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Abstract 

Motivated by economic-theory concepts—the Fisher hypothesis and the theory of the term 
structure—we consider a small set of simple bivariate closed-loop time-series models for the 
prediction of price inflation and of long- and short-term interest rates. The set includes vector 
autoregressions (VAR) in levels and in differences, a cointegrated VAR, and a non-linear 
VAR with threshold cointegration based on data from Germany, Japan, UK, and the U.S. 
Following a traditional comparative evaluation of predictive accuracy, we subject all 
structures to a mutual validation using parametric bootstrapping. Ultimately, we utilize the 
recently developed technique of Mallows model averaging to explore the potential of 
improving upon the predictions through combinations. While the simulations confirm the 
traded wisdom that VARs in differences optimize one-step prediction and that error 
correction helps at larger horizons, the model-averaging experiments point at problems in 
allotting an adequate penalty for the complexity of candidate models. 
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1 Introduction

We consider a hypothetical forecaster whose information set is restricted to
time series of two interest rates at different maturities and a rate of price
inflation at a quarterly frequency. Her task is to generate predictions of the
three variables that are as close to the realized values as possible. Her tool-
box consists of four bivariate time-series models, three linear models and a
nonlinear structure. Primarily we focus on the task of selecting the best pure
model but we also consider the possibility of combining several candidates.

The forecaster’s choice of the four candidates is inspired by economic
theory, namely the Fisher hypothesis and the theory of the term structure.
In their econometric interpretation, these concepts translate into stationary
differences between any two of the variables, while the variables themselves
are often considered as first-order integrated (I(1))—a cointegrated system
(see Engle and Granger, 1987). This paper investigates the extent to
which these theoretical concepts are able to assist the forecaster.

Particularly the idea of cointegration among interest rates at different
maturities has been supported by the seminal contribution of Campbell

and Shiller (1987). It also appears as a building block of many current
macroeconomic models. For a critique of this approach, see for example
Malliaropulos (2000) who views inflation as well as interest rates as trend-
stationary but subject to rare trend breaks. For a forecaster, however, such
concepts are unattractive as they require a prediction of the timing of the
breaks. We confine ourselves to time-homogeneous models exclusively.

We contrast the error-correction model (EC-VAR in short) with three
other time-series models of comparable complexity. A simple VAR in lev-
els expresses the possibility that all variables are stationary in a longer-run
perspective. This view is not implausible, given the observation that both
interest rates and rates of inflation remain in a bounded region over time
spans of several decades. Second and conversely, a VAR in differences un-
derscores the short-run nature of the variables that may be reminiscent of
random walks or at least of first-order integrated series, while it deliberately
ignores the equilibrium restrictions imposed by the Fisher effect and the
mean-reverting term structure. As a stark contrast and some kind of freak-
ish alien, we construct a threshold VAR as the fourth candidate. It behaves
like the EC-VAR in the distributional center of the variables but changes to
the stable VAR in its outer region, for unusually high or low rates of interest
and of inflation. At the outset, we conjectured that this model, globally sta-
ble according to statistical theory but locally unstable, might capture most
features of time-series behavior that we observe in the data. Threshold mod-
els of similar type were suggested by Balke and Fomby (1997), although
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with a slightly different view of the corridor problem. Their model cointe-
grates but ignores small deviations from long-run equilibrium paths. Our
model cointegrates in the corridor, i.e. in the center, but develops a globally
stable regime in its tails.

We emphasize that we do not intend to prove or disprove economic theo-
ries. The mentioned concepts—the Fisher effect and the term structure—are
far more flexible than our simple time-series models and allow for longer-run
variation in term premia as well as in ‘natural’ real rates. They also may be
designed to hold contingent on exogenous environment designs and political
circumstances, which is a view that we rule out in ‘closed-loop’ modelling, as
we think it gets too arbitrary in a prediction evaluation. However, the models
we use are simplified and not uncommon operational counterparts of these
theoretical ideas. In short, the theory may hold for whatever model of our
foursome that comes out best in the prediction evaluation. Moreover, we do
not even intend to find true or valid models. As we set out above, incorrect
models can be excellent forecasting ‘workhorses’, while correct parametric
models fitted to samples of finite length may yield disappointing forecasting
performance. The mismatch of statistical in-sample evidence and of fore-
casting performance has repeatedly inspired the literature. Recently, it was
picked up in noteworthy contributions by Granger (2005) and by Arm-

strong (2007).
Our test data are samples over several decades on Germany, Japan, UK,

and the U.S. These are four major economies of widespread relevance, and
results on them may be viewed as role-model cases. The samples cover the
episode of high inflation and interest following the OPEC shocks of the 1970s
and are therefore representative of the typical behavior over longer time spans
that will always show calm ‘textbook’ phases and ‘wild’ episodes that do not
correspond to textbook wisdom.

There is no universally accepted technique for model selection with the
aim of forecasting. Statistical in-sample techniques may be inadequate, as
neither the arbitrary 5% significance level of hypothesis tests nor the back-
drop aim of searching for correctness in the specification may be well adapted
to the prediction purpose. For this reason, statistical in-sample evidence is
presented only briefly. Rather, we tend to rely on comparisons over test
samples, which are presented in Section 3.

Additional information may be obtained using a more advanced concept
of parametric bootstrap validation that is enacted in Section 4. The tech-
nique appears rudimentarily in some of the forecasting literature but it was
introduced as a tool explicitly by Jumah and Kunst (2008) and Kunst

(2008). Under the assumption of any of the four candidates as the data-
generating process (DGP), pseudo-samples are simulated, and again each
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model class is applied as a prediction model generator. The results yield
information about the robustness of forecasting performance with regard to
uncertain model assumptions.

Finally, we consider the recently developed model-averaging technique by
Hansen (2007). Here, relative weights on each of the candidate model classes
are taken as indicators of the relative importance of the class with regard to
prediction. This strategy is motivated by the fact that the original Hansen

procedure is inspired by prediction concepts. However, it turns out that
the resulting combined forecast construct rarely beats the pure model-based
predictions evaluated before.

The remainder of this paper is organized as follows. Section 2 describes
the data and briefly reviews some statistical in-sample evidence, although
we do not rely too much on it in a forecasting project. Section 3 reports
the basic prediction horse race among the four rival models. Section 4 deals
with the slightly more sophisticated technique of parametric bootstrap vali-
dation. Section 5 considers combinations across the four basic rival models
and reports fitted in-sample weights. Section 6 concludes.

2 Statistical evidence

2.1 The data

For our analysis, we need time series on inflation and on interest rates for
different terms to maturity. With regard to inflation, the choice of the appro-
priate indicator is simple, as most economies have reliable series for longer
time spans on consumer prices only. Given such a consumer price index Pt,
inflation is appropriately defined as πt = Δ4pt, where the lower-case p de-
notes the logarithm of the original variable P . Throughout, we use Δ for the
first differences operator and Δ4 for annual quarter-to-quarter differences,
i.e. ΔXt = Xt − Xt−1 and Δ4Xt = Xt − Xt−4 for any given variable X. The
selection of appropriate variables is much harder for interest rates. Mainly for
reasons of comparability across countries and data availability, we selected a
short-term money-market rate iS and a longer-term bond rate iL.

In order to enhance the significance of our findings, we study all effects
in parallel for four main economies: Germany (the Federal Republic before
German unification), the United States, the United Kingdom, and Japan.
Figures 1 to 4 convey an impression of the data at hand. All data are taken
from the IFS data base compiled by the International Monetary Fund. For
time ranges, we use the longest available ones, i.e. samples end in 2007:4 and
start in 1960:4 for Germany and the United States, in 1972:1 for the United
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Figure 1: Long (iL, solid) and short (iS, dashed) interest and price inflation
(π, short dashes) for Germany.

Kingdom, in 1966:4 for Japan.
Whereas economic theory defines the real interest rate as the forward-

looking interest it minus the expected inflation instead of the backward-
looking inflation πt, this definition of the real rate is inconvenient for data-
driven prediction. Also the customary alternative ex-post real interest rate
it −πt+4 is inconvenient for prediction analysis. We note that the distinction
between the ‘correct’ ex-post real rate and the ‘incorrect’ or naive real rate
it − πt is unimportant with regard to cointegration properties. Contingent
on I(1) properties for inflation and interest, the ex-post real rate is I(0) and
the variables therefore cointegrate if and only if the same holds for the naive
rate.

According to this convention, we view the difference between an interest
rate and inflation as the ‘real rate’, while the difference iL − iS is the ‘term
premium’. Figures 1 to 4 show important similarities across countries. For
most of the time, iL lies above iS, which in turn typically exceeds inflation,
such that both the real rate and the term premium tend to be positive. The
figures also show that generally a high-volatility time period with remarkable
peaks around 1980 is followed by a calmer period with lower values up to the
present.

Apart from this visual evaluation, some more detailed statistical char-
acteristics will be reported in the next subsections. As motivated in the
introduction, we report on all of these in-sample statistics only summarily,
as they may not be too relevant for the aim of prediction.
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Figure 2: Long (iL, solid) and short (iS, dashed) interest and price inflation
(π, short dashes) for the United States.

Figure 3: Long (iL, solid) and short (iS, dashed) interest and price inflation
(π, short dashes) for the United Kingdom.
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Figure 4: Long (iL, solid) and short (iS, dashed) interest and price inflation
(π, short dashes) for Japan.

2.2 Testing for unit roots

Table 1: Statistical evidence for unit roots.

Germany United States United Kingdom Japan
iS 0(2) 0(3) 1(0) 1(1)
iL 1(1) 1(1) 1(1) 1(1)
π 1(4) 0(8) 1(8) 1(8)

Note: Numbers indicate identified integration order according to Dickey-
Fuller tests at the 5% significance level. Numbers in brackets indicate aug-
mentation lag order selected by Schwarz criterion.

Table 1 summarizes the results from customary statistical unit-root tests
according to Dickey and Fuller (1979). These tests reject a unit root for
the UK short-term rate at the 10% level and at 5% for the German and U.S.
short rates, but support it for the long rates as well as for the Japanese series.
Control procedures using refined unit-root tests draw a similar picture.

Inflation data are predominantly found to be ‘statistically I(1)’ in the
sense that Dickey-Fuller tests do not reject their null. For Germany, however,
the statistic comes close to the 10% significance point, and for the U.S., it
even rejects the unit root at 1%.

In summary, both interest rates and inflation are located at both sides of
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the statistical boundary of unit-root tests, confirming the visual impression
as well as our theoretical concerns. Moreover, all results are sensitive to
changes in the sample range.

Results on the differences iL−iS, the term premium, and iL−π and iS−π,
the real rates, are also inconclusive. Tests for these series tend to reject the
unit-root null more often than for the original variables but generally the
values of the statistics again cluster around the significance points.

2.3 Cointegration tests

Table 2: Statistical evidence for cointegration.

Germany United States United Kingdom Japan
(iS, iL) 2(3) 2(4) 0(1) 1(3)
(π, iS) 2(5) 0(9) 1(20) 0(5)
(π, iL) 2(2) 2(10) 0(9) 0(5)

Note: Numbers indicate the cointegrating rank identified by Johansen tests
at 5% significance level. Numbers in brackets indicate VAR lag order selected
by AIC.

Table 2 summarizes the results of statistical VAR cointegration tests ac-
cording to Johansen (1995). We confine ourselves to commenting on some
of the cases.

For Germany, a system consisting of the two interest rates has VAR order
3 according to an AIC lag-order search. There is convincing support for
at least one cointegration vector and 5% support for another one, which
would yield a fully stationary system, contradicting univariate evidence. The
parallel U.S. system behaves similarly to the German one. One cointegration
vector is significant at extreme levels, and the other one at an approximate 3%
level. By contrast, the bivariate system for Japan supports one vector clearly,
and the one for the United Kingdom does not support any cointegration at
all.

The general impression is a confusing variety across countries: pure I(1)
in the United Kingdom, theory-supported cointegration in Japan, and ‘al-
most’ stationary systems in Germany and the U.S. Taken literally, these
results would support modelling in differences for Germany, error-correction
modelling for Japan, and ‘level’ VARs for the other two cases.

For the short rate and inflation in Japan, no cointegration is supported
and a pure I(1) structure is identified, even though formally the error-correction
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model is rejected against the alternative of a stationary model. In the paral-
lel U.K. system with its extraordinary lag length, one cointegration vector is
supported at extreme significance, another one at around 7%. For the U.S.
(π, iS) system, one cointegration vector is marginally significant at around
6%, another one is formally ‘supported’ at 2%.

In summary, test statistics tend to be close to the significance boundaries
in the (π, iS) systems, such that the hypotheses of no, one, and even two
cointegrating vectors are not separated clearly. The impression is comparable
for the (π, iL) systems. Pure I(1) non-cointegrated structures are supported
for Japan and also for the (π, iL) system in the UK.

Generally, the statistical classification of variables varies considerably
across countries and it is sensitive to changes in the sample range. The
model with the best support in the literature, the error-correction model
with one cointegrating vector, is found only in two out of 16 cases. Note,
however, that even the protagonists of the cointegrating model for the term
structure, Campbell and Shiller (1987), reported empirical deviations
from the error-correction concept. Our Table 2 should not be interpreted as
evidence for discarding that concept.

3 Simple forecasting experiments

For all four countries, we construct predictions as follows. Vector autore-
gressions and VAR models in first differences are fitted to the observations
at time points t for t ≤ n − m if n is the last available observation of the
series. Then, the data point at t = n − m + 1 is predicted by its conditional
expectation, given the specified model in usage. This exercise is repeated for
m = 1, . . . , 40, such that single-step out-of-sample predictions are calculated
for the last ten years in the sample. Generally, for all considered time-series
models lag orders are determined by an AIC search up to p = 12, individually
for each time range.

Let (yt) denote the bivariate process that consists alternatively of two
interest rates or of an interest rate and the rate of inflation. Prediction
models under consideration are:

1. the VAR in ‘levels’ yt = μ +
∑p

j=1 Φjyt−j + εt. If fitted to data, this
model tends to yield ‘stable’ coefficient estimates such that det(I −∑p

j=1 Φjz
j) has zeros for |z| > 1 only. Then, there are no ‘unit roots’

and (yt) is an asymptotically stationary process.

2. the VAR in differences (dVAR) Δyt = μ +
∑p

j=1 ΦjΔyt−j + εt. This
model imposes 2 unit roots in bivariate systems and excludes the pos-
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sibility of cointegration. If det(I − ∑p
j=1 Φjz

j) has zeros for |z| > 1
only, (yt) is a first-order integrated process with two unit roots in the
lag polynomial.

3. the error-correction VAR (EC–VAR) Δyt = μ+αβ ′yt−1+
∑p

j=1 ΦjΔyt−j+

εt, with the restriction β = (1,−1)′. Under some additional regular-
ity conditions, this model has one unit root and yields a first-order
integrated (yt).

4. the threshold cointegration model (th-VAR)

Δyt = μ + α1β
′
1yt−1 + α2β

′
2yt−1I (|β ′

2yt−1 − η| > c) +

p∑

j=1

ΦjΔyt−j + εt

with the restrictions β1 = (1,−1)′, β2 = (0, 1)′ or (1, 0)′.

The threshold model is the most sophisticated structure and deserves
some comments. Note that it is of crucial importance that the second error-
correction variable β ′

2y and the transition variable coincide. This ensures that
the variable yt is stochastically bounded on a compact set and geometrically
stable on its complement. These assumptions suffice to prove the geomet-
ric ergodicity and stability of the variable (yt), a feature that was observed
by Tong (1990). The model is different from most threshold cointegra-
tion models that can be found in the econometric literature (see, e.g., de

Gooijer and Vidiella-i-Anguera, 2004), due to its switching integra-
tion order across regimes. It is comparable to the class studied by Rahbek

and Shephard (2002) and it produces, in line with these authors, ‘epochs of
seeming non-stationarity ... before they collapse back toward their long-term
relationship’. This implies that most econometric methods suggested in the
literature are not well suited for this model class. In particular, multi-stage
model building procedures that start by testing for linear cointegration may
not be adequate.

At this stage, it does not make sense to be more specific on the properties
of the error process (εt). A maximal assumption is that it is Gaussian white
noise, which will be adopted for the simulation experiments. A minimum as-
sumption would be a martingale-difference sequence with constant and finite
variance. For a recent general treatment of stability conditions of nonlinear
dynamic models, which comprises the th-VAR model as a special case, see
Liebscher (2005).

The candidate models VAR, dVAR, EC-VAR, and th-VAR constitute a
partially nested set. The dVAR restricts the EC-VAR by excluding the error-
correction term, while the EC-VAR restricts the VAR by imposing a rank
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restriction on the ‘impact matrix’. Formally, the th-VAR model encompasses
the EC-VAR structure but our specific search for the thresholds does not
admit the restricted linear model. Similarly, the lag order is determined for
each of the individual models separately, such that the utilized model sets
conditional on lag orders are typically not nested. Thus, for example the
dVAR specification used as a prediction model may have a higher parameter
dimension than the VAR candidate.

Prediction using the models VAR, dVAR, and EC-VAR is straight for-
ward. The parameters are estimated by least squares, and the mean predic-
tion is obtained by evaluating conditional expectation. Again, the th-VAR
model deserves some comments. Given c and η, all parameters can be ef-
ficiently estimated by least squares. To estimate c and η, we use a crude
grid and optimize in-sample performance over the quantiles of β ′

2yt−1 for
β2 = (0, 1)′ and (1, 0)′ at position 0.05j, j = 1, . . . , 5 and at the upper posi-
tions 1 − 0.05j, j = 1, . . . , 5.

The th-VAR model is nonlinear, and substituting parameter estimates to
its right-hand side does not yield the approximate conditional expectation.
For this reason, we draw 100 trajectories based on Gaussian errors with
estimated σ and average them to obtain our mean forecast.

We base the evaluation of predictive accuracy on univariate measures,
such as the mean squared error (MSE) for single variables, exclusively. All
MSE evaluations were accompanied by unreported evaluations using different
loss criteria, such as the mean absolute error (MAE). The ranking of models
proved to be robust with regard to changes in the loss criterion. Bivariate
criteria were not considered, in line with the assumed forecaster’s objective.

3.1 Two interest rates

Generally, lag orders coincide with those reported in Table 2. Table 3 shows
that the performance of the dVAR is markedly better than that of the levels
VAR. Note that this outcome is in line with the statistical evidence for the
United Kingdom only.

If the data is handled as cointegrated with the pre-determined cointe-
grating vector iL− iS , forecasting performance is competitive with the dVAR
and VAR models for the long rate iL but much less so for iS. Note that
statistical methods find at least one cointegrating vector for all cases except
for the U.K. However, the EC-VAR forecast performs pretty well just for the
U.K., where it dominates the iS prediction and is beaten at hair’s width for
the iL prediction.

The last model whose forecasting performance we explore is the thresh-
old cointegration model with a stabilizing second cointegrating vector that is
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Table 3: Mean squared errors (MSE) for single-step prediction.

dVAR VAR EC-VAR th-VAR
Two interest rates
Germany iL 0.1041 0.2393 0.0962** 0.1001

iS 0.0577** 0.1492 0.0878 0.1186
United States iL 0.1588 0.2303 0.1218 0.1179**

iS 0.3024 0.5997 0.2216 0.2013**
United Kingdom iL 0.0622** 0.2355 0.0625 0.0844

iS 0.1860 0.4132 0.1667** 0.2138
Japan iL 0.0604 0.1063 0.0605 0.0600*

iS 0.0143* 0.0283 0.0462 0.0584
Inflation and short rate
Germany π 0.2092 0.2533 0.1805 0.1736*

iS 0.1678* 0.3460 0.1695 0.1731
United States π 0.3009* 0.4381 0.3217 0.3294

iS 0.2067* 0.6096 0.2074 0.2709
United Kingdom π 0.2576* 0.5719 0.3103 0.2831

iS 0.3025 0.6441 0.2359* 0.4482
Japan π 0.3800 0.4009 0.3578 0.3570*

iS 0.0102** 0.0494 0.0179 0.0541
Inflation and long rate
Germany π 0.2017 0.2484 0.1716 0.1609**

iL 0.1320 0.2770 0.1087* 0.1094
United States π 0.2967** 0.5010 0.3264 0.3276

iL 0.1376* 0.2146 0.1601 0.1497
United Kingdom π 0.2361** 0.4285 0.4463 0.4871

iL 0.0868 0.2158 0.0764* 0.0899
Japan π 0.3402 0.4146 0.3189** 0.3368

iL 0.0697 0.1255 0.0567** 0.0576

Note: one asterisk denotes the best specification among the specific bivariate
models, two asterisks denote the best specification for the variable.
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Table 4: Mean squared errors (MSE) for four-step prediction.

dVAR VAR EC-VAR th-VAR
Two interest rates
Germany iL 0.5892 1.4044 0.5539** 0.6214

iS 0.7088 0.8851 0.6390** 1.6756
United States iL 0.6340 0.7787 0.5388** 0.7269

iS 2.6207 2.7266 1.6257** 2.0137
United Kingdom iL 0.4670** 1.4830 0.4818 0.4692

iS 1.0843 1.2046 0.8071** 1.2769
Japan iL 0.2347 0.2963 0.2308** 0.2702

iS 0.0734** 0.4471 0.6232 0.6174
Inflation and short rate
Germany π 0.7220 0.8468 0.5818* 0.6287

iS 1.7539 2.9453 1.3391* 1.6732
United States π 1.4842** 1.5014 1.6804 1.8854

iS 2.5333 2.9287 2.3868* 2.4736
United Kingdom π 2.5416 4.2044 2.3033 2.0277*

iS 1.7349 3.7878 1.3719* 2.2542
Japan π 1.1356 1.8350 0.9986* 1.7472

iS 0.1267 1.9735 0.1228* 1.9001
Inflation and long rate
Germany π 0.5326** 0.5379 0.6460 0.6420

iL 0.7215 1.8763 0.7044* 0.9194
United States π 1.5924* 1.8227 1.7309 1.8589

iL 0.6796 0.5938* 0.7432 0.7026
United Kingdom π 2.0172 1.4644** 1.6892 1.6519

iL 0.8203 1.5343 0.5642* 0.8316
Japan π 1.3389 1.7245 0.9824** 2.9664

iL 0.2998 0.5125 0.2688* 0.4641
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activated at high and low values of the long interest rate. A reliable statis-
tical comparison of this model with the other rival models, particularly the
cointegrating model, is difficult, as for low j the stabilizer is not activated
often. Intuitively, a low j will be found if the model class is not supported by
the data. We find an average j around 2 for the United Kingdom and even
above 3 for Germany, while Japan and the U.S. yield average j only slightly
above one. The interpretation of this finding may be that the th-VAR has
less support for the latter two countries.

In summary, the threshold model is beaten in 5 out of 8 cases by the
standard cointegration model, which in turn is dominated in 4 out of 8 cases
by the dVAR. The U.S. interest rates constitute a remarkable success for the
threshold concept, which is curiously enough one of the countries where the
threshold model finds little support according to our j estimate.

At longer prediction horizons, the threshold VAR loses ground to the
linear error-correction model (see Table 4). The observation that error-
correction mechanisms show their power with regard to forecasting at longer
horizons only is well in line with the literature. For example, see the early
contribution by Engle and Yoo (1987) but note that their study, like oth-
ers, did not consider formally misspecified but often successful models, such
as the dVAR.

3.2 Short rate and inflation

Excepting the case of Japan, prediction errors for short interest rates iS
increase relative to the systems that consist of two interest rates. Inflation
is informative for predicting iS but much less so than an interest rate at a
different maturity. The VAR in differences delivers the best prediction in five
out of eight cases, and the two variants of error-correction models, linear and
nonlinear, are only slightly worse on average. The VAR in levels generates
the worst predictions, and the difference to the other models can be sizeable.

The threshold model scores twice, for German and for Japanese inflation.
In both cases, however, it beats the linear cointegration model at hair’s width
only.

At longer prediction horizons (see Table 4), the preferred model tends to
be the linear error-correction model. U.S. inflation is still handled optimally
by the VAR in differences at horizon four, while structures that take the
Fisher-effect condition into account are preferable for all remaining cases.
The linear EC model dominates the nonlinear model at longer horizons, as
it is not vulnerable to the subtleties of stochastic prediction based on some
poorly estimated parameters. British inflation is the only occasion where the
threshold model yields the optimum forecast at horizon 4.
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3.3 Long rate and inflation

If the long rate is used together with inflation (see Table 3), this tends to
improve inflation forecasts relative to the (π, iS) model. The optimum models
are quite heterogeneous: in two cases the dVAR yields the best forecast, once
the linear EC model, and once the threshold model.

For interest-rate prediction, the experiment tends to support the linear
EC model. Only the U.S. long rate is best predicted by the dVAR.

Performance at longer horizons (see Table 4) is qualitatively in line with
the observations for the model with short rates and inflation. An interesting
exception is U.K. inflation, which is best predicted by a level VAR.

3.4 Performance across all models

The summary impression is that the dVAR model performs best with regard
to single-step prediction accuracy. In many cases, EC-VAR and th-VAR are
close behind and the error-correction models even predict seven out of twelve
series best. Conversely, the example of U.K. inflation shows that they have
a larger risk of substantial prediction failure, to which the simple dVAR is
immune. The VAR in levels performs worst for most series.

In a tentative interpretation, this result insinuates that the inertia of
motion dominates in the short run over the influence of mean-reverting forces,
such as the term structure and the natural real rate or Fisher effect. At larger
prediction horizons, however, it pays to take the theory-based error correction
into account. The third force, the stabilization of inflation, which would
support the th-VAR idea, may take even longer horizons to become effective.
At those long horizons, however, forecasts based on nonlinear structures may
face sizeable problems due to the necessity of stochastic prediction and odd
trajectories.

While we consider bivariate models exclusively within the limits of this
project, we also evaluated the forecasting accuracy of univariate autoregres-
sions and simple benchmarks, such as the last value plus a constant. These
models are not only excluded from our competition, they also perform con-
siderably worse. While adding another variable thus improves prediction, we
are not sure whether trivariate systems will not be able to beat the MSE val-
ues of Table 3. Tentative unreported experiments in that direction, however,
do not support this possibility. It appears that our prescribed model dimen-
sion of two attains an optimum balance between information and parameter
uncertainty.
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4 Bootstrap validation

The significance of horse races may be limited due to the limited availability
of data. One method may dominate another one by pure chance. The liter-
ature suggests that horse races be subjected to significance tests in the sense
of Diebold and Mariano (1995). Unfortunately, little information can be
derived from the observation that one model forecasts better than another
but only ‘insignificantly’ better. This evidence does not assist the forecaster
whose obligation is to search for the best prediction method. If all methods
yield similar performance, still one of these insignificantly different methods
must be chosen in practice.

Further insight can be gained by bootstrap validation experiments that
were introduced by Jumah and Kunst (2008) and Kunst (2008). These
experiments start by assuming any one of the rival models as the true and
valid DGP. Under this assumption, the free parameters are estimated by
an efficient procedure. This parameter value is used to generate pseudo-
samples of length comparable to the observed data. Finally, all rival models
are utilized to forecast the pseudo-samples, in a horse race comparable to
Section 3.

The method may yield the outcome that the assumed true model beats
its rivals in prediction but it does not always do so. For example, data
generated from a random walk can be subjected to AR(p) forecasts in levels
and in differences. Even if the level AR(p) model generates pseudo-samples,
the underlying parameter will be close to one, and difference models may
beat the AR(p) level forecasts. Because the differenced model will also win
its own horse race, the summary recommendation is to use the unit-root
assumption for forecasting the original data.

Tables 5 and 6 provide a crude summary of our bootstrap experiments.
For brevity, we do not report the detailed evaluations for each of the 24 cases
but we average across all series. There is considerable heterogeneity across
these variables but we do not find any systematic peculiarities for cases, such
as a dominance of dVAR forecasting for inflation or for Japan.

Table 5 summarizes the mean absolute errors (MAE) for all experiments
at prediction horizons 1 and 4. For example, the first line corresponds to the
case that dVAR is assumed as the true model, a dVAR model is fitted to
data and the estimated parametric structure is generated. All four models
are now used as forecasting devices, and this yields the best prediction for
the dVAR model in the sense of lowest MAE. Three out of four models win
their own horse races, only the th-VAR model fails for one-step prediction.
At horizon four, even the nonlinear th-VAR structure is best predicted by
its own class. The ranking of the misspecified models varies, with a good
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summary impression of the linear EC-VAR model.
While other functional forms, such as the MSE, reproduce the MAE evi-

dence qualitatively, Table 6 is based on counting the frequency of achieving
the smallest forecast error. To many professional forecasters, this is an im-
portant objective as it describes the probability of being best among com-
petitors who use different prediction models. The table shows a preference
for the dVAR models, whatever the generating structure really is, and this
preference persists even at the longer horizon of four. In particular the linear
EC-VAR model has a low incidence of coming closest to truth. In technical
terms, the distribution of forecast errors has a considerable mass around zero
for the dVAR forecast, while the EC-VAR forecast errors have much larger
dispersion.

Table 5: Average MAE for bootstrapped data.

Prediction model
Generating model dVAR VAR EC-VAR th-VAR
h = 1
dVAR 0.530* 0.543 0.537 0.546
VAR 0.553 0.544* 0.547 0.552
EC-VAR 0.535 0.536 0.528* 0.538
th-VAR 0.531 0.527 0.525* 0.527
h = 4
dVAR 1.357* 1.448 1.403 1.466
VAR 1.408 1.338* 1.361 1.387
EC-VAR 1.416 1.397 1.345* 1.411
th-VAR 1.412 1.366 1.364 1.353*

Note: h is the prediction horizon, asterisk denotes best value.

Note the discrepancy between the evidence from simulated data in Ta-
bles 5 and 6 and the evidence from actual samples in Tables 3 and 4. The
threshold model and the linear EC model are much better for the observed
data than for the simulated pseudo-samples. The level VAR is considerably
worse. The improved performance of the EC-VAR at four steps is typical for
the EC-VAR generating model, on the other hand, and may lend support
to the hypothesis that this specification comes closest to the actual data,
at least with regard to a comparable performance at intermediate horizons.
We are aware that the EC-VAR is subject to the general criticism that it
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Table 6: Average frequency of smallest forecast error for bootstrapped data.

Prediction model
Generating model dVAR VAR EC-VAR th-VAR
h = 1
dVAR 0.284* 0.276 0.198 0.242
VAR 0.306* 0.302 0.172 0.219
EC-VAR 0.307* 0.265 0.195 0.233
th-VAR 0.304* 0.278 0.182 0.237
h = 4
dVAR 0.299* 0.269 0.210 0.222
VAR 0.279 0.326* 0.182 0.213
EC-VAR 0.295* 0.261 0.218 0.226
th-VAR 0.286* 0.281 0.192 0.242

Note: h is the prediction horizon, asterisk denotes best value.

is unable to reproduce the boundedness of the considered variables, which
however may only play a role for long-range modelling.

The presumable reason for the discrepancy is that none of the four models
is able to match certain features of the observed data that, in turn, can be
crucial for good forecasts. All simulated models use Gaussian errors, while
actual residuals tend to follow leptokurtic distributions. The influence of
local irregularities, such as breaks and outliers, on prediction performance is
known to be mitigated by differencing (see Clements and Hendry, 1999).
This effect tends to favor dVAR, EC-VAR, and th-VAR over the level VAR.

Another explanation of this discrepancy may be smooth changes in data-
generating mechanisms over time. We note that the sample-based prediction
performance emphasizes the most recent years, where inflation has remained
moderate and inflation targeting by monetary authorities has been success-
ful. In this environment, error-correction models can show their strengths.
By contrast, the pseudo-samples reflect average structures estimated over
a longer historical episode, with occasional strong deviations from theoreti-
cal equilibrium conditions. For such trajectories, prediction based on error
correction is likely to fail.
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5 Model averaging

In this section we report the outcome of a model-averaging procedure that
considers linear combinations of the four model classes that we used above.
We are interested in these experiments for two reasons. Firstly, if linear
combinations really defeated pure models, this would relieve some pressure
from the hard model-selection stage. Formally, the best linear combination
can never be worse than the best pure model but that optimum combination
is unknown and it may be difficult to find from the historical sample. Second,
however, large weights assigned to any of the four pure models may point to
the best prediction model, even if the forecaster decides to exclude averaged
structures in her ultimate choice.

Since Bates and Granger (1969), the literature has considered various
schemes for determining weights in model averaging. Forecasters often rely
on a further partitioning of the sample into an estimation time range and
a successive training or evaluation part, which permits adapting the combi-
nation to prediction performance. Others utilize Bayesian model averaging
procedures. Here, we focus on a method that directly determines the weights
from the sample on the basis of information criteria. For recent works on
this subject, see Hjorth and Claeskens (2003), for example.

We adopt a recently suggested procedure that is by construction tuned
well to the forecasting task. To obtain the weights, Hansen (2007) suggested
the minimization of a Mallows-type criterion (see Mallows, 1973)

Cn(W ) = (Y − XΘ̂)′(Y − XΘ̂) + 2σ̂2k(W ),

where Y = (y1, . . . , yn)
′ is the time-series variable of concern, X comprises

the explanatory variables in an n × K–matrix, say, and Θ̂ is the weighted
average with weights wm on model m = 1, . . . , M of least-squares estimates
of the coefficient Θ under model m. Generally W = (w1, . . . , wm)′ gives the
relative weights on each model. σ̂2 is an estimate of the errors variance to be
kept fixed across all compared models. Finally, k(W ) =

∑M
m=1 wmkm is the

essential dimension of the considered combination of models with parameter
dimension km.

While Hansen (2007) proposes minimization of Cn(W ) by quadratic pro-
gramming, we conduct a simple grid search, as this is still possible for our
case of M = 4. We use a grid with resolution 0.01 over W ∈ {(w1, . . . , w4) ∈
[0, 1]4 :

∑4
m=1 wm = 1}. In accordance with Hansen (2007), negative weights

on models are not permitted.
Table 7 gives the average percentage weights allotted to each of the four

models across 40 samples t = 1, . . . , n − k, with k = 1, . . . , 40, i.e. for those
samples that were used in the prediction experiments above. From inspecting
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the sample cases separately, it appears that the method prefers border solu-
tions, with two or even three of the models being assigned zero weights. This
is due to the fact that the minimization procedure wishes to allot negative
weights to some models, which however is excluded by assumption.

The general impression is one of a preference for the two simplest models,
the dVAR and the VAR model. There is no recognizable pattern in the
relative weights for either of these two models. Positive weights for the linear
and nonlinear error-correction structures are rare and isolated.

It pays to contrast this in-sample evidence with the prediction horse race
of Section 3. The MSE implied by using the ‘optimal’ weights according to
the Mallows-criterion optimization are given in Table 8. These values are
never smaller than the minimum of the pure-model forecasts, and typically
they are considerably worse. We note two extreme cases as examples.

Table 7 shows that the dVAR gets an average weight of 0 for the U.K.
short rate in the (π, iS) system, while VAR gets a weight of one. By contrast,
a comparison with Table 3 shows that the implied Mallows-weight forecast,
which necessarily coincides with the pure VAR forecast, is the worst among
all pure-model candidates. In a comparable system for the U.S., dVAR and
VAR obtain varying weights. The implied forecast, however, is worse than
both the pure VAR or pure dVAR forecasts. This indicates that the weights
may optimize some in-sample fit but they certainly fail to optimize prediction.

Table 9 repeats the analysis of Table 7 for a slightly different experimental
design. Instead of using the data points t = 1, . . . , n − k to predict the
observations at n − k + 1, we now use a data window of fixed size. This
design takes care of the argument that structures may change slowly, such
that this rolling forecast may outperform the increasing-sample forecast, as
it forgets outdated information.

It turns out that, firstly, the results do not change too much with re-
spect to model weights. The simple models dVAR and VAR obtain the
largest weights, and instances of substantial contributions by EC–VAR and
the-VAR are rare. Furthermore, there are no consistent gains in prediction
accuracy, as can be seen from comparing the last two columns of Table 8.
The rolling design wins in 14 out of 24 cases, the difference to the expected
12 is insignificant. This indicates that our reported findings are not sensitive
to the type of slow structural change that may be present in the data.

Just like statistical in-sample hypothesis tests, the model averaging anal-
ysis is unable to provide a clear and reliable guideline on the best model
in the sense of prediction performance. The noteworthy merits of complex
models, such as the threshold model, for prediction remain undetected by
in-sample statistics. This may be partly due to the traditional measurement
of model complexity by the parameter dimension. Alternative concepts for
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Table 7: Average weights for models over the evaluation range for expanding
windows.

dVAR VAR EC–VAR th–VAR
Two interest rates
Germany iL 0.49 0.49 0.02 0

iS 0.37 0.63 0 0
U.S.A. iL 0.32 0.62 0.06 0

iS 0 0.97 0.03 0
U.K. iL 0.67 0.33 0 0

iS 0.26 0.74 0 0
Japan iL 1.00 0 0 0

iS 0.35 0.65 0 0
Inflation and short interest rate
Germany π 0.10 0.90 0 0

iS 0.20 0.79 0.01 0
U.S. π 0.99 0 0 0.01

iS 0.70 0.30 0 0
UK π 0.57 0.43 0 0

iS 0 1.00 0 0
Japan π 0.92 0.08 0 0

iS 0.78 0.14 0 0.07
Inflation and long interest rate
Germany π 0.66 0.34 0 0

iL 0.49 0.51 0 0
U.S. π 0.46 0.54 0 0

iL 0.11 0.89 0 0
UK π 0.36 0.64 0 0

iL 0.03 0.90 0 0.07
Japan π 0.95 0.01 0.01 0.03

iL 0.99 0.01 0 0
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Table 8: MSE for single-step prediction.

best pure model Mallows
expanding rolling

Two interest rates
Germany iL EC-VAR 0.0962 0.2298 0.2236

iS dVAR 0.0577 0.1670 0.1648
United States iL th-VAR 0.1179 0.2218 0.2345

iS th-VAR 0.2013 0.5859 0.6172
United Kingdom iL dVAR 0.0622 0.1912 0.1906

iS EC-VAR 0.1667 0.4220 0.4387
Japan iL th-VAR 0.0600 0.1099 0.1102

iS dVAR 0.0143 0.0219 0.0205
Inflation and short rate
Germany π th-VAR 0.1736 0.2540 0.2495

iS dVAR 0.1678 0.3424 0.3449
United States π dVAR 0.3009 0.4401 0.4407

iS dVAR 0.2067 0.6413 0.6522
United Kingdom π dVAR 0.2576 0.5004 0.4921

iS EC-VAR 0.2359 0.6441 0.5182
Japan π th-VAR 0.3570 0.3758 0.4295

iS dVAR 0.0102 0.0183 0.0174
Inflation and long rate
Germany π th-VAR 0.1609 0.2530 0.2504

iL EC-VAR 0.1087 0.2531 0.2520
United States π dVAR 0.2967 0.5038 0.4883

iL dVAR 0.1376 0.2167 0.2072
United Kingdom π dVAR 0.2361 0.4298 0.4201

iL EC-VAR 0.0764 0.2061 0.2114
Japan π EC-VAR 0.3189 0.4085 0.3872

iL EC-VAR 0.0567 0.1249 0.1272
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measuring complexity in model selection were developed, for example, by
Rissanen (2007). Those ideas have not yet been adapted to the task of
model averaging, however.

In order to obtain further insight on the role of the penalty function of
the Mallows criterion, we re-ran the averaging search without any penalty.
While this version may appear to allot a weight of one to the most profligate
structure, this is not necessarily so because of the AIC lag-order determi-
nation. In fact, the non-penalized variant allots slightly larger weights to
the VAR and th-VAR models, indeed the most heavily parameterized can-
didates. Conversely, imposing a stronger penalty on parameter dimension
tends to support the dVAR model but it also wipes the th-VAR model off
the map.

Our experiments suggest that in-sample information criteria may be an
insufficient device to mimic out-of-sample predictive accuracy. Indeed, un-
reported experiments with determining the weights over a training range on
the basis of local MSE performance yield weights corresponding to Table 3
and MSE gains relative to Table 8. Because these experiments do not yield
further information concerning or main objective, we do not give details here.

6 Summary and conclusion

In a nutshell, our general impression is that the simple dVAR model with-
out any theory-guided constraints dominates at very short prediction hori-
zons. At longer horizons, error-correction modelling on the basis of reversion
to a natural real rate according to the Fisher effect and to an equilibrium
yield spread deserves consideration, while the simple dVAR still yields the
most robust performance. By contrast, the visually impressive feature of the
boundedness of all variables under consideration does not assist in improving
prediction. A simple VAR that tends to view all variables as stationary fails,
and a sophisticated threshold VAR is unable to convince, showing some ad-
vantages at short horizons for some cases but failing for other examples and
at longer horizons, when the nonlinearity of the model requires averaging
over stochastic predictions.

A ‘threshold’ modification of the linear model that allows variables to
behave differently in the distributional tails apparently generates plausible
longer-run trajectories, as it is globally stable and avoids the notorious feature
of integrated variables that their support is unbounded. The model performs
well in some cases for single-step prediction but this dominance remains
episodic. The bootstrap validation indicates that it may be risky to rely on
the model as a forecasting device.
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Table 9: Average weights for models over the evaluation range for rolling
windows.

dVAR VAR EC–VAR th–VAR
Two interest rates
Germany iL 0.71 0.28 0 0.01

iS 0.42 0.58 0 0
U.S.A. iL 0.17 0.79 0.04 0

iS 0 0.98 0.02 0
U.K. iL 0.86 0.13 0 0.01

iS 0.48 0.46 0.03 0.03
Japan iL 0.88 0.12 0 0

iS 0.26 0.67 0.06 0.01
Inflation and short interest rate
Germany π 0.59 0.35 0.05 0.02

iS 0.51 0.41 0.05 0.04
U.S. π 0.96 0.04 0 0

iS 0.71 0.29 0 0
UK π 0.47 0.52 0.01 0

iS 0.56 0.44 0 0
Japan π 0.93 0.06 0 0.01

iS 0.93 0.05 0 0.02
Inflation and long interest rate
Germany π 0.62 0.37 0.01 0

iL 0.46 0.52 0 0.02
U.S. π 0.32 0.68 0 0

iL 0.06 0.94 0 0
UK π 0.42 0.58 0 0

iL 0.09 0.87 0 0.05
Japan π 0.57 0.39 0.04 0

iL 0.88 0.10 0.02 0
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Ultimately, our model-averaging experiment responds to a recurrent argu-
ment that combinations of models may outperform pure predictions (Bates

and Granger, 1969). However, it is difficult to find optimal weights for
this aim. We rely on a procedure that has been advocated for classical spec-
ification searches in regression models. The implied combined forecast rarely
dominates the best pure predictions.
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