualification qualifications

HGV
1 O-level GCSE grade A*-C Intermediate GNVQ NVQ level 2

O levels grade A-C BTEC First Certificate Apprenticeships
O levels grade D-E BTEC First Diploma City Guilds Part
CSE grade 1 2/Craft/Intermediate
Scottish standard City Guilds Part 1

Other
grades 1-3 RSA First Diploma
Scottish lower Pitmans level 2
or ordinary grades

2 A-Level A level Advanced GNVQ NVQ level 3
AS levels BTEC National Diploma City Guilds Part 3
Scottish Highers ONC/OND Final

Advanced Craft
Scottish Cert of RSA Advanced

Diploma
6th Year Studies Pitmans level 3

3 Higher Education Degree BTEC Higher NVQ level 4-5
HE Diploma Certificate/Diploma Professional degree
Higher Degree HNC/HND qualifications

Nursing/paramedic
Other teacher
training
qualification
City Guilds Part 4
Career
Ext/Full Tech
RSA Higher
Diploma/PGCE

Figure 1 illustrates the distribution of log hourly wages by gender and Figure 2
illustrates the distribution of the wages by education level for males and females
separately. Figure 1 does not indicate a big difference in the unconditional wage
distribution of females and males. On the other hand, if we look at the wage dis-
tributions by educational attainment, we see that the distributions differ for both
males and females. As expected, the most observable difference is between higher
education and no qualification.

In the second sweep of BCS70, there are several measures related to the child’s
cognitive ability. Three different tests are used to construct indices to measure the
cognitive ability. The first test is called “Friendly Math Test (FMT)”. This test was
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developed especially for the use of BCS70. It consists of a total 72 multiple choice
questions and covers the rules of arithmetic, numbers skills, fractions, algebra, geom-
etry and statistics. The variable is constructed as the number of correctly answered
questions.

The second test is the “Shortened Edinburgh Reading Test (SERT)”. It is the short-
ened version of the Edinburgh Reading Test developed by Godfrey Thomson Unit.
The shortened test contains 67 items which examine vocabulary, syntax, sequenc-
ing, comprehension and retention. The variable to control for the reading ability
is constructed as the sum of the correctly answered questions. The last test is the
“British Ability Scale (BAS)”. This test of cognitive attainment aims at measuring
something akin to IQ (Elliot et al. 1978). They are two verbal and two non-verbal
subscales. Verbal subscales comprise word definitions (37 items) and word simi-
larities (42 items). Non-verbal subscales comprise recall of digits (34 items) and
matrices (28 items). For each scale, the variables are constructed as the number of
correct answers.

Furthermore, there are two tests related to the noncognitive abilities of the child:
“(Lawseq) Self-Esteem Scale” and“(Caraloc) Locus of Control Scale” available in the
second sweep. The Self-Esteem Scale was developed by Lawrence (1973). Lawrence
(1973) defines self-esteem as a person’s evaluation of his self-image in relation to his
ideal self. The questions used in the survey are listed in the upper part of Table
C.1. There are 16 questions, four of which are distractor questions. The distractor
questions are marked with a star in the table. Children answer the questions with
“Yes”, “No” or “I do not know”. The index to measure self-esteem is constructed
following Lawrence (1996). All “No” answers get two points except for question 1.
For question 1, answering with “Yes” is worth to two points. “I do not know” is
worth for one point for all questions. The distractor questions do not contribute
to the measure. High scores indicate higher self-esteem. The second noncognitive
skill measure is constructed based on the Locus of Control questions. The concept
of Locus of Control introduced by Rotter (1966) refers to an individual’s perception
about the underlying main causes of the events in his/her life. According to this
concept, individuals range between externaliser and internaliser. Externalisers be-
lieve that the events in his/her life are caused by external factors like fate or luck.
On the other hand, internalisers believe that the events in his/her life are caused by
his/her personal decisions and efforts. The questionnaire was constructed from var-
ious tests to measure the locus of control (Gammage 1975). The children are asked
20 questions, to which they answer with “Yes”, “No” or “I do not know”. There are
five distractor questions. From the answers a one dimensional scale is constructed as
a measure of the degree of internalization. Each “No” response counts as one point,
except for the question ten where “Yes” equals one point. The distractor questions
do not count for the locus of control index. High scores indicate greater locus of
control, i.e. higher degree of internalizing. The questions are listed in Table C.1.

In addition to the above mentioned measures, in the second sweep of BCS70 moth-
ers have completed a set of questions which are related to the behavioral difficulties
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of the child. Two different scales are used to construct indices to measure the be-
havior disorder. The first one is “Rutter Parental ’A’ Scale of Behavior Disorder”
(Rutter 1967, Rutter et al. 1970) and the second one is “Conner’s Hyperactivity
Scale” (Conners 1969). The list of related questions is in Table C.2. For both scales,
mothers had to make a vertical mark through the line alongside each statement to
indicate to what extent the child shows the behavior described. The line corresponds
to a scale from 0 to 100. 0 refers to “does not apply” and 100 refers to “certainly
applies”. The overall Rutter score and Connor score for a cohort member at the
age of 10 is the sum across the individual variables. Categorical ratings were calcu-
lated for each scale by dividing scores into three levels of severity: “normal” scores
less than the 80th percentile, “moderate” problem scores between the 80th and 95th
percentile and “severe” problem scores above the 95th percentile (this is a simplified
version of the technique adopted in a paper by Thompson et al. 2003).7

In addition to the cognitive and noncognitive ability measures as well as the behavior
disorder measures, some other information on the child’s family background like
mother’s age and mother’s education at child’s birth, as well as the ethnicity and the
gender of the child from the birth survey are included as controls. The information on
household income, total number of children in the household and father’s social class
are taken from the second sweep. Furthermore, an indicator variable for whether
the child lived with both parents since birth till age of 10 is included. Description of
the variables and summary statistics are given in Tables C.3 and C.4, respectively.

4.2 Empirical Results

There are a number of studies dealing with estimation of the returns to schooling. In
empirical studies education is usually taken as a binary treatment variable.8 Consid-
ering multivalued treatment provides the opportunity for a better characterization
of the returns to education at different levels. The proposed method described in
Section 2, which is doubly robust against misspecification, is used in the econometric
analysis. As noted earlier, the advantage of using a doubly robust estimator is that
the treatment parameter of interest can be consistently estimated even if one of the
underlying methods relies on a misspecified model.

The GPS is estimated by ordered logit, where the dependent variable is different
levels of education: no qualification, O-Level, A-Level and higher Education.9 The
regression results of ordered logit estimation are represented in Table C.5. In Ta-
ble C.6, the average partial effects are presented for interested readers. Although

7The percentiles are calculated using the raw data.
8Conti et al. 2011 use British Cohort Study in order to estimate the returns to education on non-
market outcomes as well as earnings. The study here differs from their study in three important
ways. First of all, they use Bayesian econometric methods using factor models. Thus, identification
relies on different assumptions. Second, although they provide estimates of returns to education
on earnings, the emphasis of their study is non-market outcomes. Furthermore, the education is
measured as a dummy variable in their study not as a multivalued treatment variable.

9For robustness check, the probabilities are also estimated by sequential logit. Treatment effect
estimates do not change qualitatively or quantitatively.
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the GPS estimation results are not a direct interest of this study, it is worth men-
tioning that the results provide supporting evidence on the importance of cognitive
and noncognitive abilities. The Locus of Control Scale, the Shortened Edinburgh
Reading Test, the Friendly Math Test as well as some scales of British Ability Test
are significant. For both males and females, being internaliser in terms of Locus of
Control Scale decreases the probability of having no qualification, whereas increases
the probability of having all other degrees. The magnitude of the positive effect is
the highest for the O-Level. Higher scores in the Shortened Edinburgh Reading Test
and in the Friendly Math Test decrease the probability of having no qualification and
increase the probability of having any other degree. For females, similar effects are
observable for word similarities scale and word definitions scale of BAS. For males,
the word definitions scales and matrices scale of the BAS have significant effects on
the probabilities. These results provide further evidence on the effects of cognitive
and noncognitive abilities.

In the evaluation literature it is common to inspect the histogram estimates visually
to determine lack of overlap. The histogram estimates of the GPS for individuals
with Ti = t and Ti 6= t for each t = {0, 1, 2, 3} for male and female samples are
plotted in Figures 3 and 4. For females, the boundaries of the histograms have some
gaps; however the probabilities over two different groups are distributed over the
same interval. For males it seems even less problematic. Thus, there is no need to
apply any common support adjustment.

After estimating the weights, the proposed doubly robust estimator is used as ex-
plained in Section 2 with corresponding weights to estimate the treatment effect
parameters (γml|m, τml, −γlm|m) as well as the expected earnings for each level of
education (µt). Mean Estimates of the log of earning by education levels are pre-
sented in Figure 5. There are significant differences in estimated earnings of females
and males for different educational levels. Males earn on average more than females
even after controlling for the covariates. For each education level, the expected earn-
ings for males are larger than for females.

The estimated treatment effect parameters are summarized in Table 4.2 below. The
results for females and males are reported in the upper and lower part of the table,
respectively. All possible pairwise comparisons for four levels of education are con-
sidered. The reported numbers are % wage gains due to the treatment m relative
to l. Average effect of m relative to l is estimated for three groups: (i) for the
subpopulation Ti = m (γml|m); (ii) for the entire population (τml), and (iii) for the
subpopulation Ti = l (−γlm|m). τml is estimated as in Equation (2.20) and γml|m is
estimated as in Equation (2.23) for all values of m and l. If γml|m is higher than τml

and τml is higher than −γlm|m, the treatment is “efficient” in terms of the allocation
of individuals to the particular treatment level m, i.e. the individuals who would
benefit at most from the treatment level m are allocated into this treatment. The
difference between γml|m and τml, as well as the difference between τml and −γlm|m

is called the “sorting gain” (Heckman & Li 2004). For example, if we consider the
return of higher education (m) over no qualification (l), positive sorting gains would
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imply that the individuals with higher ability are allocated to the appropriate educa-
tional institutions. However, negative sorting gains would indicate that there may be
individuals with lower qualifications who should have received a higher educational
degree according to their abilities.10

Table 4.2: Estimated Treatment Parameters: Average effect of m
relative to l

m l γ̂ml|m τ̂ml −γ̂lm|m

F
e
m
a
le
s

Higher Education No Qualification 19.0*** 18.8*** 16.8***
Higher Education O-Level 20.7*** 19.2*** 18.4***
Higher Education A-Level 14.0*** 15.1*** 17.5***
A-Level No Qualification 2.9 3.7 2.4
A-Level O-Level 2.9 4.2 2.6
O-Level No Qualification 0.4 -0.5 1.4

m l γ̂ml|m τ̂ml −γ̂lm|m

M
a
le
s

Higher Education No Qualification 18.5*** 22.1*** 23.3***
Higher Education O-Level 13.3*** 16.8*** 18.3***
Higher Education A-Level 11.9*** 14.1*** 15.3***
A-Level No Qualification 9.4*** 8.0*** 7.2***
A-Level O-Level 3.5 2.7 2.8
O-Level No Qualification 5.7** 5.3* 3.4

Note: % wage gains due to the treatment are reported. *** 1% significance
level, ** 5% significance level, * 10% significance level. Standard errors are
calculated based on the asymptotic variance.

Females who have received higher education earn on average 19 % more by get-
ting higher education instead of no qualification. The wage gain due to higher
education compared to no qualification for the entire female sample is 18.8%. On
the other hand, the percentage wage gain due to higher education for females who
do not have any qualifications would be 16.8. Although, the differences between
treatment effect estimates are very small, positive sorting gains are observed for
females when returns to higher education is compared to no qualification. If we
compare the corresponding results for males (18.5%, 22.1%, 23.3%), the ascending
order (γml|m < τml < −γlm|m)of the percentage wage gains indicate negative sorting
gains. Males without any qualification would earn 23.3% more if they had received
higher education, whereas those with a higher education degree earn only 18.5%
more due to the higher education. This implies that the selection of males into
higher education is “inefficient“. Similarly, when higher education is compared with
O-level, positive sorting gains are observed for females (20.7%, 19.2%, 18.4%) but
negative for males (13.3%, 16.8%, 18.3%). This situation changes for females if the
returns of higher education versus A-Level is compared: here the sorting gains are
negative for both females (14%, 15.1%, 17.5%) and males (11.9%, 14.1%, 15.3%).
Other pairwise comparisons for females do not yield any significant results. For
males, significant gains due to A-Level over no qualification with positive sorting
(9.4%, 8.0%, 7.2%) are observed. The gain over O-level over no qualification is also
significant for males whose highest qualification is O-Level. The overall percentage
wage gain due to O-level over no qualification is 5.3% but it is only significant at

10Flossmann & Pohlmeier (2006) use the same argument to when comparing the average causal
returns for the German school tracks.

17



10% significance level.

Another striking result is that the percentage wage gain due to higher education
versus any other lower educational attainment is higher for highly educated females
than highly educated males. The difference is highest for higher education versus
O-level. The percentage gain due to the higher education over O-level is 20.7% for
highly educated females, whereas the same pairwise comparison for the males who
received higher education suggests only 13.3% wage gain. On the other hand, males
who have lower educational attainments like A-Level and O-Level benefit more from
these attainments than females when compared to no qualification. If we consider the
average returns of different levels of education for the entire population by gender,
we see that the returns to higher education over no qualification are higher for males
(22.1%) than for females (18.8%). However, the expected effect of higher education
compared to O-level and A-level is higher for females (19.2%, 15.1%) than for males
(16.6%, 14.1%).

5 Conclusion

In this paper, the returns to different levels of education are estimated using a novel
estimation method. The proposed method is an extension of the doubly robust ATE
and TT estimator in binary treatment case to the multivalued treatment evalua-
tion problem under CIA. It combines the regression adjustment approach with the
weighting approach. Regression adjustment requires model specifications for the con-
ditional mean functions and the weighting approach requires model specification for
the generalized propensity score. The advantage of the combination of the two meth-
ods is that the doubly robust method estimates the treatment parameter of interest
consistently even if one of the models is misspecified. The estimation procedure is
defined explicitly and the asymptotic distribution of the parameters is derived. The
results generalize the studies by Hirano & Imbens (2001) and Wooldridge (2007)
for multivalued treatment variables. Furthermore, a small Monte Carlo experiment
is used to demonstrate the double robustness property of the proposed estimation
method. The results clearly indicate that even if only one of the underlying models
is correctly specified, the proposed method gives consistent estimates of the treat-
ment parameters. Under correct specification of the outcome model, the regression
adjustment is the most efficient one, but the efficiency difference between regres-
sion and doubly robust method is slight. These results indicate that the use of the
doubly robust methods to estimate treatment parameters in multivalued treatment
evaluation provide protection against misspecification at almost no efficiency costs.
Given that in an empirical study it is difficult to be sure about the correctness of the
model, doubly robust methods provides more chances to hit the correct model with
no significant costs. Furthermore, the generalization introduced here is applicable
to a wide range of program evaluation questions, since it deals with multivalued
treatment effect. Given that the method is just a weighted regression; any standard
econometric method can be used in practice.
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In the empirical part of this paper, the unique data set of the British Cohort Study is
used. Availability of various measures for cognitive and noncognitive ability as well
as for behavioral disorder beyond the standard covariates makes CIA more likely to
be valid. The effects are analyzed separately for males and females. The estimated
earnings of females and males for different educational levels are found to be signifi-
cantly different. The expected earnings for males are larger than that of females for
any education level. The estimated treatment effects of different educational levels
are also shown to be different for males and females. The percentage wage gains
due to the higher education, A-Level and O-level over no qualification are higher
for males than females if the entire population is considered. However, females’ per-
centage wage gains due to the higher education over A-Level and O-Level are higher
than males’ gains. The results also suggest that highly educated women gain more
from higher education than highly educated men on average.
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A Proofs

Derivation of Equation (2.8)

Due to Equation 2.5, the following regression model can be written for the potential

outcomes:

Yit = β0t +X ′
iβ1t + uit (A.1)

Equation 2.8 can be derived by combining 2.1 and A.1:

Yi =
K
∑

t=0

Dit(Ti)Yit

Yi =
K
∑

t=0

Dit(Ti)[β0t +X ′
iβ1t + uit] + /−

K
∑

t=0

Dit(Ti) E [Xi]
′ β1t

Yi =

K
∑

t=0

Dit(Ti)[β0t + E [Xi]
′ β1t] +

K
∑

t=0

Dit(Ti)[Xi − E [Xi]]
′β1t +

K
∑

t=0

Dit(Ti)uit

Yi =
K
∑

t=0

Dit(Ti) E [E [Yit|Xi]] +
K
∑

t=0

Dit(Ti)[Xi − E [Xi]]
′β1t +

K
∑

t=0

Dit(Ti)uit

Yi =

K
∑

t=0

Dit(Ti) E [Yit] +

K
∑

t=0

Dit(Ti)[Xi − E [Xi]]
′β1t +

K
∑

t=0

Dit(Ti)uit

Yi =

K
∑

t=0

µtDit(Ti) +

K
∑

t=0

Dit(Ti)[Xi − E [Xi]]
′αt + εi

From the above derivation, we see that the coefficient of Dit(Ti) stands for β0t +

E [Xi]
′ β1t, therefore it identifies the unconditional mean of Yit if the conditional

mean is correctly specified. Last two equalities show that β1t = αt. In the regression

model given by Equation (2.8), the unknown population mean E [Xi] is replaced

by the sample mean, X̄ = 1
N

∑N
i=1Xi. Thus, if the conditional mean functions

in Equation (2.5) is the correct specification, µ̂t
p→ µt = E [Yit]. By adding and

subtracting
∑K

t=0Dit(Ti) E [Xi|Dim(Ti) = 1]′ β1t in the second equality above, one

gets Equation (2.11).

Double Robustness

First consider the unweighted regression adjustment to demonstrate that the con-

sistency of treatment effect parameter depends on correct specification of the con-

ditional mean function. Let θ be P × 1 parameter vector contained in a parameter
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space Θ ⊂ R
P . θ stands for (µt, αt) in Equation (2.8).

min
θ∈Θ

1

N

N
∑

i=1

(

Yi −
K
∑

t=0

µtDit(Ti)−
K
∑

t=0

Dit(Ti)[Xi − E [Xi]]
′αt

)2

Consider the first K + 1 first order conditions related to this minimization problem

is given by:

1

N

N
∑

i=1

Dis(Ti)

(

Yi −
K
∑

t=0

µtDit(Ti)−
K
∑

t=0

Dit(Ti)[Xi − E [Xi]]
′αt

)

for s = 0, . . . , K

If the following population counterparts of the above given moment functions have

zero expectations, than the resulting parameter estimators will be consistent.

E

[

Dis(Ti)

(

Yi −
K
∑

t=0

µtDit(Ti)−
K
∑

t=0

Dit(Ti)[Xi − E [Xi]]
′αt

)]

for s = 0, . . . , K

= E

[

E

[

Dis(Ti)

(

Yi −
K
∑

t=0

µtDit(Ti)−
K
∑

t=0

Dit(Ti)[Xi − E [Xi]]
′αt

)
∣

∣

∣

∣

∣

Xi

]]

= E [E [Dis(Ti)Yis − µsDis(Ti)−Dis(Ti)[Xi − E [Xi]]
′αs)|Xi]]

= E [E [Dis(Ti)|Xi] E [(Yis − µs − [Xi − E [Xi]]
′αs)|Xi]]

= E
[

E [Dis(Ti)|Xi] E
[

(Yis − β0s − E [Xi]
′ αs − [Xi − E [Xi]]

′αs)
∣

∣Xi

]]

= E [E [Dis(Ti)|Xi] E [(Yis − (β0s +X ′
iαs)|Xi]]

= E
[

E [Dis(Ti)|Xi]
[

E [Yis|Xi]− E
[

β0s + E [Xi]
′ β1s

∣

∣Xi

]]]

= E
[

E [Dis(Ti)|Xi]
[

E [Yis|Xi]− (β0s + E [Xi]
′ β1s)

]]

From the first to second equality we use law of iterated expectations. The third

equality uses the fact that Dit(Ti) is only once equal to one and K times it takes

the value zero. By multiplying Equation (2.1) by Dis(Ti) one can easily show that

Dis(Ti)Yi = Dis(Ti)Yis. From third to fourth equality we apply CIA. For the next

equality we use the definition of µs and the equality of β1s = αs. The last equality

shows that the expectation is equal to zero only if the true conditional mean of Yis is

equal to β0s + E [Xi]
′ β1s, i.e. second term in the expectation is equal to zero. Oth-

erwise the expectation would not be zero and the estimators would not be consistent.

We can now apply the similar arguments to show the double robustness of the

weighted regression estimators. Consider weighted regression with the weighted

objective function. In that case the first K + 1 first order conditions yield the
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following moment functions:

1

N

N
∑

i=1

Dis(Ti)

r(s,Xi; ψ̂s)

(

Yi −
K
∑

t=0

µtDit(Ti)−
K
∑

t=0

Dit(Ti)[Xi − E [Xi]]
′αt

)

for s = 0, . . . , K.

The population counterpart of the above given moment function is given by

E

[

Dis(Ti)

r(s,Xi; ψ̂s)

(

Yi −
K
∑

t=0

µtDit(Ti)−
K
∑

t=0

Dit(Ti)[Xi − E [Xi]]
′αt

)]

for s = 0, . . . , K

= E

[

E

[

Dis(Ti)

r(s,Xi; ψ̂s)

(

Yi −
K
∑

t=0

µtDit(Ti)−
K
∑

t=0

Dit(Ti)[Xi − E [Xi]]
′αt

)
∣

∣

∣

∣

∣

Xi

]]

= E

[

E

[

Dis(Ti)

r(s,Xi; ψ̂s)
Yis − µs

Dis(Ti)

r(s,Xi; ψ̂s)
− Dis(Ti)

r(s,Xi; ψ̂s)
[Xi − E [Xi]]

′αs)

∣

∣

∣

∣

∣

Xi

]]

= E

[

E [Dis(Ti)|Xi]

r(s,Xi; ψ̂s)
E [(Yis − µs − [Xi − E [Xi]]

′β1s)|Xi]

]

= E

[

E [Dis(Ti)|Xi]

r(s,Xi; ψ̂s)

[

E [Yis|Xi]− (β0s + E [Xi]
′ β1s)

]

]

The derivation follows similar steps as in unweighted regression estimation. The

double robustness property can be seen from the last equality. If the conditional

mean for Yis is correctly specified, the second term in the expectation will be equal

to zero, thus the whole expression will be equal to zero even with a wrong specified

GPS model. Moreover, if the GPS model r(s,Xi;ψs) is a correct specification for

the conditional mean of Dis(Ti) the first term in the expectation will be equal to

one. In that case, due to properties of the linear model the whole expectation will

be equal to zero even if the conditional mean of Yis is not correctly specified.
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B Tables: Monte Carlo Evidence

Table B.1: Monte Carlo Results: Correct specifications

N=500 WEIGHTING REGRESSION DOUBLY ROBUST

BIAS SE RMSE BIAS SE RMSE BIAS SE RMSE

µ0 -0.002 0.197 0.197 0.001 0.179 0.179 0.000 0.190 0.190

µ1 0.001 0.097 0.097 0.001 0.095 0.095 0.001 0.096 0.096

µ2 0.000 0.059 0.059 0.000 0.058 0.058 0.000 0.058 0.058

τ01 -0.004 0.216 0.216 0.000 0.200 0.200 -0.001 0.210 0.210

τ02 -0.003 0.207 0.207 0.000 0.189 0.189 0.000 0.199 0.199

τ12 0.001 0.113 0.113 0.000 0.110 0.110 0.001 0.111 0.111

γ01|0 0.002 0.171 0.171 0.003 0.169 0.169 0.002 0.171 0.171

γ02|0 0.000 0.165 0.165 0.000 0.157 0.157 0.000 0.161 0.161

γ10|1 0.000 0.183 0.183 0.000 0.181 0.181 0.000 0.184 0.184

γ12|1 -0.001 0.111 0.111 -0.001 0.110 0.110 -0.001 0.110 0.110

γ20|2 0.004 0.241 0.241 -0.001 0.210 0.210 0.000 0.230 0.230

γ21|2 -0.002 0.120 0.120 -0.002 0.115 0.115 -0.002 0.117 0.117

N=2000 WEIGHTING REGRESSION DOUBLY ROBUST

BIAS SE RMSE BIAS SE RMSE BIAS SE RMSE

µ0 0.000 0.094 0.094 0.000 0.085 0.085 0.000 0.091 0.091

µ1 0.001 0.049 0.049 0.001 0.048 0.048 0.001 0.048 0.048

µ2 0.000 0.029 0.029 0.000 0.029 0.029 0.000 0.029 0.029

τ01 -0.001 0.106 0.106 -0.001 0.097 0.097 0.000 0.103 0.103

τ02 0.000 0.098 0.098 0.000 0.090 0.090 0.000 0.095 0.095

τ12 0.001 0.057 0.057 0.001 0.056 0.056 0.001 0.056 0.056

γ01|0 0.000 0.084 0.084 0.000 0.084 0.084 0.000 0.084 0.084

γ02|0 0.000 0.080 0.080 0.000 0.076 0.076 0.000 0.078 0.078

γ10|1 0.000 0.089 0.089 0.000 0.088 0.088 0.000 0.089 0.089

γ12|1 0.000 0.057 0.057 0.000 0.056 0.056 0.000 0.056 0.056

γ20|2 0.000 0.114 0.114 0.000 0.100 0.100 -0.001 0.109 0.109

γ21|2 -0.002 0.060 0.060 -0.002 0.058 0.058 -0.002 0.058 0.058
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Table B.2: Monte Carlo Results: Wrong Outcome Model

N=500 WEIGHTING REGRESSION DOUBLY ROBUST

BIAS SE RMSE BIAS SE RMSE BIAS SE RMSE

µ0 -0.002 0.197 0.197 -0.059 0.166 0.176 -0.006 0.187 0.187

µ1 0.001 0.097 0.097 -0.021 0.095 0.098 0.001 0.096 0.096

µ2 0.000 0.059 0.059 0.019 0.058 0.061 0.000 0.058 0.058

τ01 -0.004 0.216 0.216 -0.038 0.190 0.193 -0.007 0.207 0.207

τ02 -0.003 0.207 0.207 -0.078 0.175 0.192 -0.006 0.197 0.197

τ12 0.001 0.113 0.113 -0.040 0.110 0.117 0.000 0.111 0.111

γ01|0 0.002 0.171 0.171 -0.036 0.168 0.172 0.002 0.171 0.171

γ02|0 0.000 0.165 0.165 -0.079 0.154 0.174 -0.001 0.160 0.160

γ10|1 0.000 0.183 0.183 0.038 0.177 0.182 0.002 0.183 0.183

γ12|1 -0.001 0.111 0.111 -0.042 0.110 0.118 -0.001 0.110 0.110

γ20|2 0.004 0.241 0.241 0.077 0.190 0.205 0.009 0.224 0.224

γ21|2 -0.002 0.120 0.120 0.039 0.114 0.121 -0.002 0.117 0.117

N=2000 WEIGHTING REGRESSION DOUBLY ROBUST

BIAS SE RMSE BIAS SE RMSE BIAS SE RMSE

µ0 0.000 0.094 0.094 -0.060 0.079 0.099 -0.001 0.091 0.091

µ1 0.001 0.049 0.049 -0.020 0.048 0.052 0.001 0.048 0.048

µ2 0.000 0.029 0.029 0.018 0.028 0.034 0.000 0.029 0.029

τ01 -0.001 0.106 0.106 -0.040 0.092 0.100 -0.002 0.103 0.103

τ02 0.000 0.098 0.098 -0.079 0.084 0.115 -0.001 0.095 0.095

τ12 0.001 0.057 0.057 -0.039 0.056 0.068 0.001 0.056 0.056

γ01|0 0.000 0.084 0.084 -0.038 0.084 0.093 0.000 0.084 0.084

γ02|0 0.000 0.080 0.080 -0.079 0.075 0.109 0.000 0.078 0.078

γ10|1 0.000 0.089 0.089 0.039 0.086 0.095 0.001 0.089 0.089

γ12|1 0.000 0.057 0.057 -0.041 0.056 0.069 0.000 0.056 0.056

γ20|2 0.000 0.114 0.114 0.079 0.090 0.120 0.001 0.109 0.109

γ21|2 -0.002 0.060 0.060 0.038 0.057 0.069 -0.002 0.058 0.058
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Table B.3: Monte Carlo Results: Wrong GPS Model

N=500 WEIGHTING REGRESSION DOUBLY ROBUST

BIAS SE RMSE BIAS SE RMSE BIAS SE RMSE

µ0 -0.061 0.170 0.181 0.001 0.179 0.179 0.000 0.187 0.187

µ1 -0.021 0.096 0.098 0.001 0.095 0.095 0.001 0.096 0.096

µ2 0.019 0.058 0.061 0.000 0.058 0.058 0.000 0.058 0.058

τ01 -0.040 0.193 0.197 0.000 0.200 0.200 -0.001 0.207 0.207

τ02 -0.081 0.180 0.198 0.000 0.189 0.189 0.000 0.196 0.196

τ12 -0.041 0.111 0.118 0.000 0.110 0.110 0.000 0.110 0.110

γ01|0 -0.036 0.168 0.172 0.003 0.169 0.169 0.002 0.170 0.170

γ02|0 -0.081 0.158 0.177 0.000 0.157 0.157 0.000 0.160 0.160

γ10|1 0.039 0.177 0.182 0.000 0.181 0.181 0.000 0.183 0.183

γ12|1 -0.042 0.111 0.118 -0.001 0.110 0.110 -0.001 0.110 0.110

γ20|2 0.080 0.198 0.214 -0.001 0.210 0.210 0.000 0.228 0.228

γ21|2 0.039 0.115 0.122 -0.002 0.115 0.115 -0.002 0.117 0.117

N=2000 WEIGHTING REGRESSION DOUBLY ROBUST

BIAS SE RMSE BIAS SE RMSE BIAS SE RMSE

µ0 -0.060 0.081 0.102 0.000 0.085 0.085 0.000 0.089 0.089

µ1 -0.020 0.048 0.053 0.001 0.048 0.048 0.001 0.048 0.048

µ2 0.018 0.028 0.034 0.000 0.029 0.029 0.000 0.029 0.029

τ01 -0.039 0.094 0.103 -0.001 0.097 0.097 -0.001 0.101 0.101

τ02 -0.079 0.086 0.117 0.000 0.090 0.090 0.000 0.093 0.093

τ12 -0.039 0.056 0.069 0.001 0.056 0.056 0.001 0.056 0.056

γ01|0 -0.039 0.084 0.093 0.000 0.084 0.084 0.000 0.084 0.084

γ02|0 -0.080 0.077 0.111 0.000 0.076 0.076 0.000 0.078 0.078

γ10|1 0.039 0.086 0.095 0.000 0.088 0.088 0.000 0.089 0.089

γ12|1 -0.041 0.056 0.070 0.000 0.056 0.056 0.000 0.056 0.056

γ20|2 0.079 0.095 0.123 0.000 0.100 0.100 0.000 0.108 0.108

γ21|2 0.038 0.058 0.070 -0.002 0.058 0.058 -0.002 0.058 0.058
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C Tables: Empirical Study

Table C.1: Noncognitive Ability Scales

LAWSEQ Self-Esteem Scale

1 Do you think that your parent usually like to hear about your new ideas?

2 Do you often feel lonely at school?

3 Do other children often break friends or fall out with you?

4 Do you like team games?*

5 Do you think that other children often say nasty things about you?

6 When you have to say things in front of teachers, do you usually feel shy?

7 Do you like writing stories or doing creative writing?*

8 Do you often feel sad because you have nobody to play with at school?

9 Are you good at mathematics?*

10 Are there lots of things about yourself you would like to change?

11 When you have to say things in front of other children, do you usually feel foolish?

12 Do you find it difficult to do things like woodwork or knitting?*

13 When you want to tell a teacher something do you usually feel foolish?

14 Do you often have to find new friends because your old friends are playing

with somebody else?

15 Do you usually feel foolish when you talk to your parents?

16 Do other people often think that you tell lies?

Note: Score +2 for all numbers answering “no” except for question 1. Score +2 for question 1 answering “yes”.

4,7,9 and 12 do not count. Score +1 for all answers “don’t know”. High scores indicate higher self-esteem.

CARALOC Locus of Control Scale

1 Do you feel that most of the time it is not worth trying hard because things never

turn out right anyway?

2 Do you feel that wishing can make good things happen?

3 Are people good to you no matter how you act towards them?

4 Do you like taking part in plays or concerts?*

5 Do you usually feel that it is almost useless to try in school because most children

are cleverer than you?

6 Is a high mark just a matter of luck for you?

7 Are you good at spelling?*

8 Are tests just a lot of guess work for you?

9 Are you often blamed for things which just aren’t your fault?

10 Are you the kind of person who believes that planning ahead makes things turn out better?

11 Do you find it easy to get up in the morning?*

12 When bad things happen to you, is it usually someone else’s fault?

13 When someone is very angry with you, is it impossible to make him your friend again?

14 When nice things happen to you is it only good luck?

15 Do you feel sad when it is time to leave school each day?*

16 When you get into an argument is it usually the other person’s fault?

17 Are you surprised when your teacher says you’ve done well?

18 Do you usually get low marks, even when you study hard?

19 Do you like to read books?*

20 Do you think studying for tests is a waste of time

Note: Each “No” response counts as one point, except for the question ten where “Yes” equals one point.

Questions 4, 7, 11, 15 and 19 do not count.
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Table C.2: Behavior Difficulties Scales

Rutter Parental ‘A’ Scale of Behavior Disorder

1 Very restless. Often running or jumping up and down. Hardly ever still.

2 Is squirmy or fidgety.

3 Often destroys own or others’ belongings.

4 Frequently fights with other children.

5 Not much liked by other children.

6 Often worried, worries about many things.

7 Tends to do things on his/her own, rather solitary.

8 Irritable. Is quick to ’fly off the handle’.

9 Often appears miserable, unhappy, tearful or distressed.

10 Sometimes takes things belonging to others.

11 Has twitches, mannerisms or tics of the face or body.

12 Frequently sucks thumb or finger.

13 Frequently bites nails or fingers.

14 Is often disobedient.

15 Cannot settle to do anything for more than a few moments.

16 Tends to be fearful or afraid of new things or new situation.

17 Is fussy or over-particular.

18 Often tells lies.

19 Bullies other children.

Conner’s Hyperactivity Scale

1 Is noticeably clumsy.

2 Trips or falls easily or bumps into objects or other children.

3 Inattentive, easily distracted.

4 Hums or makes other odd noises at inappropriate times.

5 Has difficulty picking up small objects.

6 Drops things which are being carried.

7 Becomes obsessional about unimportant things.

8 Requests must be met immediately, easily frustrated.

9 Shows restless or over-active behavior.

10 Is impulsive, excitable.

11 Interferes with the activity of other children.

12 Is sullen or sulky.

13 Fails to finish things he/she starts, short attention span.

14 Given to rhythmic tapping or kicking.

15 Cries for little cause.

16 Changes mood quickly and drastically.

17 Displays outbursts of temper, explosive or unpredictable behavior.

18 Has difficulty using scissors.

19 Has difficulty concentrating on any particular task though may return to it frequently.

Note: Mothers had to make a vertical mark through the line alongside each statement to indicate

to what extent the child shows the behavior described. The line correspond to a scale from 0 to 100.

0 refers to “does not apply” and 100 refers to “certainly applies”.
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Table C.3: Variable Descriptions Source: BCS, own definitions

Variable Description

lhnet log hourly wage at age of 30

female Dummy, =1 if Female

edulev =0 if no education, =1 if O-level, =2 if A-level, =3 if higher education

motage age of mother at the birth of cohort member

motedu0 Dummy, =1 if mother continued education beyond the minimum school leaving age

fatsoc10d Dummy, =1 if father social status is classified as professional or intermediate

or skilled nonmanual or skilled manual

brok Dummy, =1 if the child did not live with both parents since birth till age of 10

nuchild10 number of children in household at age of 10

ethnic Dummy, =1 if English

fmtsc Sum of the correctly answered questions in Friendly Math Test

sertsc Sum of the correctly answered questions in Shortened Edinburgh Reading Test

baswssc Sum of the correctly answered questions in Word Similarities part of the BAS

baswdsc Sum of the correctly answered questions in Word Definition part of the BAS

basrdsc Sum of the correctly answered questions in Recall Digits part of the BAS

basmsc Sum of the correctly answered questions in Word Similarities part of the BAS

carloc Carloc locus of control score

lawseq Lawreq self-esteem score

hyper1 Dummy, =1 if Normal behavior according to Conner’s Hyperactivity Scale

hyper2 Dummy, =1 if Moderate behavior problems according to Conner’s Hyperactivity Scale

hyper3 Dummy, =1 if Severe behavior problems according to Conner’s Hyperactivity Scale

rutt1 Dummy, =1 if Normal behavior according to Rutter’s Behavior Disorder Scale

rutt2 Dummy, =1 if Moderate behavior problems according to Rutter’s Behavior Disorder Scale

rutt3 Dummy, =1 if Severe behavior problems according to Rutter’s Behavior Disorder Scale

inc1 Dummy, =1 if income per week is under 35 £

inc2 Dummy, =1 if income per week is between 35-49 £

inc3 Dummy, =1 if income per week is between 50-99 £

inc4 Dummy, =1 if income per week is between 100-149 £

inc5 Dummy, =1 if income per week is between 150-199 £

inc6 Dummy, =1 if income per week is between 200-249 £

inc7 Dummy, =1 if income per week is above 249 £

33



Table C.4: Summary statistics Data Source: BCS, own calculations

Entire Sample Female Male

Variable Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

lhnet 1.78 0.44 1.72 0.42 1.84 0.45

female 0.48 0.5 1 0 0 0

dseq 1.71 1.13 1.69 1.15 1.73 1.12

motage 25.9 5.2 25.9 5.22 25.91 5.19

motedu0 0.37 0.48 0.37 0.48 0.36 0.48

fatsoc10d 0.38 0.49 0.38 0.49 0.38 0.49

brok 0.1 0.3 0.11 0.31 0.09 0.29

nuchild10 2.47 0.96 2.44 0.96 2.49 0.96

etnic 0.98 0.14 0.98 0.15 0.98 0.14

fmtsc 45.85 11.59 45.32 10.88 46.35 12.19

sertsc 33.98 10.68 34.89 9.98 33.14 11.22

baswssc 12.31 2.77 12.18 2.55 12.43 2.96

baswdsc 10.81 5.10 10.3 4.81 11.28 5.31

basrdsc 22.46 4.69 22.69 4.38 22.25 4.96

basmsc 15.94 5.47 16.26 5.33 15.64 5.58

carloc 7.41 2.91 7.23 2.94 7.57 2.88

lawseq 16.46 4.58 15.99 4.75 16.89 4.37

hyper1 0.82 0.38 0.85 0.35 0.8 0.4

hyper2 0.14 0.35 0.12 0.32 0.16 0.37

hyper3 0.04 0.19 0.03 0.17 0.04 0.21

rutt1 0.83 0.38 0.85 0.35 0.8 0.4

rutt2 0.14 0.35 0.11 0.32 0.16 0.37

rutt3 0.03 0.18 0.03 0.18 0.04 0.19

inc1 0.01 0.11 0.01 0.11 0.01 0.11

inc2 0.03 0.18 0.03 0.18 0.03 0.18

inc3 0.27 0.44 0.26 0.44 0.27 0.44

inc4 0.38 0.49 0.38 0.48 0.38 0.49

inc5 0.18 0.38 0.18 0.38 0.19 0.39

inc6 0.07 0.25 0.07 0.26 0.06 0.24

inc7 0.06 0.24 0.06 0.24 0.06 0.23

N 4697 2266 2431
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Table C.5: Generalized Propensity Score Estimation Results

Female Male

lawseq -0.004 (0.01) -0.007 (0.01)

caraloc 0.054*** (0.02) 0.049*** (0.02)

hyper2 -0.251* (0.14) -0.139 (0.12)

hyper3 -0.145 (0.28) -0.118 (0.23)

rutt2 0.024 (0.14) -0.095 (0.12)

rutt3 -0.359 (0.27) -0.041 (0.25)

sertsc 0.036*** (0.01) 0.023*** (0.01)

fmtsc 0.013** (0.01) 0.026*** (0.01)

nuchild10 -0.111** (0.04) -0.117*** (0.04)

inc1 -0.351 (0.38) 0.398 (0.36)

inc2 -0.419** (0.24) -0.158 (0.22)

inc3 -0.131 (0.10) -0.066 (0.10)

inc5 0.029 (0.12) 0.289*** (0.11)

inc6 0.072 (0.17) 0.098 (0.18)

inc7 0.217 (0.19) 0.281 (0.19)

brok -0.072 (0.14) -0.118 (0.14)

motedu0 0.294*** (0.09) 0.403*** (0.09)

motage 0.020*** (0.01) 0.004 (0.01)

etnic -1.389*** (0.31) -1.002*** (0.30)

fatsoc10d 0.541*** (0.09) 0.340*** (0.09)

baswdsc 0.023** (0.01) 0.033*** (0.01)

baswssc 0.048** (0.02) 0.016 (0.02)

basrdsc 0.002 (0.01) -0.011 (0.01)

basmsc 0.013 (0.01) 0.018 (0.01)

threshold1 0.647 (0.48) 0.112 (0.46)

threshold2 2.315*** (0.48) 1.547*** (0.46)

threshold3 3.032*** (0.48) 2.700*** (0.47)

N 2266 2431

LR χ2(24) 598.59 667.68

p-value 0.00 0.00

Note: *** 1% significance level, ** 5% significance level,

* 10% Significance level.
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Table C.6: Average Partial Effect after Ordered Logit

Female

Pr [T = 0 |X ] Pr [T = 1 |X ] Pr [T = 2 |X ] Pr [T = 3 |X ]

lawseq 0.0002 -0.0002 0.0000 0.0000

carloc -0.0032*** 0.0024*** 0.0004*** 0.0004***

hyper2 0.0161* -0.0122* -0.0019 -0.0020

hyper3 0.0092 -0.0069 -0.0011 -0.0011

rutt2 -0.0014 0.0011 0.0002 0.0002

rutt3 0.0243 -0.0183 -0.0029 -0.0031

sertsc -0.0021*** 0.0016*** 0.0003*** 0.0003***

fmtsc -0.0008** 0.0006** 0.0001** 0.0001**

nuchild10 0.0067** -0.0051** -0.0008** -0.0008**

inc1 0.0239 -0.0179 -0.0029 -0.0030

inc2 0.0290 -0.0218 -0.0035 -0.0037

inc3 0.0080 -0.0061 -0.0010 -0.0010

inc5 -0.0018 0.0013 0.0002 0.0002

inc6 -0.0042 0.0032 0.0005 0.0005

inc7 -0.0121 0.0092 0.0014 0.0014

brok 0.0044 -0.0034 -0.0005 -0.0005

motedu0 -0.0167*** 0.0128*** 0.0019*** 0.0020***

motage -0.0012** 0.0009** 0.0001** 0.0001**

etnic 0.0515*** -0.0400*** -0.0057** -0.0058**

fatsoc10d -0.0294*** 0.0226*** 0.0034*** 0.0034***

baswdsc -0.0014* 0.0010* 0.0002* 0.0002*

baswssc -0.0029** 0.0022** 0.0003** 0.0003**

basrdsc -0.0001 0.0001 0.0000 0.0000

basmsc -0.0008 0.0006 0.0001 0.0001

Male

Pr [T = 0 |X ] Pr [T = 1 |X ] Pr [T = 2 |X ] Pr [T = 3 |X ]

lawseq 0.0008 -0.0005 -0.0002 -0.0001

carloc -0.0056*** 0.0036*** 0.0013*** 0.0008***

hyper2 0.0165 -0.0104 -0.0039 -0.0022

hyper3 0.0141 -0.0088 -0.0034 -0.0019

rutt2 0.0112 -0.0070 -0.0026 -0.0015

rutt3 0.0048 -0.0030 -0.0011 -0.0006

sertsc -0.0026*** 0.0017*** 0.0006*** 0.0004***

fmtsc -0.0030*** 0.0019*** 0.0007*** 0.0004***

nuchild10 0.0135*** -0.0085*** -0.0032*** -0.0018***

inc1 -0.0413 0.0268 0.0094 0.0052

inc2 0.0190 -0.0118 -0.0046 -0.0026

inc3 0.0077 -0.0048 -0.0018 -0.0010

inc5 -0.0317*** 0.0204*** 0.0073*** 0.0040***

inc6 -0.0111 0.0070 0.0026 0.0015

inc7 -0.0302 0.0195 0.0069* 0.0038*

brok 0.0140 -0.0088 -0.0033 -0.0019

motedu0 -0.0446*** 0.0288*** 0.0102*** 0.0056***

motage -0.0004 0.0003 0.0001 0.0001

etnic 0.0878** -0.0585*** -0.0191** -0.0102**

fatsoc10d -0.0380*** 0.0245*** 0.0087*** 0.0048***

baswdsc -0.0038*** 0.0024*** 0.0009*** 0.0005***

baswssc -0.0018 0.0012 0.0004 0.0002

basrdsc 0.0012 -0.0008 -0.0003 -0.0002

basmsc -0.0020** 0.0013** 0.0005** 0.0003*

Note: *** 1% significance level, ** 5% significance level, * 10% Significance level.
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Figure D.1: Distribution of log hourly wages by gender (Epanechnikov

Kernel is used and the bandwidth is chosen by Silverman’s rule of thumb)
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Figure D.2: Distribution of log hourly wages by education level (Epanech-

nikov Kernel is used and the bandwidth is chosen by Silverman’s rule of

thumb)
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Figure D.3: Histogram estimates of the GPS for individuals with Ti = t

and Ti 6= t for each t = {0, 1, 2, 3} for females.
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Figure D.4: Histogram estimates of the GPS for individuals with Ti = t

and Ti 6= t for each t = {0, 1, 2, 3} for male sample.
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