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Abstract 

This paper uses the adaptive LASSO estimator to determine the variables important for 
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Fernandez et al. (2001) and a data set for the regions in the European Union. The results for 
the former two data sets are very similar in many respects to those found in the published 
papers, yet are obtained at a tiny fraction of computational cost. Furthermore, the results for 
the regional data highlight the importance of human capital for economic growth.  
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1 Introduction

The econometric analysis of economic growth and potential economic convergence of per

capita GDP has been a major research topic in the last decades. This highly active field

has been revived amongst others by the influential contributions of Baumol (1986), Barro

(1991) and Barro and Sala-i-Martin (1992). Numerous different econometric approaches and

techniques have been employed as surveyed by Durlauf et al. (2005). Yet, few definite results

have emerged, in the words of Durlauf et al. (2005, p. 558):

“The empirical study of economic growth occupies a position that is notably uneasy. Un-

derstanding the wealth of nations is one of the oldest and most important research agendas in

the entire discipline. At the same time, it is also one of the areas in which genuine progress

seems hardest to achieve. The contributions of individual papers can often appear slender.

Even when the study of growth is viewed in terms of a collective endeavor, the various papers

cannot easily be distilled into a consensus that would meet standards of evidence routinely

applied in other fields of economics.”

The largest part of the empirical studies undertaken deals with so-called growth (or Barro)

regressions, in which the average growth rate of per capita GDP is regressed on initial per

capita GDP and a potentially large set of other explanatory variables. Such equations have

their original motivation in first order approximations (around the steady state) of the Solow-

Swan or Ramsey-Cass-Koopmans versions of the one-sector growth model, as illustrated in

Barro (1991) or Mankiw et al. (1992). Based on these approximations numerous researchers

have estimated vast amounts of equations including a large variety of additional explanatory

variables. Due to the relatively weak link between the specified equations and growth theory

such empirical studies have to be seen to a certain extent as data mining exercises.

Given the data mining character of growth regressions many empirical strategies have

been followed to separate the wheat from the chaff. Sala-i-Martin (1997b) runs two million

regressions and uses a modification of the extreme bounds test of Leamer (1985), used in

the growth context earlier also by Levine and Renelt (1992), to single out what he calls

‘significant’ variables. Fernandez et al. (2001) and Sala-i-Martin et al. (2004) use Bayesian

model averaging techniques to identify important growth determinants. Doing so necessitates

the estimation of a large number of potentially ill-behaved regressions (e.g. in case of near

multi-collinearity of the potentially many included regressors). Hendry and Krolzig (2004)
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use, similar to Hoover and Perez (2004), a general-to-specific modelling strategy to cope with

the large amount of regressors whilst avoiding the estimation of large numbers of equations.

Clearly, also in a general-to-specific analysis a certain number, typically greater than one, of

regressions has to be estimated.

In this paper we determine the variables important for economic growth by resorting to

recently developed statistical techniques designed to achieve at the same time consistent pa-

rameter estimation and model selection. In particular we use the so-called adaptive LASSO

(Least Absolute Shrinkage and Selection Operator) estimator, a variant of the LASSO esti-

mator (Tibshirani, 1996), proposed by Zou (2006) and briefly described in Section 2. This

approach has several advantages. First, it is computationally very cheap, e.g. when using the

algorithm proposed by Efron et al. (2004) the whole sequence (see Section 2) of regressions

estimated has roughly the same computational cost as one single OLS regression including all

regressors. Second, the step-wise forward selection nature of the procedure with the optimal

termination (see the discussion in Section 2) determined either by minimizing an information

criterion or by cross-validation typically avoids using results based on ill-behaved regressions.

This is most likely an advantage compared to general-to-specific approaches in case that re-

gressions including many variables are ill-behaved or cannot even be estimated by OLS (e.g.

in case there are more explanatory variables than observations). Third, the estimator can be

tuned (see Section 2) to perform consistent model selection. Within the growth context this

means a consistent decision concerning which variables are related to growth and which are

not. Finally, for those who prefer to use classical statistical methods over Bayesian methods

and estimates based on a single model over averages, the adaptive LASSO provides exactly

that.

We apply the method to several data sets, with two of them taken from widely cited papers.

The first data set is the one used in Sala-i-Martin et al. (2004), containing 67 explanatory

variables for 88 countries. The second one is the Fernandez et al. (2001) data set, based in

turn on data used in Sala-i-Martin (1997b), which contains 41 explanatory variables for 72

countries. The third data set we use comprises the 255 European NUTS2 regions in the 27

member states of the European union and contains 48 explanatory variables. The results for

the first two data sets are in several respects similar to the findings in the original papers.

For both data sets the adaptive LASSO estimator selects slightly less than 15 explanatory

variables, with about 10 of them coinciding with the most important ones of the original
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papers (as measured there by the posterior inclusion probabilities). All coefficient estimates

have the expected signs and plausible values. The results for the regional data, for which

fewer core economic data are available as explanatory variables, indicate the importance of

human capital, proxied by medium and high education, for economic growth.

The paper is organized as follows. In Section 2 we describe the statistical methods applied.

Section 3 contains the empirical analysis and results and Section 4 briefly summarizes and

concludes. Two appendices follow the main text. Appendix A briefly describes the regional

data and Appendix B collects some additional empirical results.

2 The LASSO and Adaptive LASSO Estimators

The LASSO estimator and its variant, the adaptive LASSO estimator are special cases of

the general class of penalized least squares (PLS) estimators . For a linear regression model

y = Xβ + ε (y, ε ∈ RN , X ∈ RN×k), a PLS estimator β̂ of β is in this paper defined as the

solution of the minimization problem

min
β∈Rk

‖y −Xβ‖2 + λN pen(β), (1)

where λN is the so-called tuning parameter and pen(β) the penalty function. Clearly, dif-

ferent penalty terms give rise to different estimators. The general class of Bridge estimators

was introduced by Frank and Friedman (1993) and refers to estimators defined by (1) with

pen(β) =
∑k

j=1 |βj |γ . Note that γ = 2 corresponds to the well-known Ridge estimator. For

γ ≤ 1, due to the structure of the underlying optimization problem, coordinates of the es-

timated coefficient vector β̂ can (potentially) be exactly equal to zero and in that sense the

resulting estimator can be viewed to perform also model selection. The case γ = 1 corre-

sponds to the LASSO estimator, which was separately treated in Tibshirani (1996) who also

introduced the name for this estimator. By definition in case γ = 1 the penalty function is

given by the l1-norm of the coefficient vector.

Given standard assumptions on the regression model described below, the asymptotic

properties of the LASSO estimator (and PLS estimators in general) largely depend on the

asymptotic choice of the tuning parameter λN , as studied in Knight and Fu (2000) for Bridge

estimators. For the LASSO, estimation consistency always holds if λN/
√
N tends to zero

as N tends to infinity. Given this basic condition on the tuning parameter, two different

asymptotic regimes are of interest. The LASSO estimator might either be tuned consistently

3



or conservatively, that is, the estimator either performs consistent model selection (finding

the correct zero coefficients with asymptotic probability equal to one) if λN tends to infinity

or it carries out conservative model selection (recovering the correct zero coefficients with

asymptotic probability less than one) if λN converges to a finite number. If consistent model

selection is the asymptotic regime of choice, it turns out that for the LASSO additional

conditions on the regressors are necessary. Such conditions are treated, for instance, in

Meinshausen and Bühlmann (2006) and Zhao and Yu (2006).

For the adaptive LASSO estimator as introduced in Zou (2006), consistent tuning is always

possible for linear regression models under standard assumptions. As mentioned before,

the adaptive LASSO estimator, β̂AL, is a variant of the LASSO estimator with a randomly

weighted l1-penalty function. More concretely, it is defined as the solution of the minimization

problem

min
β∈Rk

‖y −Xβ‖2 + λN

k∑
j=1

|βj |/|β̃j |, (2)

where β̃ is any
√
N -consistent initial estimator of β, for instance the OLS estimator, if avail-

able. The idea is to put a larger penalty on “seemingly small” coefficients to enhance robust-

ness. The pointwise asymptotic properties of β̂AL in the consistently tuned case have been

derived in Theorem 2 in Zou (2006) and are summarized in the following proposition. Consider

a linear regression setting with dependent variable y = (y1, . . . , yN )′, per capita GDP growth

in our context, regressors xj = (x1j , . . . , xNj)′ for j=1, . . . , k, written as X = [x1, . . . , xk] in

matrix format. Assume the relation yi = xiβ
∗ + εi holds for some β∗ ∈ Rk, the true param-

eter, with εi i.i.d. with mean 0 and variance σ2 for i= 1, . . . , N . Moreover, we assume that

X ′X/N → C as N → ∞ for some positive definite matrix C. Denote by A = {j : β∗j 6= 0}

the index set of the unknown true non-zero coefficients and by βA the vector of length |A|

restricted to that index set. Under these assumptions the following result holds.

Proposition 1 (Zou, 2006) Suppose that λN/
√
N → 0 and λN → ∞. Then β̂AL performs

consistent model selection and

√
N (β̂AL,A − β∗A) d−→ N(0,Σ∗), (3)

where Σ∗ refers to the asymptotic covariance matrix of the (infeasible) OLS estimator under

the unknown true zero restrictions.
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Note that the asymptotic behavior of β̂AL as described in Proposition 1 is sometimes

referred to as the oracle property, a term introduced in Fan and Li (2001). The distributional

result in (3) appears to suggest that the adaptive LASSO estimator performs as well as the

OLS estimator for the unknown correct model, i.e. as if the true restrictions were known.

This explains the name oracle property. However, Leeb and Pötscher (2008) and Pötscher

and Schneider (2008) show in detail that these pointwise asymptotic properties need to be

interpreted with great care. Amongst other issues in relation to estimator risk it can in

particular be shown that consistent model selection has detrimental impacts on the length of

so-called “honest” confidence intervals, which become necessarily much larger than those for

unpenalized least squares estimators or conservative model selection procedures (see Pötscher,

2007).

We now discuss computational issues of the adaptive LASSO estimator. Solutions to the

minimization problem in (2) can be computed very efficiently exploiting the specific structure

of the problem. It can be shown that the solutions to the corresponding optimization problems

are piecewise linear in the tuning parameter λN , see e.g. Rosset and Zhu (2007). Exploiting

this property, the estimator can easily be computed for all tuning parameters λN ∈ [0,∞),

leading to so-called solution paths for each variable. These solution paths are initiated at

λN equal to infinity where all coefficients are equal to zero and ensued to λN equal to zero

corresponding to the OLS estimator (in case it is uniquely defined). In each step along this

sequence, one variable is either included or removed from the current “active” subset, i.e. the

set containing the coefficients that are not equal to zero in that step, as illustrated in Figure 1

and Figure 2 in Appendix B for the Sala-i-Martin et al. (2004) data set. These figures should

be read as follows. On the horizontal axis the steps of the sequence are plotted equidistantly,

e.g. in Figure 1 the first twenty steps are plotted and in between each of these steps the

estimated coefficients are linear in λN . This implies that the scaling of the horizontal axis

is in general not linear with respect to the tuning parameter λN . In the example the value

of the tuning parameter at which the first estimated coefficient starts to become non-zero is

λN = 0.51. The numbers on the right hand side of the graph indicate the variable number,

e.g. the index 26 refers to the share of expenditure of government consumption of GDP in

1961 (for the variable abbreviations and their numbers for the Sala-i-Martin et al. (2004) data

see Table 1). The corresponding line plots the coefficient corresponding to this variable as

a function of the tuning parameter. The vertical line at λN = 0.0011 indicates the optimal
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Figure 1: Zoom of Figure 2: Coefficient paths of adaptive LASSO estimation for the Sala-i-
Martin et al. (2004) data set for the first 20 steps of the adaptive LASSO estimation sequence.
The vertical line at λN = 0.00111 indicates the optimal tuning parameter λN chosen by cross-
validation.

choice of the tuning parameter according to cross-validation, see below.

To provide a “final” subset of variables together with a corresponding estimate of the

parameter vector different approaches are used to choose the tuning parameter. One of

them is given by minimizing a BIC-type information criterion, see e.g. Wang and Leng

(2007). Doing so can be shown to result in consistent model selection. Another widely-

used procedure is given by (k-fold) cross-validation, see e.g. Leng et al. (2006). This latter

procedure may result in conservative model selection, i.e. it may lead to the inclusion of

some variables whose true coefficients are equal to zero. The results reported in this paper

are based on cross-validation, given the results obtained with this approach in a variety of

experiments. Since cross-validation is potentially conservative the resultant estimates are not

prone to amongst others the problems of confidence sets based on consistent tuning, as briefly

mentioned above (compare again Pötscher, 2007). In our applications rather small models

are chosen by cross-validation so that we do not see the potential conservativeness as a major

concern with respect to the inclusion of irrelevant variables.
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3 Empirical Analysis

As mentioned in the introduction, the empirical analysis is performed for three different data

sets. These are the data sets used in Sala-i-Martin et al. (2004), in Fernandez et al. (2001) and

a data set covering the 255 NUTS2 regions of the European Union. In the discussion below

we retain the variable names from the data files we received from Gernot Doppelhofer for the

Sala-i-Martin et al. (2004) data and also use the original names used in the file downloaded

from the homepage of the Journal of Applied Econometrics for the Fernandez et al. (2001)

data to facilitate the comparison with the results in these papers.

3.1 Sala-i-Martin, Doppelhofer and Miller Data

The data set considered in Sala-i-Martin et al. (2004) contains 67 explanatory variables for

88 countries. The variables and their sources are described in detail in Table 1 in Sala-i-

Martin et al. (2004, p. 820–821). The dependent variable is the average annual growth rate

of real per capita GDP over the period 1960–1996. In Table 1 we present the sequence of

adaptive LASSO moves (i.e. the sequence of variables in- respectively excluded from the set

of active variables as λN → 0) for this data set. As already discussed in the previous section,

graphical information concerning the whole sequence of estimated coefficients as a function

of the tuning parameter λN is presented in Figure 2 in Appendix B.

The full regressor matrix comprising the constant and all 67 explanatory variables is almost

multi-collinear, with a reciprocal condition number of 9.38 × 10−20. The full OLS estimator

is thus very imprecisely defined at best. To be precise, in order to invert the X ′X matrix the

numerical tolerance has to be set to an extremely small number. To avoid using the ill-defined

OLS estimator we acknowledge the (numerical) multi-collinearity in the regressor matrix and

use as initial estimator the (standard) LASSO estimator at the end of the solution path,

i.e. for λN = 0. This corresponds to the solution of the normal equations with the smallest

l1-norm, due to continuity of the coefficient paths in the tuning parameter. One could also

use different regularized initial estimators, e.g. the Ridge estimator, for which, however, a

choice concerning the Ridge parameter has to be made. Note that for the two other data sets

considered we use the OLS estimator as initial estimator since for those no multi-collinearity

problems arise.

Choosing the tuning parameter by cross-validation leads to a model with 15 regressors

including the constant. The estimation results are presented in Table 2. The following 14
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1 + Const ( 1) 27 + ECORG (16) 53 + TROPPOP (64)
2 + GVR61 (26) 28 + GDE (20) 54 + LHCPC (34)
3 + GDE (20) 29 + POP65 (51) 55 − SPAIN (60)
4 + P (45) 30 + SIZE (58) 56 + MALFAL (37)
5 + IPRICE (30) 31 − GVR61 (26) 57 + NEWSTATE (40)
6 + EAST (15) 32 + LIFE (35) 58 + SPAIN (60)
7 + TROPICAR (63) 33 + POP (50) 59 + SCOUT (57)
8 + BUDDHA ( 6) 34 + ABSLATIT ( 2) 60 + TOTIND (62)
9 + GEEREC (22) 35 + SQPI (47) 61 + PI (46)

10 + CONFUC (10) 36 + CIV ( 8) 62 + DENSI (13)
11 + LAAM (31) 37 + POP15 (49) 63 + LIFE (35)
12 + MALFAL (37) 38 + EUROPE (18) 64 + YRSOPEN (67)
13 + REVCOUP (55) 39 + LT100CR (36) 65 + OIL (41)
14 + GDP (21) 40 + PRIGHTS (48) 66 + RERD (54)
15 + SAFRICA (56) ∗∗ 41 + ENGFRAC (17) 67 + WARTIME (65)
16 + MINING (38) 42 + DENS (11) 68 + HERF (28)
17 + OTHFRAC (44) 43 + PRIEXP (52) 69 + WARTORN (66)
18 + GGCFD (23) 44 + PROT (53) 70 + OPEN (42)
19 + SPAIN (60) 45 + GVR61 (26) 71 + ORTH (43)
20 + DENSC (12) 46 + COLONY ( 9) 72 + LANDAREA (32)
21 + MUSLIM (39) 47 + HINDU (29) 73 + SOCIALIST (59)
22 − GDE (20) 48 − MALFAL (37) 74 + DPOP (14)
23 + GOVSH61 (25) 49 + BRIT ( 5) 75 + LANDLOCK (33)
24 + H (27) 50 + AIRDIST ( 3) 76 + CATH ( 7)
25 + GOVNOM1 (24) 51 − LIFE (35) 77 + TOT1DEC (61)
26 + FERT (19) 52 + ZTROPICS (68) 78 + AVELF ( 4)

Table 1: Sequence of adaptive LASSO moves for the Sala-i-Martin et al. (2004) data. The
entries in the table read as follows. The integers enumerate the step, + indicates inclusion of
a variable in this step, whereas − indicates exclusion of a variable. The included/excluded
variable is the third element of each entry and the numbers in brackets refer to the number
of the variable in the data base. The superscript ∗∗ indicates the set of active variables based
on cross-validation, i.e. the variables included in the active set up to this step.
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β̂AL sdZOU tZOU rk(Ppost) E(post)
Const 0.029458 0.006035 4.880845
BUDDHA 0.012027 0.003446 3.489969 16 0.022501
CONFUC 0.025531 0.006618 3.857953 9 0.055184
EAST 0.013874 0.002387 5.811779 1 0.023633
GDE 0.030730 0.032030 0.959431 45 0.052439
GDP −0.001452 0.000617 −2.353288 4 −0.008245
GEEREC 0.043587 0.039366 1.107225 48 0.127413
GVR61 −0.041727 0.016957 −2.460748 18 −0.046997
IPRICE −0.000071 0.000016 −4.382702 3 −0.000083
LAAM −0.002593 0.001220 −2.126153 11 −0.012025
MALFAL −0.001841 0.000872 −2.110789 7 −0.017303
P 0.016097 0.003649 4.411460 2 0.025899
REVCOUP −0.002174 0.001070 −2.030824 41 −0.007255
SAFRICA −0.002010 0.000708 −2.837761 10 −0.014162
TROPICAR −0.005398 0.001720 −3.138131 5 −0.014162

Table 2: Estimation results for the Sala-i-Martin et al. (2004) data. The first three result
columns correspond to the adaptive LASSO estimates, with the standard errors and t-values
computed as described in Zou (2006). The column labelled rk(Ppost) reports the ranks accord-
ing to posterior inclusion probabilities from Sala-i-Martin et al. (2004, Table 3, p. 828–829)
and the column labelled E(post) reports the posterior means from Sala-i-Martin et al. (2004,
Table 4, p. 830).

variables are important to explain cross-country growth, listed in alphabetical order of vari-

able abbreviation, where we also show the sign of the corresponding coefficient in parenthesis:

BUDDHA (fraction of population Buddhist in 1960, positive), CONFUC (fraction of popula-

tion Confucian in 1960, positive), EAST (East Asian dummy, positive), GDE (average share

of public expenditure on defense, positive), GDP (log per capita GDP in 1960, negative),

GEEREC (average share of public expenditure on education, positive), GVR61 (share of ex-

penditure on government consumption of GDP in 1961, negative), IPRICE (investment price,

negative), LAAM (Latin American dummy, negative), MALFAL (index of malaria prevalence

in 1966, negative), P (primary school enrollment rate, positive), REVCOUP (number of revo-

lutions and coups, negative), SAFRICA (sub-Saharan Africa dummy, negative), TROPICAR

(fraction of country’s land in tropical area, negative). The coefficient signs are all as expected

and also the magnitude of the coefficients is plausible and not out of line from other findings

in the literature, see also below.

With two exceptions the coefficients are statistically different from zero, with the standard

errors computed according to Zou (2006) based on Tibshirani (1996). The two variables
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with insignificant coefficients are both related to government expenditures. These are the

average share of public expenditure on defense and the average share of public expenditure

on education. Out of the government expenditure related variables only the government

consumption share of GDP appears to be significant with a negative impact on growth. The

negative coefficient sign is in line with a stylized relationship in public finance referred to

as Wagner’s law (formulated by the German economist Adolph Wagner in the nineteenth

century), which states that richer countries have a higher public expenditure share. Thus, in

case of convergence, in which richer countries grow slower, this is consistent with a negative

coefficient of the government consumption share of GDP. However, like many empirical growth

studies we do not find strong evidence for government expenditure related variables to be

major determinants of economic growth. Here we find three government expenditure variables,

but two of them with coefficients that are not significantly different from zero.

The fourth results column in Table 2 displays the ranks according to the posterior inclusion

probabilities as given in Sala-i-Martin et al. (2004, Table 3, p. 828–829). There is a substantial

degree of similarity of our results to theirs in that we find 8 of their top 10 variables (and 9

of their top 14 variables). Of the top 14 variables of Sala-i-Martin et al. (2004) we do not

find the following. Population density in coastal areas in the 1960s (DENSC), life expectancy

in 1960 (LIFEEXP), fraction of GDP in mining (MINING), the dummy for being a Spanish

colony (SPAIN) and the number of years open (YRSOPEN). Our results suggest instead

the importance of the following variables (where we only report the statistically significant

variables, which excludes the two mentioned government expenditure variables). The fraction

of Buddhists in the population, the number of revolutions and coups and the government

consumption share of GDP in the 1960s.

In the last column of Table 2 we report the posterior means of the estimated coefficients

as given in Sala-i-Martin et al. (2004, Table 4, p. 830). The signs of our coefficient estimates

throughout coincide with the signs of the posterior means reported in the final column. Our

point estimates are typically somewhat smaller (in absolute value) than the posterior means

of Sala-i-Martin et al. (2004). Notwithstanding the fact that the estimates are based on very

different approaches this might be a reflection of the fact that the adaptive LASSO estimates

are to a certain extent biased towards zero in finite samples due to the PLS setup.

10



3.2 Fernandez, Ley and Steel Data

The data set used by Fernandez et al. (2001) is based on the data set used in Sala-i-Martin

(1997b). In particular they select a subset of the Sala-i-Martin data that contains the 25

variables singled out as important by Sala-i-Martin (1997b). These variables are available

for 72 countries. To these they add 16 further variables which are also available for these 72

countries, which makes a total of 41 explanatory variables. The dependent variable is the

average annual growth rate of real per capita GDP over the period 1960–1992. A detailed

description of the variables and their sources is contained in the working paper Sala-i-Martin

(1997a, Appendix 1).

Cross-validation, see Table 3 for the sequence of variables included, leads to an equa-

tion including 16 explanatory variables counting the intercept. The following variables are

selected, using the ordering in the data file. Enroll (primary school enrollment in 1960,

positive), LifeExp (life expectancy in 1960, positive), GDPsh560 (log of per capita GDP in

1960, negative), Mining (fraction of GDP in mining, positive), EquipInv (equipment invest-

ment, positive), NEquipInv (non-equipment investment, positive), LatAmerica (dummy for

Latin America, negative), SubSahara (dummy for sub-Saharan Africa, negative), HighEnroll

(enrollment rates in higher education, negative), Confucius (share of population Confucian,

positive), EthnoLFrac (ethnolinguistic fractionalization, positive), Hindu (share of population

Hindu, negative), Muslim (share of population Muslim, positive), RuleofLaw (rule of law, pos-

itive) and LabForce (size of labor force, positive). Again, negative and positive indicate the

signs of the corresponding coefficients.

Our results concerning variable selection correspond to a large extent with those of Fer-

nandez et al. (2001, Table I, p. 569) with respect to posterior inclusion probabilities. In

particular 11 of the 15 variables included in our results are amongst the top 15 of the vari-

ables of Fernandez et al. (2001). The 4 of their top 15 variables that are not included in

our results are given by years of openness (YrsOpen), degree of capitalism (EcoOrg), and the

fractions of Protestants (Protestants) and of Buddhists (Buddha) in the population. The 4

differing variables we obtain by applying the adaptive LASSO algorithm are the enrollment

rate in higher education (HighEnroll, negative), the measure of ethnolinguistic fractionaliza-

tion (EthnoLFrac, positive), the fraction of Hindus in the population (Hindu, negative) and

the size of the labor force (LabForce, positive). The coefficient for the size of the labor force,

meant to capture the size of the economy, is not significantly different from zero even at the

11



1 + GDPsh560 ( 4) 16 + Muslim (35) 31 + RFEXDist (10)
2 + LifeExp ( 3) 17 + NEquipInv (12) 32 + WarDummy (22)
3 − GDPsh560 ( 4) 18 + LabForce (42) ∗∗ 33 + Catholic (29)
4 + Confucious (30) 19 + BlMktPm (15) 34 + Rev&Coup (21)
5 + SubSahara (18) 20 + EcoOrg ( 6) 35 + Foreign ( 9)
6 + EquipInv (11) 21 + Buddha (28) 36 + Age (26)
7 + LatAmerica (17) 22 + CivlLib (24) 37 + Popg (40)
8 + GDPsh560 ( 4) 23 + SpanishCol (39) 38 + AbsLat (25)
9 + Const ( 1) 24 + English ( 8) 39 + Area (16)

10 + HighEnroll (19) 25 + FrenchCol (32) 40 + YrsOpen ( 7)
11 + Mining ( 5) 26 + OutwarOr (14) 41 + std(BMP) (13)
12 + RuleofLaw (38) 27 + BritCol (27) 42 + Jewish (34)
13 + Hindu (33) 28 + Protestants (37) 43 + PolRights (23)
14 + Enroll ( 2) 29 + PublEdu (20) 44 + Work/Pop (41)
15 + EthnoLFrac (31) 30 + PrExports (36)

Table 3: Sequence of adaptive LASSO moves for the Fernandez et al. (2001) data set. See
caption to Table 1 for further explanations.

10% level. The small value for the coefficient corresponding to the size of the labor force

stems from the fact that Fernandez et al. (2001) have employed persons in their data base,

and not e.g. employed persons in thousands or millions. For reasons of comparability we

have decided not to change the scaling of this variable. The coefficient corresponding to the

fraction of Hindus is only significant at the 10% level but not at the 5% level. The negative

sign of the coefficient corresponding to the high education enrollment rate may merely reflect

the fact that countries with a well and broadly functioning higher education system in the

1960s have mainly been rather well developed rich countries which have subsequently grown

below average.

3.3 European Regional Data

The third data set we analyze contains 48 explanatory variables for the 255 NUTS2 regions

in the 27 member states of the European Union. The data and variables are described

in Appendix A. The dependent variable is the average annual growth rate of per capita

GDP over the period 1995–2005. On a regional level it is more difficult to obtain core

economic data, hence many of the variables listed in Table 8 in Appendix A are related

to infrastructure characteristics (meant in very broad sense also including dummy variables

whether the regions are located on the seaside or at country borders) and labor market

12



β̂AL sdZOU tZOU rk(Ppost)
Const 0.059484 0.006730 8.838394
Enroll 0.002728 0.000958 2.848211 14
LifeExp 0.000698 0.000100 6.958493 3
GDPsh560 −0.011495 0.001212 −9.481668 1
Mining 0.019676 0.004540 4.334124 11
EquipInv 0.162509 0.019975 8.135520 4
NEquipInv 0.000467 0.000123 3.795273 12
LatAmerica −0.007402 0.001331 −5.559725 13
SubSahara −0.018189 0.001957 −9.293086 5
HighEnroll −0.022536 0.008797 −2.561761 34
Confucious 0.056205 0.007045 7.978490 2
EthnoLFrac 0.000373 0.000166 2.247880 28
Hindu −0.007397 0.004204 −1.759346 19
Muslim 0.000222 0.000077 2.883699 6
RuleofLaw 0.005808 0.001304 4.454762 7
LabForce 1.5× 10−9 1.1× 10−9 1.434628 25

Table 4: Estimation results for the Fernandez et al. (2001) data. The final column reports
the rank according to posterior inclusion probabilities from Fernandez et al. (2001, Table I,
p. 569). See caption to Table 2 for further explanations.

variables (unemployment and activity rates, as well as some broad education characteristics

in the working age population).

Given that there are both large intra- and inter-country differences in the economic perfor-

mance of the European regions our preferred set of variables to perform the adaptive LASSO

estimation sequence contains country dummies for the 19 out of the 27 countries that consist

of more than just one region. Taking into account the divide in formerly centrally planned

economies we also consider a specification with a dummy for all Central and Eastern Euro-

pean (CEE) countries. For completeness we also consider a specification without any country

dummy variables.

For the setup with 19 country dummies cross-validation leads to termination of the es-

timation sequence at step 13, leading to an equation including 11 regressors including the

intercept, see Tables 5 and 6. The included explanatory variables and the coefficient signs

are: GDPCAP0 (log of per capita GDP in 1995, negative), Capital (dummy for capital city,

positive), AccessRail (measure of accessibility by railroad, negative), URT0 (unemployment

rate total in 1995, negative), ARL0 (activity rate of low educated in 1995, negative), ShSH

(share of high educated in labor force, positive), ShSM (share of medium educated in labor

13



1 + Const ( 1) 28 + EREL0 (33) 55 − Const ( 1)
2 + ShSM (44) 29 + gPOP ( 3) 56 + DUMc10 (56)
3 + ShSH (43) 30 − ARL0 (41) 57 + ShLLL (46)
4 + EREL0 (33) 31 + EREH0 (31) 58 + DUMc26 (67)
5 + GDPCAP0 ( 2) 32 + URT0 (38) 59 + DUMc20 (62)
6 + DUMc6 (54) 33 + RegPent27 (15) 60 + DUMc15 (61)
7 + ARL0 (41) 34 + RegObj1 (16) 61 + Settl (12)
8 + Capital (17) 35 + Seaports (19) 62 + Dist.de71 (47)
9 − EREL0 (33) 36 + DUMc12 (58) 63 + Temp (28)

10 + AccessRail (26) 37 + ShCE0 ( 5) 64 + DUMc21 (63)
11 + DUMc27 (68) 38 + DUMc1 (50) 65 + OUTDENS0 ( 7)
12 + URT0 (38) 39 + URH0 (35) 66 + ARH0 (39)
13 + DUMc14 (60) ∗∗ 40 + ShJK0 ( 6) 67 + RoadDens (21)
14 + EMPDENS0 ( 9) 41 + URL0 (37) 68 + Const ( 1)
15 + DUMc5 (53) 42 + DUMc11 (57) 69 + DUMc23 (65)
16 + ERET0 (34) 43 + RegCoast (13) 70 + DUMc22 (64)
17 + AccessAir (25) 44 − URH0 (35) 71 + DUMc2 (51)
18 + DUMc9 (55) 45 + DistCap (48) 72 + AccessRoad (27)
19 + URM0 (36) 46 + Hazard (29) 73 + URH0 (35)
20 + ARM0 (40) 47 + INTF (10) 74 − ARH0 (39)
21 + DUMc3 (52) 48 + DUMc13 (59) 75 + RegBoarder (14)
22 + TELF (11) 49 + Airports (18) 76 + ConnectAir (23)
23 + DUMc24 (66) 50 + ART0 (42) 77 + ARH0 (39)
24 − URT0 (38) 51 + HRSTcore (30) 78 + RailDens (22)
25 + shGFCF (49) 52 + ARL0 (41) 79 + EREM0 (32)
26 + POPDENS0 ( 8) 53 + ShSL (45) 80 + ConnectSea (24)
27 + AirportDens (20) 54 + ShAB0 ( 4)

Table 5: Sequence of adaptive LASSO moves for the regional data set including country
dummies for all countries consisting of more than one region. See caption to Table 2 for
further explanations.

14



force, positive), DUMc6 (dummy for Germany, negative), DUMc14 (dummy for Ireland, pos-

itive) and DUMc27 (dummy for UK, negative). The signs of the coefficients are with the

exception of AccessRail in line with expectations. With respect to rail accessibility it has to

be noted that European railroad infrastructure has been built to a very large degree before

the sample period of 1995–2005. In particular a large number of the regions that are most

well accessible by railroads have experienced fast growth and development in much earlier

periods than over the last decade and are now slower growing regions with high development

levels. Some well-connected regions hosting from today’s perspective “old industries”, as e.g.

the German Ruhr area, even experience difficulties in the industrial restructuring process.

These two observations explain the negative coefficient for AccessRail. Clearly, this example

again highlights the need for careful interpretation of regression results.

The set of human capital and labor market variables included in the specified equation

hints at the importance of a well-educated labor force for economic growth.1 Of course, a

large share of high educated people in the labor force requires as a complement the presence of

a sufficient number of workplaces where these skills are required, i.e. sufficiently many compa-

nies offering a sufficiently high number of jobs requiring medium or high skills and education.

Also the negative coefficient for the activity rate of low educated has to be interpreted in

the same way, i.e. taking into account that complementarity with typically low value added

creating activities. Due to the relatively short time span of only 10 years using initial values

of the explanatory variables may not completely resolve these potential endogeneity issues.

It is worth noting that only three country dummies appear to have explanatory power:

these cover the poor growth performers Germany and the UK and the “Celtic tiger” Ireland.

The findings are quite robust when compared to findings obtained without country dummies

or when including only the CEE dummy. For details see Tables 9 to 12 in Appendix B.

Excluding country dummies leads to the inclusion of some additional variables, in partic-

ular initial population density (negative) and employment density (positive) as well as the

initial share of gross fixed capital formation in gross value added (positive). AccessRail is

substituted by AccessAir (positive) and AccessRoad (negative). Note also that, as expected,

the number of variables included is larger when no country dummies are considered. Includ-
1It is important to note here again that the available data mainly allow to capture the influence of human

capital. There are no variables that measure or at least proxy physical capital and also proxies for technology
are essentially absent. The only exception is the share of gross fixed capital formation in gross value added in
the initial period. Scarcity of data clearly limits any quantitative study of regional growth.
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β̂AL sdZOU tZOU
Const 0.151198 0.007841 19.282432
GDPCAP0 −0.014707 0.000806 −18.247149
Capital 0.008078 0.000669 12.066474
AccessRail −0.001074 0.000195 −5.503739
URT0 −0.005371 0.003164 −1.697749
ARL0 −0.004472 0.001933 −2.314276
ShSH 0.058700 0.005942 9.878976
ShSM 0.016212 0.002870 5.648546
DUMc6 −0.007998 0.000909 −8.802376
DUMc14 0.002764 0.000412 6.713294
DUMc27 −0.002237 0.000456 −4.906568

Table 6: Estimation results for the regional data set including country dummies for all coun-
tries consisting of more than one region. See caption to Table 2 for further explanations.

ing only the dummy for the CEE countries leads to quite similar results both in terms of

variables included and coefficient signs. Finally, when including distance weighted variables,

the distance weighted initial output and the employment density in the initial period enter

negatively with again the rest of the variables being roughly the same. Details for the results

with distance weighted variables are available upon request.

4 Summary and Conclusions

In this paper we propose to use the adaptive LASSO estimator to determine the variables

relevant for explaining economic growth. The adaptive LASSO estimation sequence has es-

sentially the same computational cost as a single OLS regression and simultaneously performs

model selection and consistent parameter estimation. Given the large uncertainty concerning

potential growth determinants, reflected in large sets of explanatory variables, a consistent

or conservative forward selection procedure avoiding the estimation of potentially ill-behaved

regressions including large numbers of variables appears to be particularly useful. The pro-

posed classical methodology avoids both the estimation and averaging of large numbers of

models using (either a classical or) a Bayesian framework and also avoids the pitfalls related

to inference in general-to-specific model selection procedures.2

The proposed methodology is implemented for three data sets, namely the data used in
2For classical model averaging and subsequent inference in the context of growth regressions see Wagner

and Hlouskova (2008).
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Sala-i-Martin et al. (2004), in Fernandez et al. (2001) and a data set covering the regions of

the European Union member states. The results for the former two well-studied data sets are

quite in line with the findings in the original papers, at a tiny fraction of computational costs.

For the Sala-i-Martin et al. (2004) data set we find 12 significant explanatory variables (in

an equation comprising 14 explanatory variables) using the t-values according to Zou (2006).

9 of these 12 variables are among the top 14 variables with respect to posterior inclusion

probability as given in Sala-i-Martin et al. (2004). The findings for the Fernandez et al. (2001)

data set also exhibit a high degree of similarity with the findings in the original paper. Here

we find 15 explanatory variables, with one of them (size of the labor force) not significant at

the 5% level. The set of selected variables contains 11 of the top 14 variables, again according

to posterior inclusion probability, of Fernandez et al. (2001). For both data sets the sets of

variables excluded with our approach compared to the findings in the original papers as well

as the sets of included significant explanatory variables not found to be important in the

original papers are plausible. Furthermore, also the findings obtained for the regional data

set (for which only a small number of core economic variables is available) are plausible. This

data set comprises many infrastructure and labor market variables and the results indicate

that a well educated labor force is beneficial for economic growth.

The findings in this paper strongly indicate that the adaptive LASSO estimator may

indeed be an estimation and model selection procedure that can be fruitfully employed in the

growth regressions context.
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Appendix A: Description of Regional Data Set

In Table 7 we display the 27 EU member states, the abbreviation we use for the countries as

well as the number of NUTS2 regions in each of the countries. The list of variables is described

in Table 8. The base year for price indices is 2000. All variables described as “initial” and

whose variable name ends with 0 display 1995 values. For most of the variables for which

we report Eurostat as source the variables used here have been constructed by subsequent

calculations based on raw data retrieved from Eurostat.

AT Austria (9) FI Finland (5) MT Malta (1)
BE Belgium (11) FR France (22) NL Netherlands (12)
BG Bulgaria (6) GR Greece (13) PL Poland (16)
CV Cyprus (1) HU Hungary (7) PT Portugal (5)
CZ Czech Rep. (8) IE Ireland (2) RO Romania (8)
DE Germany (39) IT Italy (21) SE Sweden (8)
DK Denmark (1) LT Lithuania (1) SI Slovenia (1)
EE Estonia (1) LU Luxembourg (1) SK Slovak Rep.
ES Spain (16) LT Latvia (1) UK United Kingdom (35)

Table 7: Country abbreviations, names and number of NUTS2 regions in brackets.

In addition to the explanatory variables listed in Table 8 we also consider the following

variables. A dummy variable for Central and Eastern Europe (Xceec), comprising the fol-

lowing countries: Bulgaria, Czech Republic, Hungary, Lithuania, Latvia, Poland, Romania,

Slovenia and the Slovak Republic.

Furthermore, additional estimations have been undertaken based on “neighborhood” vari-

ables constructed by computing Euclidean distance weighted averages for the following four

variables: initial GDP per capita, initial output density, employment density and population

density. Details are available upon request.
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Appendix B: Additional Empirical Results

Figure 2: Coefficient paths of adaptive LASSO estimation for the Sala-i-Martin et al. (2004)
data set.
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1 + Const ( 1) 24 + RegCoast (13) 47 + gPOP ( 3)
2 + ShSM (44) 25 + EREL0 (33) 48 + Dist.de71 (47)
3 + EREM0 (32) 26 + ShCE0 ( 5) 49 − URH0 (35)
4 + ShSH (43) 27 + AirportDens (20) 50 + ARH0 (39)
5 + AccessRoad (27) 28 + Seaports (19) 51 + URH0 (35)
6 + Capital (17) 29 − ART0 (42) 52 + Settl (12)
7 + GDPCAP0 ( 2) 30 + RegObj1 (16) 53 + ShSL (45)
8 + ARL0 (41) 31 + ERET0 (34) 54 + HRSTcore (30)
9 + ARM0 (40) 32 − ARL0 (41) 55 − Const ( 1)

10 − EREM0 (32) 33 + ART0 (42) 56 + Temp (28)
11 + EREH0 (31) 34 + RegPent27 (15) 57 + INTF (10)
12 + ERET0 (34) 35 + ARL0 (41) 58 + Airports (18)
13 + EREM0 (32) 36 − EREL0 (33) 59 + ShJK0 ( 6)
14 + TELF (11) 37 + ShLLL (46) 60 + Const ( 1)
15 + ARH0 (39) 38 + Hazard (29) 61 + OUTDENS0 ( 7)
16 − EREH0 (31) 39 + URM0 (36) 62 + URT0 (38)
17 + POPDENS0 ( 8) 40 + ShAB0 ( 4) 63 + RegBoarder (14)
18 + ART0 (42) 41 + RoadDens (21) 64 + ConnectSea (24)
19 − ERET0 (34) 42 + EREH0 (31) 65 + DistCap (48)
20 + AccessAir (25) 43 + URL0 (37) 66 + RailDens (22)
21 + shGFCF (49) 44 − ARH0 (39) 67 + AccessRail (26)
22 + URH0 (35) 45 + ConnectAir (23)
23 + EMPDENS0 ( 9) ∗∗ 46 + EREL0 (33)

Table 9: Sequence of adaptive LASSO moves for the regional data set without country dum-
mies. For further explanations see caption to Table 1.
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β̂AL sdZOU tZOU
Const 0.137260 0.015585 8.807341
GDPCAP0 −0.013651 0.001338 −10.200151
POPDENS0 −0.001199 0.000477 −2.515615
EMPDENS0 0.000994 0.000532 1.866949
TELF −0.001817 0.000382 −4.751923
Capital 0.014913 0.001561 9.554349
AccessAir 0.001922 0.000759 2.532330
AccessRoad −0.004275 0.000897 −4.766852
EREM0 0.053841 0.013324 4.040781
URH0 0.004418 0.003236 1.365442
ARH0 0.026378 0.010716 2.461560
ARM0 −0.066799 0.016054 −4.160842
ARL0 −0.021440 0.006466 −3.315817
ART0 0.015002 0.010627 1.411647
ShSH 0.058186 0.008681 6.702530
ShSM 0.010513 0.005530 1.901018
shGFCF 0.002761 0.001041 2.652060

Table 10: Estimation results for regional data set without country dummies. For further
explanations see caption to Table 2.
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1 + Const ( 1) 25 + URH0 (35) 49 + Dist.de71 (47)
2 + ShSM (44) 26 + ShCE0 ( 5) 50 + gPOP ( 3)
3 + EREM0 (32) 27 + AirportDens (20) 51 + EREL0 (33)
4 + ShSH (43) 28 + Seaports (19) 52 + ShJK0 ( 6)
5 + AccessRoad (27) 29 + Xceec (50) 53 − URH0 (35)
6 + Capital (17) 30 − ART0 (42) 54 + Temp (28)
7 + GDPCAP0 ( 2) 31 − ARL0 (41) 55 + ARH0 (39)
8 + ARM0 (40) 32 + RegObj1 (16) 56 + HRSTcore (30)
9 + ARL0 (41) 33 + ERET0 (34) 57 + INTF (10)

10 − EREM0 (32) 34 + ART0 (42) 58 + ShSL (45)
11 + TELF (11) 35 + RegPent27 (15) 59 − Const ( 1)
12 + ERET0 (34) 36 + ARL0 (41) 60 + Settl (12)
13 + EREM0 (32) 37 + Hazard (29) 61 + URH0 (35)
14 + EREH0 (31) 38 − EREL0 (33) 62 + URT0 (38)
15 + ARH0 (39) 39 + ShLLL (46) 63 + OUTDENS0 ( 7)
16 − EREH0 (31) 40 + URM0 (36) 64 + Airports (18)
17 + POPDENS0 ( 8) 41 + RoadDens (21) 65 + Const ( 1)
18 + ART0 (42) 42 − ARL0 (41) 66 + RegBoarder (14)
19 − ERET0 (34) ∗∗ 43 + ShAB0 ( 4) 67 + DistCap (48)
20 + AccessAir (25) 44 + URL0 (37) 68 + AccessRail (26)
21 + shGFCF (49) 45 + ConnectAir (23) 69 + ConnectSea (24)
22 + EMPDENS0 ( 9) 46 + EREH0 (31) 70 + RailDens (22)
23 + EREL0 (33) 47 + ARL0 (41)
24 + RegCoast (13) 48 − ARH0 (39)

Table 11: Sequence of adaptive LASSO moves for the regional data set with CEEC dummy.
For further explanations see caption to Table 1.

β̂AL sdZOU tZOU
Const 0.137147 0.012897 10.633644
GDPCAP0 −0.013149 0.001166 −11.273019
POPDENS0 −0.000275 0.000283 −0.971740
TELF −0.001591 0.000312 −5.106573
Capital 0.014815 0.001457 10.166491
AccessRoad −0.003779 0.000795 −4.750508
EREM0 0.045753 0.012256 3.733273
ARH0 0.021610 0.007691 2.809590
ARM0 −0.058381 0.014855 −3.930148
ARL0 −0.018546 0.005225 −3.549755
ART0 0.012012 0.007729 1.554143
ShSH 0.056410 0.008068 6.992125
ShSM 0.011894 0.005090 2.336598

Table 12: Estimation results for regional data set with CEEC dummy. For further explana-
tions see caption to Table 2.
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