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Abstract 

Growing experimental evidence suggests that loss aversion plays an important role in asset 

allocation decisions. We study the asset allocation of a linear loss-averse (LA) investor and 

compare the optimal LA portfolio to the more traditional optimal mean-variance (MV) and 

conditional value-at-risk (CVaR) portfolios. First we derive conditions under which the LA 

problem is equivalent to the MV and CVaR problems. Then we analytically solve the two-

asset problem, where one asset is risk-free, assuming binomial or normal asset returns. In 

addition we run simulation experiments to study LA investment under more realistic 

assumptions. In particular, we investigate the impact of different dependence structures, 

which can be of symmetric (Gaussian copula) or asymmetric (Clayton copula) type. Finally, 

using 13 EU and US assets, we implement the trading strategy of an LA investor assuming 

assets are reallocated on a monthly basis and find that LA portfolios clearly outperform MV 

and CVaR portfolios. 
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1 Introduction

Risk management and behavioral finance are core activities in the asset allocation conducted by

banks, insurance and investment companies, or any financial institution that is concerned about risk

and about the impact of psychology on individual choice behavior. Financial decision making under

uncertainty has long been characterized by modeling investors to be risk averse. Risk aversion means

that if several investment opportunities have the same expected return the one with the smallest

variation in returns is preferred. In classical finance, investors characterized by risk aversion usually

maximize a concave utility function of total wealth. For a certain class of such utility functions

a number of results have been known long since, see, for example, Merton (1990) and Ingersoll

(1987). However, this is not yet the case in the field of behavioral finance, where a theory of

portfolio selection that takes investors’ psychology into account is still being developed.

Although the idea of risk aversion is appealing and captures an important aspect of investment

behavior, the choice of particular utility functions is probably more motivated from a rational-choice

economics and tractability point of view than from realistic investors’ preferences. Experiments

in behavioral economics have shown that consumers’ preferences cannot always be consistently

explained using the traditional finance framework, see Kahneman and Tversky (1979). In particular,

real investors seem to be characterized by a loss-averse behavior, which is a phenomenon describing

asymmetric attitudes with respect to gains and losses, rather than by a purely risk averse behavior.

Their aversion to losses seems to be considerably stronger than their liking of gains.

Lately, the issue of loss aversion has been receiving more and more interest. Odean (1998) finds

empirical evidence of a behavior consistent with prospect theory known as the disposition effect

(see also Shefrin and Statman, 1985), when investors tend to hold losing investments too long and

sell winning investments too soon. De Bondt and Thaler (1985) investigate whether overreaction to

unexpected and dramatic events matters at the market level and find positive evidence in the sense

that prior losers are found to outperform prior winners. Benartzi and Thaler (1995), who examine

the single-period portfolio choice for an investor with prospect-type utility, offer an explanation

of the equity premium puzzle based on myopic loss aversion (interaction between loss aversion

and frequent portfolio evaluation). This supports the idea that if investors review their portfolios

annually, the resulting empirical premium is consistent with the loss aversion values estimated in

the standard prospect theory framework.1 Related to the work of Benartzi and Thaler (1995) is

1The term narrow framing is sometimes used to describe the underlying phenomenon.
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also that of Barberis, Huang and Santos (2001) who consider loss aversion in a multiperiod context,

where investors update the reference point through time and argue that these updating rules might

explain the equity premium puzzle. The finding of Benartzi and Thaler is challenged by Durand,

Lloyd and Tee (2004) who claim based on their empirical findings that the analysis of Benartzi

and Thaler is not robust. On the other hand, Zeisberger, Langer and Trede (2007) implement

a bootstrap approach and find results in line with the original results of Benartzi and Thaler.

Gomes (2005) studies the optimal portfolio allocation of loss-averse investors and its implications

for trading volume. An axiomatic characterization of the behavior depending on a reference point

is provided in Apesteguia and Ballester (2009), who also give applications on modeling the status-

quo bias and the addictive behavior. Recently, McGraw, Larsen, Kahneman and Schkade (2010)

have pointed out the importance of the context of judgement for the presence of loss aversion. An

extensive behavioral economic survey can be found in DellaVigna (2009).

While one strand of research, as indicated above, has recently been working with utility functions

that are motivated by behavioral experiments and imply asymmetric or downside risk, another

strand of research, mainly in the area of applied finance, has been occupied with the discussion and

introduction of new downside risk measures, without (necessarily) building on utility maximizing

agents.2 The use of downside risk measures has been particularly promoted by banking supervisory

regulations, which specify the risk of proprietary trading books and its use in setting risk capital

requirements. The measure of risk used in this framework is value-at-risk (VaR), which explicitly

targets downside risk, see the Basel Committee on Banking Supervision (2003, 2006). VaR has

been developing into one of the industry standards for assessing the risk of financial losses in risk

management and asset/liability management. Another risk measure, which is closely related to

VaR but offers additional desirable properties like information on extreme events, coherence and

computational ease, is conditional value-at-risk (CVaR). Computational optimization of CVaR has

been made readily accessible through the results in Rockafellar and Uryasev (2000).

We contribute to the existing literature outlined above along different lines. First, we investi-

gate how the maximization of (a certain form of) loss-averse utility relates to the optimization of

CVaR. In doing so, we create a link between the two above-mentioned strands of literature, i.e., be-

tween maximizing loss-averse utility whose specific form is motivated by experiments, and between

optimizing purely descriptive downside risk measures. More specifically, we extend the results of

2An overview of downside risk measures with an application to hedge funds can be found in Krokhmal, Uryasev
and Zrazhevsky (2002).
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Rockafellar and Uryasev (2000) by comparing CVaR as well as mean-variance optimization to the

maximization of loss-averse utility. Second, we analytically solve the portfolio selection problem

of a loss-averse investor in a way similar to Gomes (2005), where our set-up of the loss aversion

problem differs from his. Third, we provide additional insight into the asset allocation decision

by running simulation experiments for the case when analytical solutions cannot be obtained. In

doing so, we explicitly account for asymmetric dependence by using (appropriate) copulas which

have been found useful to model dependence beyond linear correlation. Fourth, we contribute to

the empirical research involving loss-averse investors by investigating the portfolio performance

under the optimal investment strategy, where the portfolio is re-allocated on a monthly basis us-

ing 13 European and U.S. assets. In addition to using fixed loss aversion parameters, we employ

time-changing versions which depend on previous gains and losses and which have been suggested

to better reflect the behavior of real investors. As opposed to a number of other authors, we do not

consider a general equilibrium model but examine the portfolio selection problem from an investor’s

point of view.

The remaining paper is organized as follows. In Section 2 we first derive conditions under which

the linear loss-averse utility maximization (LA) problem is equivalent to the traditional mean-

variance (MV) and conditional value-at-risk (CVaR) problems, under the assumption of normally

distributed asset returns. Then we look at the two-asset case, where one asset is risk-free, and

derive the optimal weight of the risky asset as well as the (slightly modified form of the) Sharpe

ratio under the assumption of binomially and normally distributed returns. Section 3 reports

simulation results for the two-asset case on the sensitivity of the (modified) Sharpe ratio and the

asset allocation of the optimal LA portfolio with respect to the the loss aversion parameter and

the reference point, and with respect to the degree and structure of dependence. We implement

the trading strategy of a linear loss-averse investor, who re-allocates this portfolio on a monthly

basis, and study the performance of the resulting optimal portfolio in Section 4. We also compare

the optimal LA portfolio to the more traditional optimal MV and CVaR portfolios. Section 5

concludes.

2 Portfolio optimization under linear loss aversion

Loss aversion, which is a central finding of Kahneman and Tversky’s (1979) prospect theory, de-

scribes the fact that people are more sensitive to losses than to gains, relative to a given reference

3



point. More specifically (i) returns are measured relative to a given reference value and (ii) the

decrease in utility implied by a marginal loss (relative to the reference point) is always greater than

the increase in utility implied by a marginal gain (relative to the reference point).3 We consider

a linear form of loss-averse utility, which is a special case of the originally introduced loss-averse

utility. Another feature of the original (S-shaped) loss aversion is an explicit risk seeking behavior

in the domain of losses, something which is not captured by our linear loss-averse utility. Under

linear loss aversion investors are characterized by the following utility of (portfolio/asset) return y

g(y) =







y, y > ŷ

(1 + λ)y − λŷ, y ≤ ŷ







= y − λ[ŷ − y]+

where λ ≥ 0 is the loss-averse, or penalty, parameter, ŷ ∈ R is the given reference point, and [t]+

denotes the maximum of 0 and t, see Figure 1. Under the given utility, investors face a trade-

off between return on the one hand and shortfall below the reference point on the other hand.

Interpreted differently, the utility function contains an asymmetric or downside risk measure, where

losses are weighted differently from gains.

ŷ

return y

utility g(y)

slope = 1 + λ

slope = 1

Figure 1: Linear loss-averse utility function

We start by studying the optimal asset allocation behavior of a linear loss-averse investor. This

3This is also referred to as the first-order risk aversion (see Epstein and Zin, 1990).
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behavior depends crucially on the reference return ŷ and, in particular, on whether this reference

return is below, equal to, or above the risk-free interest rate or the (requested lower bound on the)

expected portfolio return. Investors maximize their expected utility of returns as

max
{

E
(

r′x − λ [ŷ − r′x]+
)

∣

∣

∣
Ax ≤ b

}

(2.1)

where x = (x1, . . . , xn)′, with xi ∈ R denoting the proportion of wealth invested in asset i,4

i = 1, . . . , n, and r is the n−dimensional random vector of returns, subject to the usual asset

constraints Ax ≤ b, where A ∈ R
m×n, b ∈ R

m. Note that in general the proportion invested in a

given asset may be negative or larger than one due to short-selling.

2.1 Linear loss-averse utility versus mean-variance and conditional value-at-risk

In this section we show the relationship between the linear loss-averse utility maximization problem

(2.1) and both the MV and the CVaR problem, under the assumption of normally distributed asset

returns. The MV problem seeks to minimize the variance of an asset portfolio, the CVaR problem

optimizes the asset portfolio with respect to its conditional value-at-risk. Both problems may

include restrictions on the expected portfolio return and/or the assets’ weights.5

Let Z be a (continuous) random variable describing the stochastic portfolio return and fZ(·)
and FZ(·) be its probability density and cumulative distribution functions. Then we define the

expected linear loss-averse utility of return Z, given the penalty parameter λ ≥ 0 and the reference

point ŷ ∈ R, as6

LAλ,ŷ(Z) = E(Z − λ[ŷ − Z]+)

= E(Z) − λ(ŷ − E(Z|Z ≤ ŷ))P (Z ≤ ŷ)

= E(Z) − λFz(ŷ)
(

ŷ − CVaRFz(ŷ)(Z)
)

(2.2)

= E(Z) − λ

∫ ŷ

−∞
(ŷ − z)fZ(z)dz (2.3)

< E(Z)

4Throughout this paper, prime (′) is used to denote matrix transposition and any unprimed vector is a column
vector.

5For details on the MV and CVaR optimizations, see Markowitz (1952) and Rockafellar and Uryasev (2000).
6Note that LAλ,ŷ already accounts for the expectation of utility.
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where the conditional value-at-risk CVaRFz(ŷ)(Z) is the conditional expectation of Z below ŷ; i.e.

CVaRFz(ŷ)(Z) = E(Z|Z ≤ ŷ). As
∫ ŷ
−∞(ŷ − z)fZ(z)dz ≥ 0, the loss-averse utility of the random

variable Z is its mean reduced by some positive quantity, where the size of the reduction depends

positively on the values of the penalty parameter λ and the reference point ŷ. The expected linear

loss-averse utility LAλ,ŷ(·) is thus a decreasing function in both the penalty parameter and the

reference point. Using the fact that Z is normally distributed with Z ∼ N(µ, σ2) we have

LAλ,ŷ(Z) = µ − λσ

(

ŷ − µ

σ
F

(

ŷ − µ

σ

)

+ f

(

ŷ − µ

σ

))

(2.4)

where f(·) and F (·) are the probability density and the cumulative probability functions of the

standard normal distribution. Since ŷ−µ
σ F

(

ŷ−µ
σ

)

+ f
(

ŷ−µ
σ

)

is an increasing function of ŷ−µ
σ , the

linear loss-averse utility depends negatively on ŷ−µ
σ .7 Figure 2 presents different positionings of

the expected linear loss-averse utility of a given asset return, provided it is normally distributed,

with respect to the reference point ŷ and the CVaRβ , under the assumption that λ = 1/β and

β = Fz(ŷ). The return’s loss-averse utility is larger than its conditional value-at-risk when µ > ŷ,

it is smaller when µ < ŷ, and it is equal when µ = ŷ.

If asset returns are normally distributed, i.e., r ∼ N(µ,Σ), where µ, r ∈ R
n and Σ ∈ R

n×n, then

the portfolio return is also normally distributed, i.e., r′x ∼ N(µ′x, x′Σx), where x ∈ R
n, and using

our formulation of linear loss aversion given normal returns, see (2.4), we introduce the following

linear loss-averse utility maximization problem

max

{

LAλ,ŷ(r
′x) = µ′x − λ

√
x′Σx

(

ŷ − µ′x√
x′Σx

F

(

ŷ − µ′x√
x′Σx

)

+ f

(

ŷ − µ′x√
x′Σx

))

∣

∣

∣
Ax ≤ b, µ′x = R̄

}

(2.5)

Under the same assumptions, the MV problem can be stated as

min
{

var(r′x) = x′Σx
∣

∣

∣
Ax ≤ b, µ′x = R̄

}

(2.6)

and the CVaR optimization problem can be written as

max







CVaR
F ( ŷ−µ′x√

x′Σx
)
(r′x) = µ′x −

√
x′Σx

f( ŷ−µ′x√
x′Σx

)

F ( ŷ−µ′x√
x′Σx

)

∣

∣

∣
Ax ≤ b, µ′x = R̄







(2.7)

7Thus, the positioning of the mean with respect to the reference point is important. Based on this observation we
will later introduce a performance measure labeled the relative Sharpe ratio µ−ŷ

σ
.
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LA1/β,ŷCVaRβ µŷ

β

ŷ − CVaRβ

ŷCVaRβ µLA1/β,ŷ

β
ŷ − CVaRβ

LA1/β,ŷ = CVaRβ µ = ŷ

β

LA1/β,ŷCVaRβ µ ŷ

β

ŷ − CVaRβ

Figure 2: Linear loss-averse utility and conditional value-at-risk
The expected linear loss-averse utility LA1/β,ŷ(Z) and the conditional value-at-risk CVaRβ(Z) of the
stochastic return Z, with β = FZ(ŷ) and λ = 1/β, are shown for ŷ < µ, and µ− ŷ ≤ ŷ−CVaRβ(Z)
(top left), ŷ < µ, µ− ŷ > ŷ−CVaRβ(Z) (top right), ŷ = µ (bottom left), and ŷ > µ (bottom right).

We can now state the two main theorems of equivalence, which describe how the LA problem

is related to the more traditional MV and CVaR problems.

Theorem 2.1 Let
{

x |Ax ≤ b, µ′x = R̄
}

6= ∅, r ∼ N(µ,Σ) and λ > 0. Then the LA problem

(2.5) and the MV problem (2.6) are equivalent, i.e., they have the same optimal solution, if either

(i) ŷ = R̄ or (ii) ŷ > R̄ and λ = 1/F
(

ŷ−R̄√
x′Σx

)

.

Proof: If ŷ = R̄ and λ > 0 then LAλ,ŷ(r
′x) = ŷ − λ

√
x′Σxf(0) and the equivalence between (2.5)

and (2.6) follows from λf(0) > 0.

If ŷ > R̄ and λ = 1/F
(

ŷ−R̄√
x′Σx

)

then the objective functions of (2.5) can be stated as

LA
1/F

(

ŷ−R̄√
x′Σx

)

,ŷ
(r′x) = 2R̄ − ŷ −

√
x′Σx

f
(

ŷ−R̄√
x′Σx

)

F
(

ŷ−R̄√
x′Σx

)

Maximizing this is equivalent to minimizing the variance x′Σx over the same set of feasible solutions,

which follows from the fact that F (·) is an increasing function and that f(z) is decreasing for z ≥ 0.

�
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Theorem 2.2 Let
{

x |Ax ≤ b, µ′x = R̄
}

6= ∅, r ∼ N(µ,Σ) and λ > 0. Then the LA problem

(2.5) and the CVaR problem (2.7) are equivalent, i.e., they have the same optimal solution, if ŷ ≥ R̄

and λ = 1/F
(

ŷ−R̄√
x′Σx

)

.

Proof: If ŷ ≥ R̄ and λ = 1/F
(

ŷ−R̄√
x′Σx

)

then problems (2.5) and (2.7) can be written as

LAλ,ŷ(r
′x) = 2R̄ − ŷ −

√
x′Σx

f
(

ŷ−R̄√
x′Σx

)

F
(

ŷ−R̄√
x′Σx

)

and

CVaRF (0)(r
′x) = R̄ −

√
x′Σx

f
(

ŷ−R̄√
x′Σx

)

F
(

ŷ−R̄√
x′Σx

)

and the statement of the theorem follows. �

Theorem 2.1 states the conditions under which the LA and MV problems are equivalent provided

returns are normally distributed: they are equivalent (i) when the reference point is equal to the

mean of the portfolio return at the optimum, or (ii) when the reference point is strictly larger than

the mean of the portfolio return at the optimum and the loss aversion parameter is equal to some

specific value (depending on the reference point). In the latter case, the loss aversion parameter

yielding equivalence is smaller for larger reference points. Under the conditions stated in (ii), the

LA (MV) problem is also equivalent to the CVaR problem; and finally the LA and CVaR problems

are equivalent also when ŷ = R̄ and λ = 2 (see Theorem 2.2). The condition µ′x = R̄, which is

required in both theorems, can be interpreted as setting a lower bound on the portfolio return,

R̄ ≤ µ′x, which is binding at the optimum.8

Similar relationships between the maximization of loss-averse utility and the MV and CVaR

problems are true under the assumption of t-distributed portfolio returns and additional assump-

tions.9

2.2 Analytical solution for one risk-free and one risky asset

To better understand the attitude with respect to risk of linear loss-averse investors, we consider

a simple two-asset world, where one asset is risk-free and the other is risky, and analyze what

8A similar constraint is required in Rockafellar and Uryasev (2000), when the equivalence of the CVaR, VaR and
MV problems is shown.

9Detailed derivations can be obtained from the authors upon request.
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proportion of wealth is invested in the risky asset under linear loss aversion. Another motivation for

looking at this problem is that, when Tobin’s separation theorem holds, the investor’s investment

decision problem can be simplified to deciding which proportion to invest in the safe asset and

which to invest in some risky portfolio. As Levy, De Giorgy and Hens (2004) have shown, Tobin’s

separation principle does hold under the assumption of the Tversky and Kahneman’s prospect

theory utility, of which our linear loss-averse utility is a special case.10

Let r0 be the certain (deterministic) return of the risk-free asset and let r be the (stochastic)

return of the risky asset. Then the portfolio return is R(x) = xr + (1 − x)r0 = r0 + (r − r0)x,

where x is the proportion of wealth invested in the risky asset, and the maximization problem

under consideration of the linear loss-averse investor is

max {LAλ,ŷ(R(x)) = E(R(x) − λ[ŷ − R(x)]+)

= E(r0 + (r − r0)x) − λE([ŷ − r0 − (r − r0)x]+) |x ∈ R} (2.8)

where λ ≥ 0, ŷ ∈ R and [t]+ = max{0, t}.

The risky asset is binomially distributed

First we assume for the sake of simplicity and because in this case a number of results can be

shown analytically, that the return of the risky asset follows a binomial distribution. We assume

two states of nature: a good state of nature which yields return rg such that rg > r0 and which

occurs with probability p; and a bad state of nature which yields return rb such that rb < r0

and which occurs with probability 1 − p. In the good state of nature the portfolio thus yields

return Rg(x) = r0 + (rg − r0)x with probability p, in the bad state of nature it yields return

Rb(x) = r0 + (rb − r0)x with probability 1 − p. Note that

E(r) = prg + (1 − p)rb = p(rg − rb) + rb, (2.9)

var(r) = p(1 − p)(rg − rb)
2, (2.10)

E(R(x)) = E(r0 + (r − r0)x) = p(r0 + (rg − r0)x) + (1 − p)(r0 + (rb − r0)x)

= r0 + (p(rg − rb) − r0 + rb)x, (2.11)

10In the same place, it has been shown, however, that no financial market equilibria exist under the assumption of
Tversky and Kahneman’s prospect theory utility.
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var(R(x)) = p(1 − p)(rg − rb)
2x2, (2.12)

[ŷ − Rg(x)]+ =







ŷ − r0 − (rg − r0)x, for x ≤ ŷ−r0

rg−r0

0, for x > ŷ−r0

rg−r0

(2.13)

[ŷ − Rb(x)]+ =







0, for x ≤ r0−ŷ
r0−rb

ŷ − r0 − (rb − r0)x, for x > r0−ŷ
r0−rb

(2.14)

Thus, the loss-averse utility of the two-asset portfolio including the risk-free asset and the binomially

distributed risky asset, can be written as

LAλ,ŷ(R(x)) = r0 + (p(rg − rb) − r0 + rb)x − λ
(

p[ŷ − Rg(x)]+ + (1 − p)[ŷ − Rb(x)]+
)

(2.15)

The next theorem presents the analytical solution of the loss-averse utility maximization prob-

lem (2.8) for the binomially distributed risky asset with respect to a certain threshold value of the

loss aversion parameter λ.

Theorem 2.3 Let rb < r0 < rg, p > r0−rb

rg−rb
, x∗ be the optimal solution of (2.8) and

λ̂ ≡ p(rg − rb) − r0 + rb

(1 − p)(r0 − rb)
(2.16)

where the risky asset’s return r is assumed to be binomially distributed with rg (rb) being the return

in the good (bad) state of nature, which occurs with probability p (1− p). Then the following holds:

(i) If 0 ≤ λ < λ̂ then x∗ = +∞

(ii) If λ = λ̂ then x∗ ∈ [max
{

ŷ−r0

rg−r0 , r0−ŷ
r0−rb

}

,+∞)

(iii) If λ > λ̂ then x∗ = max
{

ŷ−r0

rg−r0 , r0−ŷ
r0−rb

}

Proof: in the appendix.

Note that the threshold value of λ can also be written as λ̂ = (E(r) − r0)/((1 − p)(r0 − rb))

and can thus be interpreted as a scaled equity premium, where the scaling factor is greater than 1

(and thus λ̂ greater than the equity premium) when r0 − rb < 1/(1 − p). Note, in addition, that if
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an investor is not sufficiently loss-averse then the solution of the loss-averse linear utility coincides

with the solution of linear utility.

As a performance measure we will consider in the addition to the Sharpe ratio, SR(Z) = µz−r0

σz
,

also the relative Sharpe ratio of a random variable Z, which we define as RSR(Z) = µz−ŷ
σz

, where

µz is the mean and σz is the standard deviation of Z. We consider the relative Sharpe ratio because

we think that the loss-averse investor with a given reference point ŷ is more concerned about excess

returns above his/her individual reference return than about excess returns above the risk-free

return. Our modified version of the Sharpe ratio is also supported by equation (2.4), where the

expected return always enters with the reference point and the standard deviation as −(µ − ŷ)/σ.

The next remark characterizes the optimal risky asset’s weight x∗ and, in particular, states its

sensitivity with respect to the loss aversion parameters λ and ŷ. In addition, the relative Sharpe

ratio is given for the optimal weight.

Remark 2.1 Let rb < r0 < rg, E(r) > r0, x∗ be the optimal solution of (2.8) and λ > λ̂, where λ̂

is defined by (2.16). Then

(i) x∗ ∈ [0, 1) if rb ≤ ŷ ≤ rg;

(ii) the mean-variance problem

min var(R(x)) = min{ p(1 − p)(rg − rb)
2x2 }

has the same solution, namely x∗ = 0, as the loss-averse utility maximization problem (2.8)

if ŷ = r0;

(iii)

dx∗

dλ
= 0,

dx∗

dŷ
=



















− 1
r0−rb

< 0, for ŷ < r0

0, if ŷ = r0

1
rg−r0 > 0, for ŷ > r0

(2.17)

(iv) SR(R(x)) = SR(r) > 0;
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(v)

RSR(R(x∗)) =







√

p
1−p > 0, for ŷ < r0

−
√

1−p
p < 0, for ŷ > r0

(2.18)

(vi)

RSR(r) =

√

p

1 − p
+

rb − ŷ
√

var(r)
. (2.19)

Theorem 2.3(iii) implies that the sufficiently loss-averse investor (λ > λ̂) with the reference point

being equal to the risk-free rate (ŷ = r0), will not invest invest in the risky asset (x∗ = 0) when its

return has the binomial distribution and the expected equity premium is positive. In case when

the reference point is below (above) the risk-free rate, ŷ < r0 (ŷ > r0), the fraction invested in

the risky asset decreases (increases) with an increasing reference point. However, in all cases is the

fraction invested in the risky asset insensitive to the change of the penalty parameter λ, provided

the investor is sufficiently loss-averse, i.e., λ > λ̂. In addition, it follows from Remark 2.1(iv), (v)

that both the Sharpe ratio of the portfolio return R(x) and the relative Sharpe ratio of the optimal

portfolio return R(x∗) are insensitive with respect to the penalty parameter and the reference point.

The risky asset is normally distributed

Let us now assume that the risky asset’s return is normally distributed, i.e., r ∼ N(µ, σ2) where

σ > 0. Then also the portfolio return R(x) = r0 + (r − r0)x is normally distributed with R(x) ∼
N(r0 + (µ − r0)x, x2σ2) and the loss-averse utility function can be formulated as

LAλ,ŷ(R(x)) =







r0 + (µ − r0)x − λσx
[(

ŷ−r0

σx − µ−r0

σ

)

F
(

ŷ−r0

σx − µ−r0

σ

)

+ f
(

ŷ−r0

σx − µ−r0

σ

)]

, x 6= 0

r0 − λ[ŷ − r0]+, x = 0

(2.20)

The following theorem proves properties of the optimal solution of the loss-averse utility maximiza-

tion problem (2.8) under the assumption that the risky asset’s return is normally distributed.

Theorem 2.4 Let x∗ be the optimal solution of problem (2.8), λ > 0, λ̂N = µ−r0

σh , where h =
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−µ−r0

σ F
(

−µ−r0

σ

)

+ f
(

−µ−r0

σ

)

and the risky asset is assumed to be normally distributed such that

r ∼ N(µ, σ2) and σ > 0. Then the following holds

(i) If µ ≤ r0 then the maximum of (2.20) is reached at x∗ = −∞

(ii) If µ > r0 and λ < λ̂N then the maximum of (2.20) is reached at x∗ = +∞

(iii) If µ > r0, λ = λ̂N and ŷ 6= r0 then the maximum of (2.20) is reached at x∗ = +∞

(iv) If µ > r0, λ = λ̂N and ŷ = r0 then the maximum of (2.20) is reached for any x∗ ∈ R

(v) If µ > r0 and λ > λ̂N then the maximum of (2.20) is reached at x∗ = −∞

Proof: in the appendix.

Assuming the more reasonable case that µ > r0, the two main results are stated in parts (ii)

and (v) of the theorem.11 As before, the investor’s optimal investment behavior depends crucially

on the value of his/her penalty parameter. If it is below some threshold value (λ < λ̂N ) the risky

asset’s optimal weight goes to plus infinity, if it is above that same threshold (λ > λ̂N ), the risky

asset’s optimal weight goes to minus infinity. So, if investors are sufficiently loss-averse, they want

to go infinitely short in the risky asset. In reality, however, investors usually face a short-sales

constraint on risky assets. Therefore, the next theorem presents properties of the solution of the

constrained loss-averse utility maximization problem

max {LAλ,ŷ(R(x)) |x ≥ 0} (2.21)

where LAλ,ŷ(R(x)) is given by (2.20) and the no-short-sales restriction is applied to the risky asset.

Theorem 2.5 Let x∗ be the optimal solution of problem (2.21), λ > λ̂N , where λ̂N > 0 is defined

as in Theorem 2.4, µ > r0, ŷ 6= r0 and the risky asset is assumed to be normally distributed such

that r ∼ N(µ, σ2) and σ > 0. Then x∗ > 0,

dx∗

dλ
=

σ2(x∗)3

λ(ŷ − r0)2





µ − r0

σ

F
(

ŷ−r0

σx∗ − µ−r0

σ

)

f
(

ŷ−r0

σx∗ − µ−r0

σ

) − 1



 < 0 (2.22)

11Parts (iii) and (iv) cover the special case when the penalty parameter is exactly equal to some threshold value,
i.e., λ = λ̂N .
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and

dx∗

dŷ
=

x∗

ŷ − r0







> 0, for ŷ > r0

< 0, for ŷ < r0
(2.23)

Proof: in the appendix.

Like before, when the risky asset’s return was binomially distributed, the optimal fraction

invested in the risky asset decreases (increases) with an increasing reference point, provided the

reference point is below (above) the risk-free interest rate, i.e., ŷ < r0 (ŷ > r0). So, when the

investor’s reference return is below the risk-free interest rate, he/she will invest less into the risky

asset with an increasing ŷ, as the risk-free asset yields a high enough return anyway. On the other

hand, when the investor’s reference return is above the risk-free rate, he/she will want to invest

more into the risky (and more profitable) asset with an increasing ŷ in order to meet the return

target. The optimal weight of the risky asset also decreases with an increasing penalty parameter.

So, if the investor’s reference point is below the risk-free interest rate, his/her optimal weight of

the risky asset is a decreasing function of both the penalty parameter and the reference point. The

following remark presents our findings regarding the relative Sharpe ratio.

Remark 2.2 Let the assumptions of Theorem 2.5 be satisfied. Then the following holds

(i) SR(R(x)) = SR(r) = µ−r0

σ ;

(ii) Let x 6= 0. Then RSR(R(x)) = r0−ŷ
xσ + SR(r);

(iii) Let x∗ be the solution of problem (2.21). Then

dRSR(R(x∗))

dλ
= − x∗σ

λ(r0 − ŷ)





µ − r0

σ

F
(

ŷ−r0

σx∗ − µ−r0

σ

)

f
(

ŷ−r0

σx∗ − µ−r0

σ

) − 1



 =







> 0, for ŷ < r0

< 0, for ŷ > r0

(iv) Let x∗ be the solution of problem (2.21). Then dRSR(R(x∗))
dŷ = 0.

Note that the portfolio performance (in terms of RSR) of the loss-averse investor facing a short-sales

constraint increases with an increasing degree of the loss aversion if the reference point is below

the risk-free rate; and it decreases if the reference point exceeds the risk-free rate. Note in addition

that a positive expected equity premium and the reference point being below the risk-free rate are
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sufficient conditions such that the relative Sharpe ratio of the optimal portfolio of problem (2.21)

is positive.

2.3 Numerical solution

In empirical applications or simulation experiments, the linear loss-averse utility maximization

problem (2.1) has to be solved numerically. We thus reformulate the original problem as the

bilinear parametric problem of n−variables

max

{

1

S

S
∑

s=1

(

r′sx − λ [ŷ − r′sx]+
)

∣

∣

∣
Ax ≤ b

}

(2.24)

where λ, x, ŷ, A and b are defined as above, and rs is the n−vector of observed returns, s = 1, . . . , S.

It can be shown that (2.24) is equivalent to the following (n + S)−dimensional linear program-

ming (LP) problem

max
x,y−

{

µ̂′x − λ

S
e′y−

∣

∣

∣
Ax ≤ b, Bx + y− ≥ ŷe, y− ≥ 0

}

(2.25)

where µ̂ = (µ̂1, . . . , µ̂n)′ is the vector of estimated expected returns; i.e., µ̂i = 1
S

∑S
s=1 rsi, e is an

S−vector of ones, B′ = [r1, r2, . . . , rS ] and y− ∈ R
S is an auxiliary variable.12 The equivalence

should be understood in the sense that if x∗ is the x portion of an optimal solution for (2.25),

then x∗ is optimal for (2.24). On the other hand, if x∗ is optimal for (2.24) then ((x∗)′, (y−)′)′ is

optimal for (2.25) where y−s = [ŷ−r′sx
∗]+, s = 1, . . . , S. Thus, the utility function of problem (2.25)

maximizes the expected return of the portfolio penalized for cases when its return drops below the

reference value ŷ. However, Best, Grauer, Hlouskova and Zhang (2010) introduced a method that

efficiently (and directly) solves the problem (2.24).

3 Simulation study assuming different structures and degrees of

dependence

There is growing evidence that dependence in financial markets is not symmetric but of an asym-

metric nature. Stock returns, for example, appear to display stronger dependence in bear than

12De Giorgi, Hens and Mayer (2007) suggested to solve the original problem by a different equivalent LP problem
with (n + 2S) dimensions.
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in bull markets. The presence of such asymmetry violates the assumption of normally distributed

asset returns, which underlies traditional mean-variance analysis and also our previous analytical

analysis. The consequences of falsely assuming symmetric dependence are diverse: value-at-risk

levels, for example, will generally be too optimistic when the potential for extreme co-movements

is underestimated. A growing number of studies on portfolio management consider the asymmetric

dependence of stock returns in an explicit way. These studies vary in how portfolios are optimized

but agree to a large part in the use of copula theory. A copula links together two or more marginal

distributions to form a joint distribution, where the marginal distributions can be of any form. The

multivariate distribution can thus be split in two parts which may be treated completely separately,

the univariate marginal distributions and the copula.13

The Gaussian (normal) copula is the one that is implicitly used all the time. It is implied

by the joint normal distribution and is completely determined by the linear correlation ρ. One

property of the Gaussian copula is that it displays symmetric dependence, i.e., dependence in the

lower and upper tail of the distribution is the same. On the other hand, the Clayton copula is often

used to model asymmetric dependence: under the Clayton copula the probability of joint negative

extreme co-movements is greater than the probability of joint positive extreme co-movements, i.e.,

dependence in the lower tail of the distribution is larger than in its upper tail. We use the term

structure of dependence to describe different copulas and the term degree of dependence to describe

the level or amount of dependence, given a specific copula.

We study properties of the optimal linear loss-averse portfolio and its differences with respect

to the optimal mean-variance portfolio by running simulation experiments when the distribution

of returns is implied by the Gaussian and the Clayton copulas for different degrees of dependence.

The rank correlation Kendall’s tau14 is used to find those Gaussian and Clayton copula parameters

which reflect the same degree of dependence. We consider a simple two-asset world, where the

investor can invest into two risky assets, such that one is considerably safer than the other. We

thus simulate two asset returns which, first, are distributed as N(µ,Σ) involving the Gaussian

copula and, second, display the same marginal (i.e., normal) distributions as above but instead of

the Gaussian use the Clayton copula. The expected return, µ ∈ R
2, and the covariance matrix,

13Formally, the copula C of two random variables X and Y with marginal distribution functions Fx(·) and Fy(·)
is implicitly defined by F (x, y) = C(Fx(x), Fy(y)), where F (·) is the two-dimensional distribution function. For a
thorough introduction to copula theory see Joe (1997) and Nelsen (2006).

14Kendall’s tau is a measure of dependence which does not depend on the marginal distributions (while linear
correlation does) but is completely specified by the copula.
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Σ ∈ R
2×2, are the sample estimates of the EU dataset employed in the empirical section. We

use the bond as a proxy of the safer (and less profitable) asset and the overall stock index as a

proxy of the riskier (and more profitable) asset. For the EU market the corresponding quantities

are µ1 = 7.98%, µ2 = 13.27%, σ2
1 = 5.66%, σ2

2 = 16.92% and ρ = 0.07, where σ2
1 and σ2

2 are the

estimated variances of asset 1 (bond) and asset 2 (stock) and ρ is their estimated correlation. As

markets usually move together, we only consider a positive degree of dependence in the simulation

exercise. The sample size of the simulation is 1,000.

Our experiments are conducted for changing the loss aversion parameter λ while the reference

point ŷ remains fixed, ŷ ∈ {0%, 3.98%, 7.98%, 13.27%},15 and while the dependence parameter for

both copulas remain fixed, ρ ∈ {0.07, 0.5, 0.9}. We thus examine the performance and the asset

allocation of optimal linear loss-averse and mean-variance portfolios when returns are generated by

the Gaussian and Clayton dependence models.

Figure 3 presents optimal weights of the riskier asset for different reference points and depen-

dence parameters, assuming Gaussian and Clayton dependence models. As the assumptions in our

simulation experiment deviate from those in our theoretical analysis, i.e., we now consider a “safer”

(but not totally risk-free) asset and we assume different structures and degrees of dependence, it

will be interesting to see which of our analytical findings still hold. The very first observation is

that the weight of the riskier asset is a decreasing function of the penalty parameter λ. So investors

allocate less wealth to the riskier asset when their loss aversion parameter is higher. This seems

to be true for both the Gaussian and Clayton copulas and is in line with our findings for the case

when a no-short-sales restriction is imposed on the risky asset and the return of the risky asset is

normally distributed, see Theorem 2.5.

On the other hand, what seems to be different with respect to the dependence structure is the

weight of the riskier asset: for smaller λ, the weight seems to be larger when dependence is modeled

by the Clayton copula, for larger λ (above some threshold level) the weight seems to be larger when

dependence is modeled by the Gaussian copula. What can also be observed is that the threshold

penalty parameter λ∗ beyond which the weight of the riskier asset falls below one is increasing

with an increasing dependence parameter ρ; i.e., x(λ, ŷ, ρ) ≤ 1 for λ ≥ λ∗(ŷ, ρ) where λ∗(ŷ, ρ) is

increasing in ρ for a fixed reference point ŷ. So, in order to display a given investment behavior, i.e.,

a given optimal investment in the riskier asset, investors need to be more loss-averse (in terms of

15Note that ŷ = 3.98% corresponds to the mean of the risk-free interest rate from our EU dataset.
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Figure 3: Sensitivity analysis of riskier asset’s optimal weight with respect to λ for different ρ
Returns are simulated using the Gaussian (solid line) and Clayton (dashed line) dependence models
with µ1 = 7.98%, σ2

1 = 5.66% (safer asset) and µ2 = 13.27%, σ2
2 = 16.92% (riskier asset). These

parameters are estimates for the bond and overall stock index returns in our empirical EU dataset
(1982 – 2008). We use values of zero, the risk-free interest rate and the reported means of the
safer and riskier assets for the reference point. The sample size of the simulation is 1,000. G (C)
indicates that the returns were simulated with the Gaussian (Clayton) copula, MV indicates that
the optimization procedure used was mean-variance.

the penalty parameter) with an increasing degree of dependence. Finally, for all three dependence

parameters ρ is the weight of the riskier asset of the mean-variance investor significantly smaller

than the weight of the loss-averse investor, however, they are nearly identical for both dependence

models.

Certain monotonicity properties of the riskier asset’s weight with respect to the dependence

parameter ρ can be seen in Figure 4. The optimal weight of the riskier asset under both dependence

models is an increasing function of the dependence parameter ρ for smaller penalty parameters λ;

and is a decreasing function of ρ for higher penalty parameters; i.e., higher positive dependence

seems to induce “riskier” behavior of less loss-averse investors who seem to invest more into the

riskier asset when the dependence between assets increases. However, investors with a higher degree

of loss aversion seem to become more conservative when dependence increases.

Figure 5 suggests that the dependence of the riskier asset’s weights with respect to the reference

point is in line with our findings for the case when a no-short-sales restriction is imposed on the

risky asset and the risky asset’s return is normally distributed, see Theorem 2.5. We can observe a

U-shape of weights: first (ŷ ≤ ŷ∗) the optimal weight of the riskier asset decreases with an increasing
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Figure 4: Sensitivity analysis of riskier asset’s optimal weight with respect to ρ for different λ
Returns are simulated using the Gaussian (solid line) and Clayton (dashed line) dependence models
with µ1 = 7.98%, σ2

1 = 5.66% (safer asset) and µ2 = 13.27%, σ2
2 = 16.92% (riskier asset). These

parameters are estimates for the bond and overall stock index returns in our empirical EU dataset
(1982 – 2008). We use values of zero, the risk-free interest rate and the reported means of the
safer and riskier assets for the reference point. The sample size of the simulation is 1,000. G (C)
indicates that the returns were simulated with the Gaussian (Clayton) copula, MV indicates that
the optimization procedure used was mean-variance.

reference point, beyond some threshold ŷ∗, i.e., ŷ ≥ ŷ∗, the optimal weight increases with increasing

ŷ. So, when the investor’s reference return is below some threshold level, he/she wants to invest less

into the riskier asset with an increasing ŷ, as the alternative (less risky) asset yields a high enough

return anyway. On the other hand, when the investor’s reference return is above the threshold

level, he/she will want to invest more into the riskier (and more profitable) asset with an increasing

ŷ in order to meet the return target. For smaller penalty parameters this threshold ŷ∗ seems to

coincide with the mean return of the safer asset (bond); i.e, ŷ∗ = 7.98%, while for larger penalty

parameters the threshold seems to coincide with the risk-free interest rate (ŷ∗ = 3.98%). Note that

according to Theorem 2.5 this threshold corresponds to the return of the (truly) safe asset. This

property also explains the ranking of the size of the risky weights as presented in Figure 3, for both

the Gaussian and the Clayton copulas provided the penalty parameter λ is large enough.

When focusing on performance measures such as the Sharpe ratio (SR) and the relative Sharpe

ratio (RSR),16 we can see that the property of RSR as stated in Remark 2.2(iii), namely RSR being

an increasing function of the penalty parameter λ for ŷ ≤ ŷ∗ and being a decreasing function of λ for

16Note that SR = µ′x∗

√
x∗)′Σx∗

and RSR = µ′x∗−ŷ
√

x∗)′Σx∗
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Figure 5: Sensitivity analysis of riskier asset’s optimal weight with respect to ŷ for different ρ
Returns are simulated using the Gaussian (solid line) and Clayton (dashed line) dependence models
with µ1 = 7.98%, σ2

1 = 5.66% (safer asset) and µ2 = 13.27%, σ2
2 = 16.92% (riskier asset). These

parameters are estimates for the bond and overall stock index returns in our empirical EU dataset
(1982 – 2008). We use values of zero, the risk-free interest rate and the reported means of the
safer and riskier assets for the reference point. The sample size of the simulation is 1,000. G (C)
indicates that the returns were simulated with the Gaussian (Clayton) copula, MV indicates that
the optimization procedure used was mean-variance.

ŷ > ŷ∗, holds also in our simulation set-up where the underlying assumptions are slightly different

than those valid in the remark. In our simulation set-up ŷ∗ ∈ [3.98%, 7.98%), which corresponds

quite well to Remark 2.2(iii) where ŷ∗ = r0, as 3.98% is the mean of the risk-free interest rate

and 7.98% is the mean of the bond return from our EU dataset. Thus, an increasing level of loss

aversion (in terms of the penalty parameter λ) enhances the portfolio performance in terms of

the RSR when the reference point is below a certain threshold value ŷ∗, and worsens it when the

reference point exceeds ŷ∗.

With respect to the Sharpe ratio, LA portfolios outperform MV portfolios for a higher depen-

dence parameter (ρ = 0.5 and 0.9) and for a higher penalty parameter (λ ≥ 4 when ρ = 0.5 and

λ ≥ 3.75 when ρ = 0.9) when returns are generated by the Clayton dependence model. When

returns are generated by the Gaussian dependence model, however, MV portfolios outperform LA

portfolios. On the other hand, LA portfolios outperform MV portfolios with respect to the rela-

tive Sharpe ratio for ŷ > 3.98% for any λ > 0. If ŷ = 3.98% then LA portfolios outperform MV

portfolios (with respect to RSR) when λ ≥ 2.75 for ρ = 0.07, λ ≥ 2.25 for ρ = 0.5 and λ ≥ 2.75 for

ρ = 0.9 for both types of dependence models.
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4 Empirical application

In this section we investigate the performance of an optimal asset portfolio constructed by a linear

loss-averse investor. We study the benchmark scenario, where the penalty parameter is constant

and the reference point is equal to zero percent, as well as two modified versions of the benchmark

scenario. The first modification uses the risk-free interest rate as the reference point (risk-free

scenario), the second modification employs time-changing versions of the penalty parameter and

the reference point which both depend on previous gains and losses (dynamic scenario). If the

investor has experienced recent gains, his/her penalty parameter is equal to the prespecified λ while

his/her reference point is lower than the risk-free interest rate due to the investor’s decreasing loss

aversion. On the other hand, if the investor has experienced recent losses, his/her loss aversion

and thus his/her penalty parameter increases. At the same time his/her reference point is equal to

the risk-free interest rate. In setting up the specific form of the dynamic model we closely follow

Barberis and Huang (2001).

return y

utility g(y)

prior losses (dt > 1)

no prior gains or losses (dt = 1)

prior gains (dt < 1)

Figure 6: Utility of gains and losses

Let dt = rB/rt be a state variable describing the investor’s sentiment with respect to prior

gains or losses, which depends on the prior benchmark return rB = 1/T
∑T

i=1 rt−i and the current

portfolio return rt. The benchmark return, which is the average value of the latest T realized

portfolio returns, is compared with the current portfolio return. If dt ≤ 1, then the current
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portfolio return is greater than or equal to the benchmark return, making the investor feel that

his/her portfolio has performed well and that he has accumulated gains; if dt > 1, then the current

portfolio return is lower than the benchmark return, making the investor feel he has experienced

losses. We take T = 1 because in general investors seem to be the most sensitive to recent losses,

and thus the current portfolio return is compared to the previous period’s portfolio return. The

linear loss-averse utility function adjusted for a time-changing penalty parameter and reference

point is

g(rt) =







rt, rt ≥ ŷt

(1 + λt)rt − λtŷt, rt < ŷt

(4.26)

where

λt =







λ, rt ≥ rt−1 (prior gains)

λ +
(

rt−1

rt
− 1

)

, rt < rt−1 (prior losses)
ŷt =







rt−1

rt
r0
t , rt ≥ rt−1 (prior gains)

r0
t , rt < rt−1 (prior losses)

(4.27)

and r0
t is the risk-free interest rate. Note that λt ≥ λ and ŷt ≤ r0

t , where higher values of the loss

aversion parameters reflect a higher degree of loss aversion.

We use different values of λ in the benchmark, the risk-free and the dynamic scenarios to al-

low for different degrees of loss aversion. Specifically, we let the penalty parameter be equal to

0.3, 0.5, 1, 2 and 5. For the European and U.S. linear loss-averse investors we report optimization

results for all three scenarios. In particular, we present descriptive statistics including mean, stan-

dard deviation, CVaR, and the Sharpe ratio of the optimal linear loss-averse portfolio return as

well as the average optimal portfolio weights. To be able to compare the new linear loss-averse

portfolio optimization to other, more standard, approaches, we also report optimization results for

the MV and the CVaR methods.

The investor is assumed to re-optimize his/her portfolio each month using monthly closing

prices and an optimization sample of 36 months, i.e., three years. This yields an out-of-sample

evaluation period from February 1985 until December 2008. We have experimented with other,

longer optimization samples, e.g., five years, but the performance of the resulting optimal LA

portfolio is generally better for shorter periods indicating that changing market conditions should

be taken into immediate account.

We consider two geographical markets, the European and the U.S. markets, each including
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different types of financial assets among which the investor may select. These assets include sectoral

stock indices, government bonds and the two commodities gold and crude oil, yielding a total of

13 assets. Tables 1 and 5 report the summary statistics of the considered European and U.S.

financial assets. In general, the stock indices exhibit comparatively high risk and return, the

government bonds show a low risk and return, and gold exhibits moderate risk and a low return

while crude oil shows high risk and a moderate return. Returns are computed as rt = pt/pt−1 − 1,

where pt is the monthly closing price at time t. All prices are extracted from Thomson Reuters

Datastream from January 1982 to December 2008. The sectoral stock indices follow the Datastream

classification for EMU and U.S. stock markets and cover the following 10 sectors: oil and gas, basic

materials, industrials, consumer goods, health care, consumer services, telecom, utilities, financials,

and technology. We use Brent and WTI crude oil quotations for the European and U.S. markets,

respectively. Prices in the European markets are quoted in, or transformed to, Euro; prices in

the U.S. markets are quoted in U.S. dollar, hence we consider European and U.S. investors who

completely hedge their respective currency risk.17

Considering the empirical results of the benchmark scenario (see Table 2), where the reference

point is equal to zero percent, the optimal LA portfolios generally display a higher expected return

and higher risk (in terms of standard deviation and conditional value-at-risk) than the optimal MV

and CVaR portfolios. In particular, the Sharpe ratio of all LA portfolios is significantly larger than

that of the MV or CVaR portfolios, suggesting a clear outperformance of LA portfolios over the MV

and CVaR portfolios. Taking a closer look at the LA results with respect to the penalty parameter,

we note that with an increasing loss aversion, i.e., with increasing values of λ, the expected return,

the risk and the Sharpe ratio of the optimal LA portfolio decrease as soon as some benchmark

level of λ has been exceeded, where the maximum mean return among the different LA utility

functions – as well as the maximum Sharpe ratio – is achieved for a penalty parameter of 0.5. So

with an increasing value of the loss aversion parameter, the LA portfolio gets more similar to the

MV portfolio. Comparing the optimal CVaR and MV portfolios we find only very small differences,

and thus the results we report on the comparison of LA portfolios and the MV portfolio also hold

for the LA portfolios and the CVaR portfolio. Setting the reference point equal to the risk-free

interest rate (risk-free scenario) alters the LA results only marginally (see Table 3), so we do not

17The gold price, which is quoted in U.S. dollar, is transformed to Euro for the European investor. Differences
between the descriptive statistics of the U.S. and the European gold price are thus entirely due to fluctuations in the
USD/EUR exchange rate.
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separately discuss the results for the risk-free scenario.

If we consider the dynamic scenario, however, the LA results change significantly, as long as

the constant penalty parameter which applies after gains is not too large (see Table 4). This

observation is in line with the observation that shorter optimization samples tend to yield “better”

LA portfolios (e.g., in terms of the Sharpe ratio), i.e., it seems to be important that recent market

developments are quickly taken into account. If λ is equal to 0.3, 0.5 or 1, then the mean of the

optimal LA portfolio in the dynamic scenario is larger by more than 2 percentage points than the

mean of the LA portfolio of the benchmark scenario. If λ is equal to 2 or 5, then the mean of

the dynamic LA portfolio is only larger by about 0.6 percentage points. For all five values of the

loss aversion parameter the optimal LA portfolios of the dynamic scenario outperform the optimal

LA portfolios of the benchmark scenario in terms of the Sharpe ratio. A similar result is true if

we compare the dynamic and the risk-free scenarios. In summary LA portfolios seem to generally

outperform the MV and CVaR portfolios in terms of the Sharpe ratio, where among the different

LA specifications the benchmark and the risk-free scenarios are clearly dominated by the dynamic

scenario, and the “best” penalty parameter seems to be λ = 0.5.

The results for the U.S. markets are similar to those for the European markets, however, the

clear outperformance of LA portfolios, which is observed in European markets, can only be found

at a lower degree in U.S. markets. For example, dynamic LA portfolios only partially outperform

the benchmark LA portfolios, and also the degree of outperformance is lower. When comparing

LA portfolios and the MV portfolio, the LA portfolios outperform MV portfolios only for selected

values of the loss aversion parameter. See Tables 6, 7 and 8 in the appendix.

We also check on robustness of the reported empirical results by running a set of simulations

that reflect the investigated European and U.S. markets in the way that the first and second

moments of the simulated and empirical data are equal. We thus simulate 13 returns, which are

distributed N(µ,Σ), where µ and Σ are the sample mean and sample covariance matrix of the

European and U.S. datasets, respectively. The simulation results (using a zero percent reference

point or a reference point equal to the risk-free interest rate) support the empirical observation

that the Sharpe ratio first increases with the penalty parameter and then decreases sightly; and

that the LA portfolio outperforms the MV portfolio in terms of the Sharpe ratio if the loss aversion

parameter is not too small (λ ≥ 1).
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OIL BASICMAT INDUS CONSGDS HEALTH CONSSVS TELE UTIL FIN TECH BOND GOLD CRUDEOIL

Performance of 1-Month Returns (in percent p.a.)
Mean 17.31 14.48 13.01 12.76 15.36 13.22 16.43 15.36 11.81 20.31 7.98 3.79 6.97
StDev 18.45 18.74 19.89 21.36 14.64 18.44 24 13.86 19.18 30.36 5.66 16.27 38.27
VaR -61.33 -61.16 -65.32 -65.02 -55.64 -61.82 -67.78 -47.08 -63.39 -83.97 -22.31 -56.35 -88.02
CVaR -74.61 -82.13 -84.58 -83.93 -67.73 -79.57 -83.65 -64.45 -83.99 -91.36 -30.96 -69.19 -95.87

Percentiles (in percent p.a.)
5 -61.33 -61.16 -65.32 -65.02 -55.64 -61.82 -67.78 -47.08 -63.39 -83.97 -22.31 -56.35 -88.02
10 -45.47 -47.73 -46.96 -53.64 -39.61 -44.66 -59.33 -38.42 -46.67 -67.02 -16.34 -47.71 -79.17
25 -21.34 -18.05 -22.09 -23.56 -10.03 -19.67 -28.76 -12.74 -17.82 -27.43 -4.9 -24.83 -48.1
50 21.48 20.6 17.74 13.52 19.87 19 20.04 17.89 16.72 16.98 9.98 0.56 5.97
75 70.64 67.03 70.24 72.58 54.02 61.42 84.46 56.48 56.89 107.92 22.65 39.82 122.99
90 137.22 124.25 130.55 160.43 102.99 116.99 184.03 99.36 124.95 268.68 37.59 99.63 285.98
95 204.67 182.92 190.81 247.96 141.13 170.57 250.6 133.24 197.23 527.78 48.57 157.09 485.79

Table 1: Summary statistics for European data (January 1982 - December 2008)
Statistics are calculated on the basis of monthly returns and then annualized using discrete compounding. The annualized
standard deviation is calculated by multiplying the monthly standard deviation with

√
12.
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Riskfree Benchmark MV CVaR Linear loss-averse (LA)
λ=0 λ=0.3 λ=0.5 λ=1 λ=2 λ=5

Performance of 1-Month Returns (in percent p.a.)
Mean 4.45 11.23 6.45 5.22 18.11 17.47 18.41 15.77 13.05 8.99
Std.Dev. 0.64 17.27 5.11 6.18 30.26 23.70 22.55 19.82 15.79 9.73
CVaR 0.43 -79.85 -27.87 -36.32 -91.15 -84.27 -81.10 -77.33 -68.39 -52.59
Minimum 0.00 -93.99 -43.15 -58.83 -97.67 -97.34 -96.20 -94.97 -94.53 -94.19
Sharpe’s ratio (in percent) 37.59 37.25 11.85 43.28 52.59 59.26 54.69 52.07 44.55
Total Realized Return (in percent p.a.)
Last 10 Years 0.27 0.52 4.72 3.86 5.56 6.85 7.54 7.79 11.60 8.38
Last 5 Years 0.26 1.87 5.10 4.54 6.35 4.95 6.54 8.70 12.85 9.16
Last 3 Years 0.31 -9.27 1.33 0.52 -3.38 4.55 4.54 5.73 13.90 7.88
Last Year 0.34 -43.79 -0.68 -2.01 -28.30 -23.99 -25.98 -23.61 -15.71 -13.43
Percentiles (in percent p.a.)
5 2.06 -64.03 -21.60 -25.16 -79.36 -68.82 -66.90 -58.92 -54.35 -32.65
10 2.11 -43.48 -16.65 -18.94 -64.34 -52.47 -50.29 -43.78 -38.12 -22.09
25 3.13 -17.48 -3.36 -7.64 -28.64 -21.07 -19.87 -14.77 -8.11 -5.28
50 3.93 18.30 7.31 6.43 14.93 16.98 16.37 16.32 12.70 9.49
75 5.04 55.39 18.06 21.20 99.35 68.60 63.38 48.99 40.64 24.94
90 8.38 105.22 30.09 33.32 253.15 177.43 148.19 124.68 86.47 52.10
95 9.15 150.92 40.61 46.62 435.12 333.29 292.63 243.40 128.48 78.71
Mean Allocation (in percent)
OIL 0.15 2.76 6.62 9.54 9.12 8.65 4.68 3.71
BASICMAT 1.71 1.08 5.92 5.91 6.19 4.66 2.48 2.59
INDUS 0.67 0.16 2.09 1.39 0.90 0.13 0.47 0.22
CONSGDS 0.68 1.47 0.35 1.07 1.06 1.07 1.21 0.48
HEALTH 3.62 3.78 3.83 4.56 4.19 6.29 5.64 3.89
CONSSVS 0.99 0.53 0.00 0.23 0.39 0.59 1.69 1.93
TELE 0.52 1.92 6.27 5.21 5.29 5.95 6.97 3.62
UTIL 3.39 7.03 5.23 11.48 14.20 19.60 19.83 13.52
FIN 0.17 2.06 0.70 1.73 2.44 3.50 3.74 0.70
TECH 0.49 0.72 39.72 36.45 33.74 23.33 10.33 3.61
BOND 74.76 62.48 5.23 9.38 12.58 18.94 35.53 56.43
GOLD 10.43 12.16 1.39 2.10 2.23 2.70 3.54 5.93
CRUDEOIL 2.41 3.85 22.65 10.93 7.66 4.59 3.89 3.37

Table 2: Out-of-sample evaluation of EU portfolios: Benchmark scenario
The table reports statistics of a monthly reallocated optimal linear loss-averse portfolio based on an optimization period of 36
months as well as the average of the optimal asset weights. The benchmark scenario assumes a constant loss aversion parameter
λ and a zero reference point. The evaluation period covers February 1985 to December 2008. Statistics are calculated on the
basis of monthly returns and then annualized assuming discrete compounding. The annual standard deviation is computed
as σpa =

√
12σpm.
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Riskfree Benchmark MV CVaR Linear loss-averse (LA)
λ=0 λ=0.3 λ=0.5 λ=1 λ=2 λ=5

Performance of 1-Month Returns (in percent p.a.)
Mean 4.45 11.23 6.45 5.22 18.11 17.54 18.74 15.63 13.15 9.14
Std.Dev. 0.64 17.27 5.11 6.18 30.26 23.68 22.55 19.72 15.79 9.62
CVaR 0.43 -79.85 -27.87 -36.32 -91.15 -84.12 -80.88 -77.05 -67.56 -51.19
Minimum 0.00 -93.99 -43.15 -58.83 -97.67 -97.21 -95.96 -95.12 -94.88 -93.21
Sharpe’s ratio (in percent) 37.59 37.25 11.85 43.28 52.96 60.69 54.26 52.70 46.55
Total Realized Return (in percent p.a.)
Last 10 Years 0.27 0.52 4.72 3.86 5.56 6.88 7.38 7.58 11.86 8.29
Last 5 Years 0.26 1.87 5.10 4.54 6.35 4.86 6.78 7.99 12.80 9.15
Last 3 Years 0.31 -9.27 1.33 0.52 -3.38 4.55 4.69 4.24 12.86 7.91
Last Year 0.34 -43.79 -0.68 -2.01 -28.30 -23.93 -25.39 -25.34 -18.27 -12.64
Percentiles (in percent p.a.)
5 2.06 -64.03 -21.60 -25.16 -79.36 -68.82 -64.25 -58.97 -54.51 -33.90
10 2.11 -43.48 -16.65 -18.94 -64.34 -53.01 -51.45 -44.08 -36.34 -20.69
25 3.13 -17.48 -3.36 -7.64 -28.64 -21.07 -18.17 -14.50 -9.74 -7.05
50 3.93 18.30 7.31 6.43 14.93 16.51 16.34 15.32 12.13 9.49
75 5.04 55.39 18.06 21.20 99.35 65.23 63.38 51.29 41.59 25.70
90 8.38 105.22 30.09 33.32 253.15 173.97 154.39 122.68 81.03 54.75
95 9.15 150.92 40.61 46.62 435.12 322.40 291.44 202.76 145.21 72.19
Mean Allocation (in percent)
OIL 0.15 2.76 6.62 9.56 8.60 8.16 5.06 3.72
BASICMAT 1.71 1.08 5.92 5.99 6.27 4.74 2.59 2.39
INDUS 0.67 0.16 2.09 1.54 0.89 0.14 0.46 0.22
CONSGDS 0.68 1.47 0.35 1.09 1.12 1.24 1.44 0.66
HEALTH 3.62 3.78 3.83 4.40 3.79 7.32 5.95 4.20
CONSSVS 0.99 0.53 0.00 0.23 0.40 0.57 2.07 1.78
TELE 0.52 1.92 6.27 5.40 5.58 6.42 7.06 3.65
UTIL 3.39 7.03 5.23 11.70 14.81 19.07 19.50 14.48
FIN 0.17 2.06 0.70 1.70 2.38 3.40 3.42 0.64
TECH 0.49 0.72 39.72 36.17 33.33 22.40 9.50 3.14
BOND 74.76 62.48 5.23 9.44 12.91 19.56 35.97 56.76
GOLD 10.43 12.16 1.39 2.05 2.39 2.59 3.24 5.13
CRUDEOIL 2.41 3.85 22.65 10.74 7.54 4.40 3.75 3.21

Table 3: Out-of-Sample evaluation of EU portfolios: Risk-free scenario
The table reports statistics of a monthly reallocated optimal linear loss-averse portfolio based on an optimization period of 36
months as well as the average of the optimal asset weights. The risk-free scenario assumes a constant loss aversion parameter
λ and a reference point which is equal to the risk-free interest rate. The evaluation period covers February 1985 to December
2008. Statistics are calculated on the basis of monthly returns and then annualized assuming discrete compounding. The
annual standard deviation is computed as σpa =

√
12σpm.
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Riskfree Benchmark MV CVaR Linear loss-averse (LA)
λ=0 λ=0.3 λ=0.5 λ=1 λ=2 λ=5

Performance of 1-Month Returns (in percent p.a.)
Mean 4.45 11.23 6.45 5.22 18.11 20.02 21.13 17.70 13.73 9.59
Std.Dev. 0.64 17.27 5.11 6.18 30.26 20.86 19.92 17.58 15.96 10.52
CVaR 0.43 -79.85 -27.87 -36.32 -91.15 -78.48 -74.80 -70.15 -69.90 -54.25
Minimum 0.00 -93.99 -43.15 -58.83 -97.67 -95.19 -95.19 -95.00 -94.71 -94.18
Sharpe’s ratio (in percent) 37.59 37.25 11.85 43.28 71.47 80.10 72.07 55.63 46.77
Total Realized Return (in percent p.a.)
Last 10 Years 0.27 0.52 4.72 3.86 5.56 13.16 15.75 13.67 12.22 8.04
Last 5 Years 0.26 1.87 5.10 4.54 6.35 7.81 9.88 10.14 14.43 10.16
Last 3 Years 0.31 -9.27 1.33 0.52 -3.38 8.53 6.69 8.25 15.80 9.68
Last Year 0.34 -43.79 -0.68 -2.01 -28.30 -21.98 -25.14 -23.33 -13.28 -9.56
Percentiles (in percent p.a.)
5 2.06 -64.03 -21.60 -25.16 -79.36 -64.71 -53.73 -50.90 -47.60 -37.10
10 2.11 -43.48 -16.65 -18.94 -64.34 -42.31 -39.21 -37.53 -29.11 -23.63
25 3.13 -17.48 -3.36 -7.64 -28.64 -14.61 -12.19 -10.86 -6.80 -6.27
50 3.93 18.30 7.31 6.43 14.93 16.98 14.93 14.59 10.93 8.52
75 5.04 55.39 18.06 21.20 99.35 63.96 59.76 48.84 38.23 25.56
90 8.38 105.22 30.09 33.32 253.15 148.61 132.37 102.18 94.63 59.14
95 9.15 150.92 40.61 46.62 435.12 254.72 254.75 174.11 148.87 79.91
Mean Allocation (in percent)
OIL 0.15 2.76 6.62 8.29 7.50 6.70 4.50 3.39
BASICMAT 1.71 1.08 5.92 5.40 5.15 3.96 2.76 2.31
INDUS 0.67 0.16 2.09 1.04 0.88 0.29 0.56 0.27
CONSGDS 0.68 1.47 0.35 0.99 0.95 0.95 1.10 0.70
HEALTH 3.62 3.78 3.83 5.37 5.93 6.25 5.31 3.96
CONSSVS 0.99 0.53 0.00 0.39 0.55 0.80 1.59 2.11
TELE 0.52 1.92 6.27 5.35 5.61 5.82 6.10 3.88
UTIL 3.39 7.03 5.23 13.23 15.40 19.24 19.31 13.94
FIN 0.17 2.06 0.70 1.87 2.35 3.31 3.02 0.64
TECH 0.49 0.72 39.72 30.42 27.06 19.60 9.69 3.96
BOND 74.76 62.48 5.23 16.15 19.77 25.33 38.10 54.73
GOLD 10.43 12.16 1.39 2.50 2.65 3.41 3.92 6.15
CRUDEOIL 2.41 3.85 22.65 9.01 6.19 4.34 4.03 3.96

Table 4: Out-of-sample evaluation of EU portfolios: Dynamic scenario
The table reports statistics of a monthly reallocated optimal linear loss-averse portfolio based on an optimization period of
36 months as well as the average of the optimal asset weights. The dynamic scenario assumes a time-changing loss aversion
parameter λ and a time-changing reference point, where both depend on previous gains and losses. The evaluation period
covers February 1985 to December 2008. Statistics are calculated on the basis of monthly returns and then annualized
assuming discrete compounding. The annual standard deviation is computed as σpa =

√
12σpm.
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5 Conclusion

A large body of experimental evidence suggests that loss aversion plays an important role in the asset

allocation decision. In this paper we have investigated the linear loss-averse utility maximization

along different dimensions. First we examined the theoretical relationship between the optimal asset

allocation under linear loss aversion and more traditional asset allocation methods, i.e., the MV and

CVaR methods. We have formulated assumptions under which the LA, MV and CVaR problems are

equivalent, provided that portfolio returns are normally or t-distributed. We have thus created a link

between two fundamentally different ways of portfolio optimization, namely between maximizing

loss-averse utility whose specific form is motivated by experiments (LA problem) and between

optimizing purely descriptive downside risk measures (CVaR problem). Then we investigated the

two-asset case, involving one risky and one risk-free asset, and analytically derived the optimal risky

asset’s weight as well as the relative Sharpe ratio, under the assumption of binomially and normally

distributed returns of the risky asset. Next, using a number of simulation experiments, we studied

the properties of the optimal LA portfolios and their differences with respect to the optimal MV

portfolios under slightly different assumptions then in the theoretical analysis. Specifically, both

assets were supposed to be risky in the simulation experiment, with one being considerably safer

(and less profitable) than the other. In particular, we investigated the impact of different structures

of dependence on the results, where one dependence structure was symmetric (Gaussian copula)

and the other asymmetric (Clayton copula). The asymmetric model assigns a higher probability to

joint negative than to joint positive extreme co-movements. Most results related to the sensitivity

analysis of the optimal riskier asset’s weight and the corresponding relative Sharpe ratio with respect

to the loss aversion parameter and the reference point were in line with our theoretical findings that

were derived under stronger assumptions. With respect to the dependence structure, LA portfolios

outperformed MV portfolios in terms of the Sharpe ratio for a higher degree of dependence and

a higher degree of loss aversion when returns were generated by the asymmetric Clayton copula,

but not when they were generated by the symmetric Gaussian copula. This suggests that investors

should make an effort to select the “right” dependence model. In addition, a higher degree of

(positive) dependence seems to induce a riskier behavior of less loss-averse investors in the sense

that they invest more into the risky asset with an increasing degree of dependence. On the other

hand, investors with a higher degree of loss aversion seem to become more conservative with an

increasing degree of dependence.
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Finally we implemented the trading strategy of a linear loss-averse investor who reallocates

his/her portfolio on a monthly basis. In addition to the benchmark LA scenario, which uses a

constant loss aversion parameter and a constant reference point, we have introduced a dynamic LA

scenario, where both the loss aversion parameter and the reference point are updated conditional

on previous gains and losses. The assets available for portfolio selection include sectoral stock

indices, government bonds as well as the two commodities gold and crude oil, yielding a total of

13 assets, and we considered a European and a U.S. investor. Our empirical results suggest that –

independent of the loss aversion parameter’s value – the optimal LA portfolio clearly outperforms

the optimal MV and CVaR portfolios, when the Sharpe ratio is used as a performance measure.

Among the different LA scenarios, the dynamic method achieves by far the highest Sharpe ratios,

which indicates that investors reacting to changing market conditions perform better than investors

behaving the same all the time.

An interesting topic for further research would be to consider different (more general) forms of

loss-averse utility, which are no longer bilinear, and investigate the properties of the correspond-

ing optimal portfolios and some of their performance measures with respect to the loss aversion

parameters and the (asymmetric) dependence structure.
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Appendix A

Proof of Theorem 2.3: We are going to show that LAλ,ŷ(R(x)) is (a) increasing in

I1 ≡
(

−∞,max
{

ŷ−r0

rg−r0 , r0−ŷ
r0−rb

}]

, (b) increasing in I2 ≡
[

max
{

ŷ−r0

rg−r0 , r0−ŷ
r0−rb

}

,+∞
)

if λ < λ̂, (c)

constant in I2 if λ = λ̂ and (d) decreasing in I2 if λ > λ̂. Then statements of the theorem follow

directly as function LAλ,ŷ(x) is continuous.

It follows from (2.13), (2.14) and (2.15) that for x ∈
(

−∞,min
{

ŷ−r0

rg−r0 , r0−ŷ
r0−rb

})

LAλ,ŷ(R(x)) = r0 + (p(rg − rb) − r0 + rb)x − λp(ŷ − r0 − (rg − r0)x)

= r0 − λp(ŷ − r0) + [p(rg − rb) − r0 + rb + λp(rg − r0)]x

which is increasing if p(rg − rb) − r0 + rb + λp(rg − r0) > 0. The latter condition is satisfied as

λ ≥ 0 >
r0−rb−p(rg−rb)

p(rg−r0)
which follows from p > r0−rb

rg−rb
.18

Let x ∈
[

min
{

ŷ−r0

rg−r0 , r0−ŷ
r0−rb

}

,max
{

ŷ−r0

rg−r0 , r0−ŷ
r0−rb

}]

≡ I. If ŷ < r0 then I =
[

ŷ−r0

rg−r0 , r0−ŷ
r0−rb

]

and

(2.11)-(2.15) imply that LAλ,ŷ(R(x)) = r0 + (p(rg − rb)− r0 + rb)x = E(R(x)). Thus, LAλ,ŷ(R(x))

is increasing in I if p(rg − rb) − r0 + rb > 0 and thus p > r0−rb

rg−rb
which holds by the assumption of

the theorem. On the other hand, if ŷ > r0 then I =
[

r0−ŷ
r0−rb

, ŷ−r0

rg−r0

]

and (2.11)-(2.15) imply that

LAλ,ŷ(R(x)) = −λŷ +(1+λ)[r0 +(p(rg − rb)− r0 + rb)x] = −λŷ +(1+λ)E(R). Thus, LAλ,ŷ(R(x))

is increasing in I under the same conditions as when ŷ < r0. The case ŷ = r0 is trivial as then

I = {0}.
Finally, (2.11)-(2.15) imply that for x ∈ I2

LAλ,ŷ(R(x)) = r0 + (p(rg − rb) − r0 + rb)x − λ(1 − p)(ŷ − r0 − (rb − r0)x)

= r0 − λ(1 − p)(ŷ − r0) + [p(rg − rb) − r0 + rb + λ(1 − p)(rb − r0)]x

Thus, LAλ,ŷ(R(x)) is increasing in I2 if p(rg−rb)−r0 +rb+λ(1−p)(rb−r0) > 0 which is equivalent

to λ < λ̂. Similarly, LAλ,ŷ(R(x)) is constant (decreasing) in I2 if λ = λ̂ (λ > λ̂). This concludes

the proof of the theorem. �

18Note that condition p >
r0−rb
rg−rb

is equivalent to E(r) = prg + (1 − p)rb > r0.
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Lemma 5.1 Let LAλ,ŷ(R(x)) be defined by (2.20) and R(x) = r0 + (r − r0)x. Then

dLAλ,ŷ(R(x))

dx
= µ − r0 + λσ

[

µ − r0

σ
F

(

ŷ − r0

σx
− µ − r0

σ

)

− f

(

ŷ − r0

σx
− µ − r0

σ

)]

for x 6= 0,

(5.28)

dLAλ,ŷ(R(0))

dx+
=



















µ − r0, if ŷ < r0

µ − r0 + λσ
[

µ−r0

σ F
(

−µ−r0

σ

)

− f
(

−µ−r0

σ

)]

, if ŷ = r0

(1 + λ)(µ − r0), if ŷ > r0

(5.29)

dLAλ,ŷ(R(0))

dx− =



















(1 + λ)(µ − r0), if ŷ < r0

µ − r0 + λσ
[

µ−r0

σ F
(

−µ−r0

σ

)

− f
(

−µ−r0

σ

)]

, if ŷ = r0

µ − r0, if ŷ > r0

Proof: The results are obtained by straightforward differentiation of (2.20) using

dF (x)

dx
= f(x) and

df(x)

dx
= −xf(x)

�

Proof of Theorem 2.4: Note that under the normality assumption of the risky asset’s return the

loss-averse utility is defined by (2.20). Part (i) follows from Lemma 5.1 by obtaining
dLAλ,ŷ(R(x))

dx < 0

for µ ≤ r0, x ∈ R\{0}, and limx→−∞LAλ,ŷ(R(x)) = +∞ > limx→0+LAλ,ŷ(R(x)).

Note that
d2LAλ,ŷ(R(x))

dx2 = −λ (ŷ−r0)2

σx3 f
(

ŷ−r0

σx − µ−r0

σ

)

for x 6= 0. Thus, for λ > 0 and ŷ 6= r0 the

utility function LAλ,ŷ(R(x)) is strictly concave for x > 0 and strictly convex for x < 0.

Let ŷ > r0, H(x) ≡ µ−r0

σ F
(

ŷ−r0

σx − µ−r0

σ

)

− f
(

ŷ−r0

σx − µ−r0

σ

)

, x 6= 0. Note that with re-

spect to this notation h = −H(±∞). It can be shown that function H(x) has the following

properties: there exists x̃ > 0 such that H(x̃) = 0, H(x) < 0 and is strictly increasing on

(−∞, 0), H(x) > 0 on (0, x̃), and H(x) < 0 and is strictly decreasing on (x̃,+∞). Thus,

inf{H(x) |x ∈ (−∞, 0) ∪ (0,+∞)} = H(±∞) = −h. These properties of H(x), µ > r0, as-

sumptions of the theorem and Lemma 5.1 imply that
dLAλ,ŷ(R(x))

dx = µ − r0 + λσH(x) > 0 for

x ∈ (0, x̃] and also
dLAλ,ŷ(R(0))

dx− > 0 as well as
dLAλ,ŷ(R(0))

dx+ > 0. Thus, LAλ,ŷ(R(x)) is strictly in-

creasing on [0, x̃]. In addition, LAλ,ŷ(R(x)) is strictly increasing also on (−∞, 0) ∪ (x̃,+∞) if λ <

inf
{

µ−r0

σ(−H(x)) |x ∈ (−∞, 0) ∪ (x̃,+∞)
}

= µ−r0

σh = λ̂N . Thus, LAλ,ŷ(R(x)) is increasing over all its

domain when λ ≤ λ̂N . Finally, as limx→0−LAλ,ŷ(R(x)) = r0 < +∞ = limx→+∞LAλ,ŷ(R(x)) then
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this implies that x∗ = +∞. The same can be shown for ŷ < r0 and µ > r0, and a similar statement,

namely x∗ = +∞ when λ < λ̂N holds also for ŷ = r0. This concludes proves of parts (ii) and (iii).

Part (iv) follows from the fact that LAλ̂N ,r0(R(x)) = r0 for any x ∈ R. In addition, Lemma 5.1

implies that
dLA

λ,r0(R(x))

dx = µ − r0 + λσ(−h) is negative and thus LAλ,r0(R(x)) is decreasing for

x ∈ R; i.e., x∗ = −∞, if λ > λ̂N which is part of (v) for the case when ŷ = r0.

Part (v): Let ŷ > r0 and let function λ(x) ≡ µ−r0

σ(−H(x)) be defined on (−∞, 0) ∪ (x̃,+∞).

Note that λ(x) is defined by setting the first derivative with respect to x of LAλ,ŷ(R(x)) equal

to zero, and it has to hold at the local optima of LA. Note that properties of H(x) imply that

λ(x) is continuous and increasing on (−∞, 0) and is continuous and decreasing on (x̃,+∞) and

that both intervals (−∞, 0) and (x̃,+∞) map to (λ̂N ,+∞). From this it follows then that for any

λ > λ̂N there exist x̃1 ∈ (−∞, 0) and x̃2 ∈ (x̃,+∞) such that λ = λ(x̃i) = µ−r0

σ(−H(x̃i))
for i = 1, 2.

This, definition of H(x), properties of LAλ,ŷ(R(x)), namely convexity for x < 0 and concavity

on x > 0, and Lemma 5.1 imply that x̃1 is the point of the local minimum of LAλ,ŷ(R(x)) and

x̃2 is the point of local maximum of LAλ,ŷ(R(x)). Thus, LAλ,ŷ(R(x)) has an S-shape such that

limx→−∞LAλ,ŷ(R(x)) = +∞ and limx→+∞LAλ,ŷ(R(x)) = −∞ which implies that for any λ > λ̂N

is x∗ = −∞. The same can be shown for the case when ŷ < r0. This concludes the proof of part

(v). �

Proof of Theorem 2.5: The fact that x∗ > 0 follows from the proof of Theorem 2.4. The

remaining proof is based on implicit function differentiation. Let G(λ, ŷ, x) ≡ dLAλ,ŷ(R(x))
dx = 0.

Then

dx

dλ
= −∂G/∂λ

∂G/∂x
and

dx

dŷ
= −∂G/∂ŷ

∂G/∂x
(5.30)

when ŷ is fixed in the first case and λ is fixed in the second case. Thus, we need to obtain ∂G/∂λ,

∂G/∂x and ∂G/∂ŷ. Lemma 5.1 implies that

∂G/∂λ = (µ − r0)F

(

ŷ − r0

σx
− µ − r0

σ

)

− σf

(

ŷ − r0

σx
− µ − r0

σ

)

(5.31)

∂G/∂ŷ = λ(µ − r0)f

(

ŷ − r0

σx
− µ − r0

σ

)

1

σx
+ λσ

(

ŷ − r0

σx
− µ − r0

σ

)

f

(

ŷ − r0

σx
− µ − r0

σ

)

1

σx

=
λ(ŷ − r0)

σx2
f

(

ŷ − r0

σx
− µ − r0

σ

)

(5.32)
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∂G/∂x = λ(µ − r0)f

(

ŷ − r0

σx
− µ − r0

σ

)(

− ŷ − r0

σx2

)

+λσ

(

ŷ − r0

σx
− µ − r0

σ

)

f

(

ŷ − r0

σx
− µ − r0

σ

)(

− ŷ − r0

σx2

)

= −λ(ŷ − r0)2

σx3
f

(

ŷ − r0

σx
− µ − r0

σ

)

(5.33)

Finally, (5.30)–(5.33) conclude the proof. �
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Appendix B

OIL BASICMAT INDUS CONSGDS HEALTH CONSSVS TELE UTIL FIN TECH BOND GOLD CRUDEOIL

Performance of 1-Month Returns (in percent p.a.)
Mean 14.54 12.98 14.07 12.5 15.58 13 12.01 12.37 14.04 14.55 10.19 4.62 6.75
StDev 18.5 20.82 18.12 19.52 15.26 18.62 19.71 14.8 19.2 26.07 6.96 16.11 34
VaR -58.09 -62.46 -57.32 -64.62 -53.1 -63.37 -68.64 -52.13 -57.24 -78.42 -25.23 -53.25 -82.53
CVaR -75.29 -82.65 -78.1 -80.21 -68.73 -77.05 -78.87 -67.01 -79.63 -88.69 -33.39 -68.69 -94.24

Percentiles (in percent p.a.)
5 -58.09 -62.46 -57.32 -64.62 -53.1 -63.37 -68.64 -52.13 -57.24 -78.42 -25.23 -53.25 -82.53
10 -41.91 -47.84 -45.29 -49.86 -37.48 -46.02 -56.37 -44.36 -45.54 -60.57 -18.78 -43.7 -73.6
25 -21.99 -27.13 -19.16 -21.66 -14.1 -21.14 -24.75 -16.88 -22.53 -32.12 -5.56 -25.23 -47.18
50 12.27 16.17 18.65 11.7 17.68 13.47 18.98 15.7 17.48 19.01 9.66 -1.87 5.69
75 69.21 70.34 63.51 68.67 57.59 64.33 63.96 53.13 65.45 100.46 27.85 36.78 109.72
90 130 141 127.37 141.08 108.17 142.99 129.09 103.74 128.12 230.54 46.93 103.68 248.6
95 207.58 210.31 179.25 221.13 157.5 206.39 184.94 127.88 207.54 362.39 68 157.73 412.66

Table 5: Summary statistics for U.S. data (January 1982 - December 2008)
Statistics are calculated on the basis of monthly returns and then annualized using discrete compounding. The annualized
standard deviation is calculated by multiplying the monthly standard deviation with

√
12.
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Riskfree Benchmark MV CVaR Linear loss-averse (LA)
λ=0 λ=0.3 λ=0.5 λ=1 λ=2 λ=5

Performance of 1-Month Returns (in percent p.a.)
Mean 4.83 11.44 7.74 6.51 14.87 15.78 13.79 11.09 10.04 10.05
Std.Dev. 0.64 15.46 5.83 7.12 28.13 22.86 20.53 17.15 13.00 8.96
CVaR 0.27 -74.25 -30.63 -39.36 -90.41 -85.28 -81.86 -77.92 -65.40 -49.52
Minimum 0.00 -93.86 -55.82 -78.07 -97.93 -95.46 -94.05 -94.05 -91.61 -61.15
Sharpe’s ratio (in percent) 41.04 47.18 22.43 34.17 45.85 41.84 34.99 38.41 55.56
Total Realized Return (in percent p.a.)
Last 10 Years 0.30 -1.14 6.52 5.38 4.27 7.80 5.39 3.88 5.74 7.45
Last 5 Years 0.29 -1.58 6.59 6.87 12.64 12.07 6.92 4.43 6.63 8.68
Last 3 Years 0.35 -8.00 6.91 5.62 7.44 11.03 6.75 3.68 7.41 10.16
Last Year 0.21 -37.21 1.42 -2.07 -6.55 -12.76 -18.88 -16.88 -10.42 1.22
Percentiles (in percent p.a.)
5 1.10 -59.96 -21.53 -25.20 -77.30 -73.60 -66.17 -55.29 -43.18 -30.70
10 1.37 -41.72 -13.78 -17.59 -64.22 -54.75 -51.75 -43.33 -34.38 -20.43
25 3.19 -17.68 -4.18 -6.69 -34.74 -25.97 -23.91 -19.53 -12.37 -5.30
50 5.32 17.28 6.71 6.94 20.13 20.15 18.42 12.43 10.36 10.04
75 6.13 59.22 20.22 21.78 107.22 85.87 72.42 56.40 40.98 29.82
90 8.06 100.10 33.61 35.76 219.19 175.84 157.02 126.39 84.40 61.21
95 8.52 131.64 42.79 46.52 371.47 267.56 228.74 161.68 119.68 87.83
Mean Allocation (in percent)
OIL 0.65 2.27 8.04 11.17 11.17 5.63 3.73 4.22
BASICMAT 0.33 2.02 1.40 1.44 2.03 2.43 1.77 1.25
INDUS 2.41 0.81 0.00 0.01 0.02 1.20 2.18 2.38
CONSGDS 1.84 1.43 5.24 3.06 2.47 2.18 1.82 1.40
HEALTH 4.18 6.17 15.38 18.74 18.83 17.04 13.94 11.23
CONSSVS 3.93 4.85 0.00 0.00 0.00 0.25 0.75 1.18
TELE 0.87 3.04 4.55 4.90 5.61 8.37 7.42 3.70
UTIL 1.23 4.05 0.35 2.09 5.17 9.28 9.62 6.42
FIN 0.84 3.69 10.49 11.87 11.55 9.36 5.79 2.82
TECH 1.65 2.41 26.22 23.55 21.68 16.14 10.67 6.50
BOND 60.78 43.59 1.40 5.28 6.62 14.73 27.92 43.34
GOLD 16.04 19.23 5.59 6.41 6.60 6.92 8.37 9.89
CRUDEOIL 5.25 6.43 21.33 11.47 8.24 6.46 6.00 5.67

Table 6: Out-of-sample evaluation of U.S. portfolios: Benchmark scenario
The table reports statistics of a monthly reallocated optimal linear loss-averse portfolio based on an optimization period of 36
months as well as the average of the optimal asset weights. The benchmark scenario assumes a constant loss aversion parameter
λ and a zero reference point. The evaluation period covers February 1985 to December 2008. Statistics are calculated on the
basis of monthly returns and then annualized assuming discrete compounding. The annual standard deviation is computed
as σpa =

√
12σpm.
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Riskfree Benchmark MV CVaR Linear loss-averse (LA)
λ=0 λ=0.3 λ=0.5 λ=1 λ=2 λ=5

Performance of 1-Month Returns (in percent p.a.)
Mean 4.83 11.44 7.74 6.51 14.87 15.78 13.79 11.09 10.04 10.05
Std.Dev. 0.64 15.46 5.83 7.12 28.13 22.86 20.53 17.15 13.00 8.96
CVaR 0.27 -74.25 -30.63 -39.36 -90.41 -85.28 -81.86 -77.92 -65.40 -49.52
Minimum 0.00 -93.86 -55.82 -78.07 -97.93 -95.46 -94.05 -94.05 -91.61 -61.15
Sharpe’s ratio (in percent) 41.04 47.18 22.43 34.17 45.85 41.84 34.99 38.41 55.56
Total Realized Return (in percent p.a.)
Last 10 Years 0.30 -1.14 6.52 5.38 4.27 7.80 5.39 3.88 5.74 7.45
Last 5 Years 0.29 -1.58 6.59 6.87 12.64 12.07 6.92 4.43 6.63 8.68
Last 3 Years 0.35 -8.00 6.91 5.62 7.44 11.03 6.75 3.68 7.41 10.16
Last Year 0.21 -37.21 1.42 -2.07 -6.55 -12.76 -18.88 -16.88 -10.42 1.22
Percentiles (in percent p.a.)
5 1.10 -59.96 -21.53 -25.20 -77.30 -73.60 -66.17 -55.29 -43.18 -30.70
10 1.37 -41.72 -13.78 -17.59 -64.22 -54.75 -51.75 -43.33 -34.38 -20.43
25 3.19 -17.68 -4.18 -6.69 -34.74 -25.97 -23.91 -19.53 -12.37 -5.30
50 5.32 17.28 6.71 6.94 20.13 20.15 18.42 12.43 10.36 10.04
75 6.13 59.22 20.22 21.78 107.22 85.87 72.42 56.40 40.98 29.82
90 8.06 100.10 33.61 35.76 219.19 175.84 157.02 126.39 84.40 61.21
95 8.52 131.64 42.79 46.52 371.47 267.56 228.74 161.68 119.68 87.83
Mean Allocation (in percent)
OIL 0.65 2.27 8.04 11.17 11.17 5.63 3.73 4.22
BASICMAT 0.33 2.02 1.40 1.44 2.03 2.43 1.77 1.25
INDUS 2.41 0.81 0.00 0.01 0.02 1.20 2.18 2.38
CONSGDS 1.84 1.43 5.24 3.06 2.47 2.18 1.82 1.40
HEALTH 4.18 6.17 15.38 18.74 18.83 17.04 13.94 11.23
CONSSVS 3.93 4.85 0.00 0.00 0.00 0.25 0.75 1.18
TELE 0.87 3.04 4.55 4.90 5.61 8.37 7.42 3.70
UTIL 1.23 4.05 0.35 2.09 5.17 9.28 9.62 6.42
FIN 0.84 3.69 10.49 11.87 11.55 9.36 5.79 2.82
TECH 1.65 2.41 26.22 23.55 21.68 16.14 10.67 6.50
BOND 60.78 43.59 1.40 5.28 6.62 14.73 27.92 43.34
GOLD 16.04 19.23 5.59 6.41 6.60 6.92 8.37 9.89
CRUDEOIL 5.25 6.43 21.33 11.47 8.24 6.46 6.00 5.67

Table 7: Out-of-sample evaluation of U.S. portfolios: Risk-free scenario
The table reports statistics of a monthly reallocated optimal linear loss-averse portfolio based on an optimization period of 36
months as well as the average of the optimal asset weights. The risk-free scenario assumes a constant loss aversion parameter
λ and a reference point which is equal to the risk-free interest rate. The evaluation period covers February 1985 to December
2008. Statistics are calculated on the basis of monthly returns and then annualized assuming discrete compounding. The
annual standard deviation is computed as σpa =

√
12σpm.
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Riskfree Benchmark MV CVaR Linear loss-averse (LA)
λ=0 λ=0.3 λ=0.5 λ=1 λ=2 λ=5

Performance of 1-Month Returns (in percent p.a.)
Mean 4.83 11.44 7.74 6.51 14.87 14.75 15.94 11.18 8.88 12.69
Std.Dev. 0.64 15.46 5.83 7.12 28.13 21.53 19.20 17.07 15.01 12.90
CVaR 0.27 -74.25 -30.63 -39.36 -90.41 -81.62 -77.63 -78.87 -75.39 -50.07
Minimum 0.00 -93.86 -55.82 -78.07 -97.93 -94.42 -94.42 -94.42 -94.27 -71.19
Sharpe’s ratio (in percent) 41.04 47.18 22.43 34.17 44.12 55.42 35.62 25.82 58.42
Total Realized Return (in percent p.a.)
Last 10 Years 0.30 -1.14 6.52 5.38 4.27 9.23 11.36 7.30 6.21 7.76
Last 5 Years 0.29 -1.58 6.59 6.87 12.64 9.95 15.20 7.51 7.26 10.97
Last 3 Years 0.35 -8.00 6.91 5.62 7.44 8.89 11.42 4.97 12.44 13.75
Last Year 0.21 -37.21 1.42 -2.07 -6.55 -16.59 -7.53 -15.05 -0.84 1.28
Percentiles (in percent p.a.)
5 1.10 -59.96 -21.53 -25.20 -77.30 -67.32 -59.66 -60.43 -50.18 -30.24
10 1.37 -41.72 -13.78 -17.59 -64.22 -52.32 -46.90 -42.27 -35.34 -21.39
25 3.19 -17.68 -4.18 -6.69 -34.74 -23.91 -20.37 -17.72 -13.46 -5.92
50 5.32 17.28 6.71 6.94 20.13 16.70 17.47 12.27 9.20 8.50
75 6.13 59.22 20.22 21.78 107.22 74.09 71.60 59.20 42.40 29.77
90 8.06 100.10 33.61 35.76 219.19 160.56 150.53 110.43 84.93 61.85
95 8.52 131.64 42.79 46.52 371.47 267.56 236.20 156.59 123.15 83.08
Mean Allocation (in percent)
OIL 0.65 2.27 8.04 9.68 9.55 5.62 4.15 4.42
BASICMAT 0.33 2.02 1.40 1.89 2.19 2.40 1.57 1.53
INDUS 2.41 0.81 0.00 0.29 0.46 1.33 2.25 2.53
CONSGDS 1.84 1.43 5.24 3.53 2.60 2.66 1.84 1.17
HEALTH 4.18 6.17 15.38 17.13 17.62 16.27 13.71 11.31
CONSSVS 3.93 4.85 0.00 0.15 0.10 0.28 0.67 1.26
TELE 0.87 3.04 4.55 4.82 5.69 7.37 8.22 4.03
UTIL 1.23 4.05 0.35 3.75 5.92 8.58 9.03 6.48
FIN 0.84 3.69 10.49 10.56 9.86 8.32 5.78 3.36
TECH 1.65 2.41 26.22 21.85 20.55 15.66 11.35 6.53
BOND 60.78 43.59 1.40 9.07 11.11 16.66 26.92 40.96
GOLD 16.04 19.23 5.59 6.61 7.17 7.60 7.79 10.27
CRUDEOIL 5.25 6.43 21.33 10.66 7.20 7.24 6.71 6.15

Table 8: Out-of-sample evaluation of U.S. portfolios: Dynamic scenario
The table reports statistics of a monthly reallocated optimal linear loss-averse portfolio based on an optimization period of
36 months as well as the average of the optimal asset weights. The dynamic scenario assumes a time-changing loss aversion
parameter λ and a time-changing reference point, where both depend on previous gains and losses. The evaluation period
covers February 1985 to December 2008. Statistics are calculated on the basis of monthly returns and then annualized
assuming discrete compounding. The annual standard deviation is computed as σpa =

√
12σpm.
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