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Abstract 

This paper presents results concerning the performance of both single equation and system 
panel cointegration tests and estimators. The study considers the tests developed in Pedroni 
(1999, 2004), Westerlund (2005), Larsson, Lyhagen, and Löthgren (2001) and Breitung 
(2005); and the estimators developed in Phillips and Moon (1999), Pedroni (2000), Kao and 
Chiang (2000), Mark and Sul (2003), Pedroni (2001) and Breitung (2005). We study the 
impact of stable autoregressive roots approaching the unit circle, of I(2) components, of 
short-run cross-sectional correlation and of cross-unit cointegration on the performance of 
the tests and estimators. The data are simulated from three-dimensional individual specific 
VAR systems with cointegrating ranks varying from zero to two for fourteen different panel 
dimensions. The usual specifications of deterministic components are considered. 
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1 Introduction

This companion paper to Hlouskova and Wagner (2006), where panel unit root and sta-

tionarity tests have been studied, investigates the properties of panel cointegration tests and

estimators by means of a large scale simulation study. Our study includes both single equation

and system (to be precise vector autoregression, in short VAR) tests and estimators.

The single equation tests (of the null hypothesis of no cointegration) of Pedroni (1999, 2004)

and of Westerlund (2005) and the systems tests developed in Larsson, Lyhagen, and Löthgren

(2001) and Breitung (2005) are analyzed. We do not consider single equation tests of the null

hypothesis of cointegration, as such tests are bound to perform as poorly as their panel sta-

tionarity counterparts. For the example of the McCoskey and Kao (1998) test, its panel

stationarity test counterpart developed in Hadri (2000) has been found to exhibit devastat-

ing performance in Hlouskova and Wagner (2006). Additionally performed simulations also

confirm this expectation perfectly.

We have implemented several versions (i.e. with average or individual specific correction

factors, normalized, group-mean, see the description in Section 2.1.2) of both the fully mod-

ified (FM) and dynamic (D) OLS estimators, as developed in Phillips and Moon (1999) and

Pedroni (2000) for FM-OLS and in Kao and Chiang (2000), Mark and Sul (2003) and Pe-

droni (2001) for D-OLS estimation. As system estimators we include only the two-step panel

VAR estimator of the cointegrating space developed in Breitung (2005) and the one-step

or group-mean VAR estimator given by the cross-sectional average of appropriately normal-

ized individual specific Johansen estimates of the cointegrating spaces. This latter estimator

is included because it is the system counterpart to the group-mean single equation estima-

tors and is also one potential starting value for iterative system estimators. Note here that

the two-step estimator of Breitung is not an iterative estimator for the cointegrating space

because in its second step only one estimator of the cointegrating space is computed. We

abstain from including truly iterative estimators (like Larsson and Lyhagen, 1999; Groen and

Kleibergen, 2003) for the following reasons. First, we want to compare ‘similar’ estimators in

terms of (computational) complexity, i.e. we only want to compare simple regression based

estimators. Second, the proposed iterative estimators, like the Groen and Kleibergen (2003)

estimator, are (in their general version) more demanding in terms of the time dimension of

the panel due to the unrestricted set-up of the panel VAR model, see the discussion in Sec-
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tion 2.2. Third, more pragmatically, iterative estimators increase the required computer time

substantially, which is particularly unpleasant for large scale simulation experiments. For

this latter reason we also abstain from performing even one more iterative step in Breitung’s

two-step estimator.

All described tests and estimators are derived for cross-sectionally independent panels.

This for many applications unrealistic assumption is still commonly employed when devel-

oping panel cointegration methods, in particular for estimation procedures. Only few and

partial results concerning both cointegration testing and estimation are available for cross-

sectionally dependent panels to date. Panel cointegration tests that allow for some form of

cross-sectional dependence via common factors include Banerjee and Carrion-i-Silvestre (2006)

and Westerlund and Edgerton (2006). The results with respect to estimation are even more

scarce and include, with a different focus, (approximate) factor models as developed in Bai

and Ng (2004), an extension of FM-OLS estimation to panels with short-run cross-sectional

correlation developed in Bai and Kao (2005), or Kapetanios, Pesaran, and Yamagata (2006)

who consider the properties of so called common correlated effects (CCE) estimators when

allowing for nonstationary common factors. Additionally, several authors consider spatial or

‘economic distance’ formulations to allow for cross-sectional dependence, see e.g. Pesaran,

Schuermann, and Weiner (2004).

All in all, however, the panel cointegration literature appears to be relatively nascent and

partly ad-hoc with regard to cross-sectional dependence and in particular there does not seem

to exist a consensus yet about successful modelling strategies for cross-sectional dependence.

Note in this respect that the present paper appears to be the first one to provide a formal

definition of cross-unit cointegration, see Definition 1 in Section 3. Therefore we abstain from

including methods designed for some form of cross-sectional dependence in our simulation

study and focus only on some widely-used tests and estimators designed for cross-sectionally

independent panels.

The data generating processes (DGPs) in the simulations are given by individual specific

three-dimensional VAR(2) processes with cointegrating ranks ranging from zero to two. Only

the cointegrating spaces are restricted to be identical for all cross-section members. We are in

particular interested in the following aspects. First, we investigate the performance of the tests

and estimators depending upon the time series and cross-section dimensions. The time series

dimension assumes the values T ∈ {10, 25, 50, 100} and the cross-section dimension assumes
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the values N ∈ {5, 10, 25, 50, 100}. We only consider those combinations where T ≥ N , which

results in fourteen different panel dimensions. The restriction is put in place for two reasons:

(i) For the panel VAR system methods clearly a ‘relatively’ large time series dimension is

required to mitigate the substantial small sample biases of autoregressive estimation. Taking

the time series dimension at least as large as the cross-sectional dimension serves as a simple

heuristic lower bound. (ii) Preliminary simulations, available upon request, highlight that a

cross-sectional dimension that is too large compared to the time series dimension leads to

size divergence, i.e. the actual size tends to one for increasing N and fixed T smaller than

N . Similar findings have been obtained for panel unit root tests in Hlouskova and Wagner

(2006). Second, we investigate the impact of stable autoregressive roots approaching the unit

circle on the performance of the tests and estimators. Third, we assess the effects of an I(2)

component. Fourth, we study the impact of (three different forms of) short-run cross-sectional

correlation on the methods’ performance. Fifth, we consider how the methods are affected

by the presence of one cross-unit cointegrating relationship that is introduced in addition to

the identical within-unit cointegrating relationships. Sixth, we consider the usual variety of

specifications of the deterministic components.

Because we compare in part of the analysis single equation tests (where only one test is

performed) with system tests (where a test sequence is performed) we use as a commonly

applicable performance measure the hit rates, defined as the acceptance frequencies of the

correct dimension of the cointegrating space. For the single equation tests we consider in ad-

dition the power against stationary alternatives. The performance measure for the estimators

is given by the gap (see (40) in Section 3.2) between the true and the estimated cointegrating

spaces.

The paper is organized as follows: Section 2 describes the implemented panel cointegra-

tion tests and estimators. Section 3 presents the simulation set-up, provides a discussion of

different forms of cross-sectional dependence, gives a definition of cross-unit cointegration and

discusses the simulation results. Section 4 draws some conclusions. An appendix containing

additional figures and tables follows the main text.

2 The Panel Cointegration Methods

In this section we describe the implemented single equation and system panel cointegration

tests and estimators. We include a relatively detailed discussion for two reasons. First, the
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detailed description allows the reader to see the differences and similarities across methods

and tests in one place. Second, the description is intended to be detailed enough to allow

the reader to implement the methods herself. In Section 2.1 the single equation methods are

described and in Section 2.2 the system methods are described.

All the methods considered are so called first generation methods, as they are all formu-

lated for cross-sectionally independent panels. The cross-sectional independence assumption

allows for relatively straightforward asymptotic results using sequential limit theory, employed

for all methods described, with first T → ∞ followed byN → ∞. For the derivation of the test

statistics the main tools applied to obtain asymptotic normality are for the pooled tests the

Delta method and for the group-mean tests (where individual specific statistics are averaged)

standard central limit theorems.

2.1 Single Equation Methods

The single equation methods are panel extensions of the Engle and Granger (1987) approach

to cointegration analysis. The DGP is in its most general form given by

yit = αi + δit+X ′
itβi + uit (1)

Xit = Xit−1 + εit, (2)

observed for i = 1, . . . , N and t = 1, . . . , T . Here yit, uit ∈ R, Xit, εit ∈ R
l, αi, δi ∈ R and

βi ∈ R
l.1 To simplify we use in slight abuse of notation the same notation for random variables

(e.g. uit) and the corresponding stochastic processes (which should correctly be written as

e.g. {uit}t∈Z).

Under the assumptions listed below cointegration is equivalent to stationarity of the pro-

cesses uit. The single cointegrating vector is given by [1,−β′i]′. When cointegration prevails

we assume that the stacked processes vit = [uit, ε
′
it]

′ ∈ R
l+1 are cross-sectionally indepen-

dent stationary ARMA processes. The ARMA assumption is stronger than required for the

applicability of the functional limit theorems underlying the asymptotic analysis of the de-

scribed methods. In particular the ARMA assumption guarantees the existence of finite

long-run covariance matrices Ωi =
[
ω2

ui Ωuεi

Ω′
uεi Ωεi

]
. The matrices Ωεi are assumed to have full

1In the panel literature sometimes also time effects are included. We abstain from including them in both
the description and the simulation study, as they are usually extracted in the first step (similarly to the fixed
effects) and the analysis is then performed on the adjusted data. Note, however, that in general the presence
of time effects may change some of the asymptotic results.
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rank, which excludes cointegration amongst the regressors Xit. Note that in case of ARMA

processes the long-run covariance matrices Ωi are given by ai(1)−1bi(1)Σξibi(1)′(ai(1)−1)′,

where ai(z)vit = bi(z)ξit is an ARMA representation of vit with det ai(z) �= 0 for |z| ≤ 1,

det bi(z) �= 0 for |z| ≤ 1, ai(z) and bi(z) are left co-prime and Σξi > 0 denotes the covari-

ance matrix of the white noise process ξit. For later reference we furthermore define also the

conditional long-run variance ω2
u.εi = ω2

ui − ΩuεiΩ−1
εi Ω′

uεi and the one-sided long-run variance

matrix Λi =
∑∞

j=0 Evitv
′
it−j , which is partitioned according to the partitioning of Ωi.

In case of no cointegration, the processes uit are integrated of order one and the as-

sumptions discussed above apply analogously to vit = [∆uit, ε
′
it]

′. Because it will be clear

throughout whether the cointegration or no cointegration case is considered, using the same

notation for both cases should not lead to confusion.

We consider the usual three cases for the deterministic variables: Case 1 without deter-

ministic components, case 2 with only fixed effects αi and case 3 with both intercepts αi and

individual specific linear time trends δit. The methods discussed below all allow the short-run

dynamics to differ across the members of the panels. In case of cointegration, however, the

usual assumption is that of a homogeneous cointegrating relation, i.e. βi = β for i = 1, . . . , N

in (1). A major limitation of the single equation methods is (as in the time series case) the

restriction to one cointegrating relationship.

2.1.1 Tests for the null hypothesis of no cointegration

Under the null hypothesis of no cointegration (1) is a spurious regression equation. Neverthe-

less, the cross-sectional dimension allows for meaningful estimation of the so called long-run

average regression coefficient for increasing cross-sectional dimensionN , see Phillips and Moon

(1999). Their paper establishes many of the required asymptotic results and also includes a

detailed discussion concerning joint limits (with N,T → ∞ jointly) versus sequential limits

(used in the other papers discussed here) with first T → ∞ followed by N → ∞.

Pedroni. Pedroni (1999, 2004) develops in total seven different tests for the null hy-

pothesis of no cointegration. Under the stated assumptions the processes uit can be written

as

uit = ρiuit−1 + ηit, (3)
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where the processes ηit are stationary ARMA processes. The null hypothesis of the tests is

given by H0 : ρi = 1 for i = 1, . . . , N . The pooled tests are specified against the homogeneous

alternative H1
1 : −1 < ρi = ρ < 1 for i = 1, . . . , N , i.e. these tests are shown to be consistent

against the homogeneous alternative which restricts the first-order serial correlation coefficient

ρ of the processes uit to be identical for i = 1, . . . , N . The group-mean tests, based on

cross-section averages of individual estimators of ρi, are specified (i.e. consistent) against the

heterogeneous alternative H2
1 : −1 < ρi < 1 for i = 1, . . . , N1 and ρi = 1 for i = N1+1, . . . , N .

For consistency of the group-mean tests, a non-vanishing fraction of the individual units has

to be stationary under the alternative, i.e. limN→∞N1/N > 0.

Of course, the tests are computed with estimated ûit in place of the unobserved errors

uit. In particular OLS residuals of (1) can be chosen, see Phillips and Ouliaris (1990) in the

time series case, and a similar endogeneity correction factor (ω2
u.εi) appears, see Phillips and

Moon (1999) for a discussion of the properties of the OLS estimator of βi. The estimator

ω̂2
u.εi is given by the estimator of the long-run variance of the residuals, η̂it say, of an OLS

regression of ∆yit on the differenced deterministic components and ∆Xit. The estimate ω̂2
u.εi

can be obtained by using a kernel estimator, see Andrews (1991) or Newey and West (1987) or

alternatively by fitting an ARMA or AR model to η̂it (and computing the long-run variance

model based).

The correction for serial correlation can be handled either non-parametrically (following

Phillips and Perron, 1988) or by using ADF type regressions. Let us start with the non-

parametric tests. Denote the residuals of the OLS regressions ûit = ρiûit−1 + µit by µ̂it.

Further, denote their estimated variances by σ̂2
µi and their estimated long-run variances by

ω̂2
µi. Then, the serial correlation factors are given by λ̂i = 1

2(ω̂2
µi − σ̂2

µi). For later use we also

define ω̂2
NT = 1

N

∑N
i=1 ω̂

2
µi/ω̂

2
u.εi.

With the defined quantities the following pooled test statistics can be computed: the

variance ratio statistic PPσ, the test based on the autoregressive coefficient PPρ, and the test

based on the t-value of the autoregressive coefficient PPt.2 We write the test statistic below

including scaling factors that display the convergence properties of the different components

of the test statistics. This allows for a simple understanding of the construction principles,

whereas in an actual computation of the test statistics these scaling factors (partly) drop out.
2PP is used here as acronym for Pedroni pooled test. Below we use PG as acronym for Pedroni group-mean

test.
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The essential parts (i.e. without centering and scaling factors, see below) of the pooled

test statistics are given by

PP o
σ = N1/2

(
N−1

N∑
i=1

ω̂−2
u.εi

(
T−2

T∑
t=2

û2
it−1

))−1

(4)

PP o
ρ = N1/2

N−1
∑N

i=1 ω̂
−2
u.εi

(
T−1

∑T
t=2 ûit−1∆ûit − λ̂i

)
N−1

∑N
i=1 ω̂

−2
u.εi

(
T−2

∑T
t=2 û

2
it−1

) (5)

PP o
t = N1/2

N−1
∑N

i=1 ω̂
−2
u.εi

(
T−1

∑T
t=2 ûit−1∆ûit − λ̂i

)
ω̂NT

(
N−1

∑N
i=1 ω̂

−2
u.εi

(
T−2

∑T
t=2 û

2
it−1

))1/2
. (6)

The ADF-type test PPdf is based on autoregressions to correct for serial correlation. Em-

ploying the Frisch-Waugh theorem, two auxiliary regressions are performed

∆ûit =
Ki∑
k=1

γ1ik∆ûit−k + ζ1it (7)

ûit−1 =
Ki∑
k=1

γ2ik∆ûit−k + ζ2it, (8)

where the lag lengths Ki are determined in our simulations using AIC in ∆ûit = ρiûit−1 +∑Ki
k=1 γ̃ik∆ûit−k + ζ̃it. Denote the OLS residuals of the above equations (7) and (8) by ζ̂1it and

ζ̂2it, the residuals from the regressions ζ̂1it = ρiζ̂2it + θit by θ̂it and their estimated variances

(needed later) by σ̂2
θi

. Furthermore define σ̂2
NT = 1

NT

∑N
i=1

∑T
t=Ki+2 θ̂

2
it. The essential part

of the ADF-type statistic is then given by

PP o
df = N1/2

N−1
∑N

i=1 ω̂
−2
u.εi

(
T−1

∑T
t=Ki+2 ζ̂1itζ̂2it

)
σ̂NT

(
N−1

∑N
i=1 ω̂

−2
u.εi

(
T−2

∑T
t=Ki+2 ζ̂2it

))1/2
. (9)

By construction, for N = 1 these statistics coincide with their time series counterparts.

Asymptotic normality using sequential limit theory can easily be established for the above test

statistics by applying the so called Delta method (this requires knowledge of the (asymptotic)

means and variances of the building blocks, which are obtained for practical purposes by

simulation). The mean and variance correction factors, MPP (r, s, l) and VPP (r, s, l) depend

upon the test considered (r ∈ {σ, ρ, t, df}), the case concerning the deterministic variables

(s ∈ {1, 2, 3}) and upon the number of regressors l, i.e.:

PPr =
PP o

r −N1/2MPP (r, s, l)

(VPP (r, s, l))1/2
⇒ N(0, 1).
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Pedroni develops three group-mean tests against the heterogeneous alternative. These are:

a test based on the first order serial correlation coefficient PGρ, a test based on its t-value

PGt and again an ADF-type test PGdf . The essential parts of the test statistics are given by

PGo
ρ = N−1/2

∑N
i=1 PG

o
ρ,i = N−1/2

∑N
i=1

T−1
∑T

t=2(ûit−1∆ûit−λ̂i)
T−2

∑T
t=2 û2

it−1

PGo
t = N−1/2

∑N
i=1 PG

o
t,i = N−1/2

∑N
i=1

T−1
∑T

t=2(ûit−1∆ûit−λ̂i)
ω̂µi(T−2

∑T
t=2 û2

it−1)
1/2

PGo
df = N−1/2

∑N
i=1 PG

o
df,i = N−1/2

∑N
i=1

T−1
∑T

t=Ki+2 ζ̂1itζ̂2it

σ̂θi

(
T−2

∑T
t=Ki+2 ζ̂2

2it

)1/2 .

(10)

Appropriately centered and scaled group-mean test statistics converge to the standard normal

distribution in the sequential limit by applying the central limit theorem to the i.i.d. (across

N) sequences, i.e.:

PGr = PGo
r−N1/2MPG(r,s,l)

(VPG(r,s,l))1/2 = N−1/2
∑N

i=1

PGo
r,i−MPG(r,s,l)

(VPG(r,s,l))1/2 ⇒ N(0, 1), (11)

with r ∈ {ρ, t, df}, s ∈ {1, 2, 3} and l the number of regressors. The correction factors for

all discussed tests are tabulated in Pedroni (1999) for two to seven regressors.

Kao (1999) develops similar tests to those of Pedroni for the special case of panels where

not only the vectors βi are assumed to be identical, but also the dynamics of the error pro-

cesses vit are assumed to be identical for i = 1, . . . , N .

Westerlund. Westerlund (2005) develops two simple non-parametric tests that extend

the Breitung (2002) approach from the time series to the panel case. One test, WP , is pooled

and hence specified against the homogeneous alternative and the other one, WG, is a group-

mean test against the heterogeneous alternative. As for the Pedroni tests, the OLS residuals

ûit from (1) are the starting point. Denote with r̂i =
∑T

t=1 û
2
it, with r̄ = N−1

∑N
i=1 r̂i and

with êit =
∑t

j=1 ûij . The essential parts of the test statistics are then given by

WP o = N1/2

(
N−1

N∑
i=1

T 2

r̄

(
T−4

T∑
t=1

ê2it

))
(12)

WGo = N−1/2
N∑

i=1

T 2

r̂i

(
T−4

T∑
t=1

ê2it

)
. (13)

Applying the Delta method to WP o and a central limit theorem to WGo (easily seen again

by writing WGo = N−1/2
∑N

i=1WGo
i ) leads to asymptotic standard normality under the null
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hypothesis in the sequential limit when applying appropriate mean and variance correction

factors, i.e.:

WP =
WP o −N1/2MWP (r, s, l)

(VWP (r, s, l))1/2
⇒ N(0, 1)

WG =
WGo −N1/2MWG(r, s, l)

(VWG(r, s, l))1/2
⇒ N(0, 1).

2.1.2 Estimation of the cointegrating vector

In this subsection we assume that the processes uit are stationary and hence that cointegra-

tion prevails for all cross-section members. As mentioned at the beginning of the section, a

difference to the time series case is that the cross-section dimension implies that the (pooled)

OLS estimator of β in (1) (also when the βi are not restricted to be identical for i = 1, . . . , N)

converges to a well-defined limit also in the spurious regression and the (heterogeneous) coin-

tegration cases. This limit is given by the so called average long-run regression coefficient

(for a detailed discussion and the precise assumptions see Theorems 4 and 5 of Phillips and

Moon, 1999). As in the time series case, the limiting distribution of the OLS estimator depends

upon nuisance parameters. For the rest of this section we focus on the case of homogeneous

cointegration, i.e. βi = β for i = 1, . . . , N , to be estimated by panel methods. Consequently,

later on we also consider the system methods for the estimation of a cross-sectionally identical

cointegrating space.

As in the time series case regressor endogeneity and serial correlation of the errors, which

lead to nuisance parameter dependency of the limiting distribution of the OLS estimator, can

be handled in two ways, by either performing fully modified OLS estimation (cf. Phillips and

Hansen, 1990) or by performing dynamic OLS estimation (cf. Saikkonen, 1991). As for the

tests both a pooled and a group-mean approach are possible. Furthermore, also the correction

factors can be individual specific or cross-sectionally averaged.

In the description of the estimation procedures we focus on the case with fixed effects

only (i.e. case 2).3 Denote with ȳi = 1
N

∑T
t=1 yit and with X̄i = 1

N

∑T
t=1Xit and denote the

demeaned variables by ỹit = yit − ȳi and X̃it = Xit − X̄i.

3The other two cases are entirely similar. In case 1 the original variables are taken as inputs, and in case 3
the variables are demeaned and detrended at the outset of the procedure. The limiting distributions change
accordingly, between case 1 on the one hand and cases 2 and 3 on the other. Also, intercepts in the regressors,
i.e. Xit = Ai + Xit−1 + εit can be accommodated.
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FM-OLS. Obtain estimators Ω̂uεi, Ω̂εi, Λ̂uεi and Λ̂εi from the residuals [ûit, ε
′
it]

′.4 Defining

the endogeneity corrected variable ỹ+
it = ỹit − Ω̂uεiΩ̂−1

εi ∆X̃it leads to the pooled FM-OLS

estimator:

β̂FM =

(
N∑

i=1

T∑
t=1

X̃itX̃
′
it

)−1( N∑
i=1

T∑
t=1

(
X̃itỹ

+
it −NT (Λ̂+

uεi)
′
))

, (14)

with Λ̂+
uεi = Λ̂uεi − Ω̂uεiΩ̂−1

εi Λ̂εi.

Phillips and Moon (1999) use in their formulation of the FM-OLS estimator averaged

correction factors, e.g. Ω̂ε = 1
N

∑N
i=1 Ω̂εi and similarly constructed Ω̂uε, Λ̂ε, Λ̂uε and Λ̂+

uε.5

The limiting distribution of the FM-OLS estimator (see e.g. Theorem 9 of Phillips and

Moon, 1999) is given by:

N1/2T (β̂FM − β) ⇒ N(0, 6ω2
u.εΩ

−1
ε ) (15)

with ω2
u.ε = limN→∞ 1

N

∑N
i=1 ω

2
u.εi and Ωε = limN→∞ 1

N

∑N
i=1 Ωεi. For case 1 without deter-

ministic components the factor 6 in the limiting distribution has to be replaced by the factor

2. Note that the limiting covariance matrix is composed of cross-sectional averages.

Standard (up to the factor 2 or 6, depending upon case considered) normally distributed

pooled FM-OLS estimators are also easily constructed. These are popular due to their im-

plementation in freely available software. Define ỹ0
it = ω̂−1

u.εiỹ
+
it −

[
(ω̂−1

u.εiIl − Ω̂−1/2
εi )Xit

]′
β̂,

X̃0
it = Ω̂−1/2

εi X̃it and Λ̂0
uεi = ω̂−1

u.εiΛ̂
+
uεiΩ̂

−1/2
εi , where β̂ denotes the LSDV estimate of β. Then,

the normalized FM-OLS estimator is given by

β̂0
FM =

(
N∑

i=1

T∑
t=1

X̃0
itX̃

0′
it

)−1( N∑
i=1

T∑
t=1

(
X̃0

itỹ
0
it −NT (Λ̂0

uεi)
′
))

(16)

and it holds that N1/2T (β̂0
FM − β) ⇒ N(0, 6Il), where the factor 6 has to be replaced by the

factor 2 in case no deterministic components are included in (1).

Group-mean FM-OLS estimation is considered in Pedroni (2000). The group-mean FM-

OLS estimator is (in its unnormalized form) given by the cross-sectional average of the indi-

vidual FM-OLS estimators of β:

β̂G
FM =

1
N

N∑
i=1

⎛
⎝( T∑

t=1

X̃itX̃
′
it

)−1( T∑
t=1

X̃itỹ
+
it − T (Λ̂+

uεi)
′
)⎞⎠ . (17)

4By assumption εit = ∆Xit. Note also that because we assume a homogeneous cointegrating relationship
instead of the OLS residuals also the residuals from an LSDV regression (which puts the restriction βi = β in
place) can be used.

5Similar results are also contained in Pedroni (2000) and Kao and Chiang (2000).
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D-OLS. We now turn to dynamic OLS estimation of the cointegrating relationship, as

discussed in Kao and Chiang (2000) and Mark and Sul (2003). The idea of D-OLS estimation

is to correct for the correlation between uit and εit by including leads and lags of ∆Xit as

additional regressors in the cointegrating regression. As in the time series case the number of

leads and lags (in general) has to increase with the time dimension of the panel at a suitable

rate to induce asymptotic uncorrelatedness between the noise processes in the lead and lag

augmented cointegrating regression and εit. Thus, considering again case 2, let the augmented

cointegrating regression be given by

ỹit = X̃ ′
itβ +

pi∑
j=−pi

∆X̃ ′
it−jγij + u∗it (18)

= X̃ ′
itβ + Z̃ ′

itγi + u∗it,

where the last equation defines Z̃it and γi. The pooled D-OLS estimator for β is then obtained

from OLS estimation of the above equations (18). Let Q̃it = [X̃ ′
it, 0

′, . . . , 0′, Z̃ ′
it, 0

′, . . . , 0′]′ ∈
R

2l(1+
∑N

i=1 pi), where the variables Z̃ ′
it are at the i-the position in the second block of the

regressors. Using this notation we obtain⎡
⎢⎢⎢⎣
β̂D

γ̂1
...
γ̂N

⎤
⎥⎥⎥⎦ =

(
N∑

i=1

T∑
t=1

Q̃itQ̃
′
it

)−1( N∑
i=1

T∑
t=1

Q̃itỹit

)
. (19)

Mark and Sul (2003) derive the asymptotic distribution of β̂D that has a ‘sandwich’ type limit

covariance matrix. Denote with V̄ = limN→∞ 1
N

∑N
i=1 ω

2
u.εiΩεi. Then it holds that

N1/2T (β̂D − β) ⇒ N(0, 6Ω−1
ε V̄ Ω−1

ε ). (20)

Kao and Chiang (2000) discuss a normalized version of the D-OLS estimator that cor-

responds to β̂0
FM . This estimator, β̂0

D say, is obtained when in the above discussion of the

D-OLS estimator ỹit and X̃it are replaced by ỹ0
it and X̃0

it. These changes lead to an estimator

with a limiting covariance matrix proportional to the identity matrix.

Pedroni (2001) considers a group-mean D-OLS estimator. Denote with R̃it = [X ′
it, Z̃

′
it]

′

and estimate (separately for i = 1, . . . , N)

[
β̂Di

γ̂i

]
=

(
T∑

t=1

R̃itR̃
′
it

)−1( T∑
t=1

R̃itỹit

)
. (21)
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Then the group-mean D-OLS estimator is given by β̂G
D = 1

N

∑N
i=1 β̂Di. Also this estimator can

be computed in a normalized version. The limiting distributions coincide with the limiting

distributions of the corresponding pooled estimators.

2.2 System Methods

The second strand of the panel cointegration literature is based on panel extensions of VAR

cointegration analysis (see Johansen, 1995). Compared to the single-equation methods sev-

eral differences are worth mentioning. First, the systems approach allows to model multiple

cointegrating relationships. Second, the cointegrated VAR approach allows to incorporate

a richer specification concerning (restricted) deterministic components considered relevant

in the applied cointegration literature. Third, specifying a parametric model allows to also

consider the dynamic (short-run) characteristics of the data, which are treated as nuisance

parameters in the non-parametric single equation approaches. Being based on VAR estimates,

the system methods are, as their time series building block, subject to substantial biases for

short time series. Thus, for practical applications the time series dimension has to be suffi-

ciently large. This is also required for the reason that specifying a dynamic model requires the

estimation of more parameters and hence in general more data. In this respect one, however,

has to take into account that also an accurate estimation of the long-run variances used in

the nonparametric methods discussed above also requires a sufficiently large time dimension.

Without imposing any homogeneity assumption the panel VAR DGP is given in error

correction form by

∆Yit = C1i + C2it+ αiβ
′
iYit−1 +

pi∑
j=1

Γij∆Yit−j + wit, (22)

with Yit ∈ R
m, C1i, C2i ∈ R

m, αi, βi ∈ R
m×ki with full rank, Γij ∈ R

m×m and wit cross-

sectionally independent m-dimensional white noise processes with covariance matrices Σi > 0.

To ensure that the processes described by (22) are (up to the deterministic components)

I(1) processes, the matrices α′
i⊥Γiβi⊥ have to be invertible, where αi⊥ ∈ R

m×(m−ki), βi⊥ ∈
R

m×(m−ki) are full rank matrices such that α′
i,⊥αi = 0 and β′i,⊥βi = 0 and Γi = Im−∑pi

j=1 Γij .6

In this case the space spanned by the columns of the matrix βi, i.e. sp{βi}, is the ki-

dimensional cointegrating space of unit i.7

6One possible choice is given by αi⊥ = Im − αi(α
′
iαi)

−1α′
i and similarly for βi⊥.

7The integer ki is often referred to as cointegrating rank. Please note that βi as used in this sub-section
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In the VAR cointegration literature the following five specifications concerning the deter-

ministic components are usually discussed. Case 1 is without any deterministic components.

In case 2 restricted intercepts of the form C1i = αiτi are contained (in the cointegrating

space) and case 3 includes unrestricted intercepts C1i that induce linear time trends in Yit.

In case 4 unrestricted intercepts and restricted trend coefficients C2i = αiκi are included,

this allows for linear trends in both the data and the cointegrating relationships. Finally

in case 5 unrestricted intercepts and trend coefficients are included. The latter case leads

to quadratic time trends in the data and appears to be not too relevant for economic time

series. For this reason we do not consider this case in our simulations. A detailed discussion

of the specifications of the deterministic variables is given in Johansen (1995, Section 5.7).

The statistical analysis, i.e. parameter estimation (via reduced rank regression) as well as

testing for the cointegrating rank, is well-developed and known for all the listed cases (see

Johansen, 1995) and therefore we do not repeat a discussion of this well-known procedure here.

Larsson, Lyhagen, and Löthgren. Larsson, Lyhagen, and Löthgren (2001) consider

testing for cointegration in the above framework under the assumption that Πi = αiβ
′
i = αβ′ =

Π for i = 1, . . . , N .8 The null hypothesis of their test is H0 : rk(Πi) = k for i = 1, . . . , N . The

test is consistent against the alternative hypothesis that H1 : rk(Πi) = m for a non-vanishing

fraction of cross-section members. The construction of this test statistic is similar to Im,

Pesaran, and Shin (2003) and hence the test statistic is given by a suitably centered and

scaled version of the cross-sectional average of the individual trace statistics. Thus, denote

with LRs
i (k|m) the trace statistic for the null hypothesis of a k-dimensional cointegrating space

for unit i, where the superscript s indicates the specification of the deterministic components.

Using a central limit theorem in the cross-sectional dimension and the appropriate mean and

variance correction factors implies that under the null hypothesis

LLLs(k|m) = N−1/2
N∑

i=1

LRs
i (k|m) − E(LRs

i (k|m))√
V ar(LRs

i (k|m))
⇒ N(0, 1) (23)

does not coincide with β used in the description of the single equation methods, where the single cointegrating
vector is given by [1,−β′]′. Also for notational brevity we will not always differentiate between the matrix β
and the space spanned by its columns. We are confident that this does not lead to any confusion.

8As we shall see below, their test is simply based on the cross-sectional average of the Johansen trace
statistic, where this restriction is not imposed anywhere in the construction of the test statistic. However, they
have only established the asymptotic distribution of their test statistic under this assumption (see Assumption
3’ and Theorem 1 of Larsson, Lyhagen, and Löthgren, 2001).
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in the sequential limit T → ∞ followed byN → ∞.9 For T → ∞ the expressions E(LRs
i (k|m))

and V ar(LRs
i (k|m)) converge to the limit of the expected value respectively variance of the

trace statistic (corresponding to the case s considered). In principle also finite T correction

factors (for different lag lengths and numbers of variables), see again Im, Pesaran, and Shin

(2003), can be obtained by simulation. Our simulation study is based on the asymptotic

correction factors. Note already here that the simulation results indicate that using finite T

correction factors may be beneficial.

Breitung. Breitung (2005) proposes a 2-step estimation (and related test) procedure

that extends the Ahn and Reinsel (1990) and Engle and Yoo (1991) approach from the time

series to the panel case. Breitung considers the homogeneous cointegration case where only

the cointegrating spaces are assumed to be identical for all cross-section members. In the first

step of his procedure the parameters are estimated individual specifically and in the second

step the common cointegrating space β is estimated in a pooled fashion.10

For simplicity we describe the method here for the VAR(1) model without deterministic

components. In the general case lagged differences as well as (restricted) deterministic com-

ponents are treated in the usual way and are concentrated out in the first step, as described

in Johansen (1995). Thus, consider

∆Yit = αiβ
′Yit−1 + wit (24)

Pre-multiplying equations (24) by Ti = (α′
iΣ

−1
i αi)−1α′

iΣ
−1
i leads to

(α′
iΣ

−1
i αi)−1α′

iΣ
−1
i ∆Yit = β′Yit−1 + (α′

iΣ
−1
i αi)−1α′

iΣ
−1
i wit (25)

Ti∆Yit = β′Yit−1 + Tiwit (26)

∆Y +
it = β′Yit−1 + w+

it , (27)

where the last equation defines the variables with superscript +. Note also that Ew+
it (w

+
it )

′ =

(α′
iΣ

−1
i αi)−1. Now use the normalization β = [Ik, β′2]′ and partition Yit = [(Y 1

it)
′, (Y 2

it)
′]′ with

Y 1
it ∈ R

k and Y 2
it ∈ R

m−k. Using this notation we can rewrite the above equation as

∆Y +
it − Y 1

it−1 = β′2Y
2
it−1 + w+

it . (28)

9The authors actually derive this result for a so called diagonal limit with N1/2

T
→ 0, i.e. for sequences of

(N, T ) where N grows suitably slower than T .
10Note that in the first step individual specific estimators of all parameters are obtained and used, including

first step estimators of β̂i.
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Breitung suggests to estimate (28) by pooled OLS using the estimate T̂i = (α̂′
iΣ̂

−1
i α̂i)−1α̂′

iΣ̂
−1
i

based on the Johansen estimators. Note that, given that the covariance structure of the errors

in (28) is known (and an estimate is available), also pooled feasible GLS estimation of (28)

is an option.

Breitung’s estimation procedure stops here. However, an iterative estimator is easily

conceived, based on the above procedure. With the estimated β̂2, one can re-estimate the

individual specific parameters in (24) by running separate OLS regressions. With the new

estimates of αi and Σi (in the VAR(1) example without deterministics) then again equa-

tion (28) can be estimated. This process can be continued until convergence occurs. Such an

iterative procedure corresponds to the iterative estimator proposed in Larsson and Lyhagen

(1999).11 The only difference is that in the first step Larsson and Lyhagen (1999) propose to

take as an initial estimator β̂ = 1
N

∑̂N

i=1β̂i, where β̂i denotes the Johansen estimator of the

cointegrating space for cross-section unit i.12 We refer to this initial estimator later on as

one-step or group-mean VAR estimator, in analogy to the group-mean FM-OLS and D-OLS

estimators discussed above.

Breitung shows that the two-step estimator, β̃2 say, is asymptotically normally distributed

N1/2Tvec(β̃2 − β2) ⇒ N(0,Ω−1
2 ⊗ Σα), (29)

with ⊗ denoting the Kronecker product, Ω2 = limN→∞ limT→∞ E

[
1

NT 2

∑N
i=1

∑T
t=1 Y

2
it−1(Y

2
it−1)

′
]

and Σα = limN→∞ 1
N

∑N
i=1(α

′
iΣ

−1
i αi)−1.

The test Breitung proposes for the null hypothesis of rk(β) = k is based on Saikkonen

(1999). The difference to the Larsson, Lyhagen, and Löthgren (2001) test is that Breitung’s

test incorporates the homogeneity restriction βi = β for i = 1, . . . , N in the construction of the
11Note, however, that Larsson and Lyhagen (1999) consider a much more general specification (using

again the VAR(1) example) of the form

⎡
⎢⎣

∆Y1t

...
∆YNt

⎤
⎥⎦ =

⎡
⎢⎣

α11 . . . α1N

...
. . .

...
αN1 . . . αNN

⎤
⎥⎦
⎡
⎢⎣

β′ 0 . . .

0 β′ ...
0 . . . β′

⎤
⎥⎦
⎡
⎢⎣

Y1t−1

...
YNt−1

⎤
⎥⎦+

⎡
⎢⎣

w1t

...
wNt

⎤
⎥⎦, with a full covariance matrix of the stacked noise process. It is not clear whether such an – up to

the cointegrating space – unrestricted VAR process for the stacked data should really be interpreted as a panel
model, as the loose parameterization implies that the time dimension of the panel has to be large compared
to the cross-sectional dimension. Also Groen and Kleibergen (2003) consider a relatively general panel VAR
model that seems to require panel data sets with a large time dimension, as in their simulations they consider
a bivariate example for N = 1, 3, 5 and T = 1000.

12Before averaging the estimators over the cross-section dimension it is important to impose a common
normalization, e.g. β̂i = [Ik, β̂′

i,2]
′.
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test statistic. The discussion is again for the VAR(1) case without deterministic components.

Denote with γi ∈ R
m×(m−k) matrices with full column rank and consider

∆Yit = αiβ
′Yit−1 + γiβ

′
⊥Yit−1 + wit. (30)

Under the null hypothesis of a k-dimensional cointegrating space, γi = 0 for i = 1, . . . , N and

under the alternative (of an m-dimensional cointegrating space) γi is unrestricted (in a non-

vanishing fraction of panel members to imply consistency of the test against this alternative)

to allow for Πi = αiβ
′ + γiβ

′
⊥ of full rank. Pre-multiply (30) with α′

i,⊥ to obtain

α′
i,⊥∆Yit = α′

i,⊥γiβ
′
⊥Yit−1 + α′

i,⊥wit (31)

α′
i,⊥∆Yit = φi(β′⊥Yit−1) + w̃it, (32)

where the last equation defines the coefficients and variables. Replacing αi,⊥ and β⊥ by

estimators (as discussed above) allows to estimate equations (32) separately by OLS and to

construct test statistics for the hypotheses H0 : φi = 0 for i = 1, . . . , N . Any of the Lagrange

multiplier, likelihood ratio or Wald test statistics can be used. Our implementation rests

upon the Lagrange multiplier test statistic, which has the advantage that it only requires

estimation under the null hypothesis. Denote with f̂it = α̂′
i,⊥∆Yit and with ĝit = β̂′⊥Yit, then

the Lagrange multiplier test statistic for unit i is given by

LMi(k|m) = T tr

⎡
⎣ T∑

t=2

f̂itĝ
′
it−1

(
T∑

t=2

ĝit−1ĝ
′
it−1

)−1 T∑
t=2

ĝit−1f̂
′
it

(
T∑

t=2

f̂itf̂
′
it

)−1
⎤
⎦ , (33)

which is sequentially computed for the different values of k = 0, . . . ,m. The panel test

statistic is then, as usual, given by the corresponding centered and scaled cross-sectional

average (putting again the superscript to indicate the dependence upon the deterministic

components). Thus, under the null hypothesis

Bs(r|m) = N−1/2
N∑

i=1

LM s
i (k|m) − E(LMs

i (k|m))√
V ar(LM s

i (k|m))
⇒ N(0, 1). (34)

The asymptotic mean and variance correction factors coincide with those of Larsson, Lyhagen,

and Löthgren (2001) in (23) for all specifications of the deterministic components.

3 The Simulation Study

In this section we present a representative selection of results obtained from our large scale

simulation study. Due to space constraints we only report a small subset of results and focus
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on some of the main observations that emerge. The full set of results is available from the

authors upon request.

The computations have been performed in GAUSS, except for the kernel density esti-

mates (see the discussion below) that have been computed using MATLAB. The number of

replications is 5,000 for each DGP and panel size. The time dimension T assumes the val-

ues in the set {10, 25, 50, 100} and the cross-section dimension N assumes values in the set

{5, 10, 25, 50, 100}, with the additional constraint that T ≥ N . This leads to in total fourteen

different panel sizes. The constraint T ≥ N is also imposed for the following reason: A

cross-sectional dimension that is too large compared to the time series dimension leads to size

divergence, i.e. the actual size tends to 1 for increasing N and fixed T smaller than N . This

finding is analogous to similar findings for panel unit root tests in Hlouskova and Wagner

(2006).

Baseline. We start the description of the DGPs with the baseline case of cross-sectionally

independent processes. We consider three-dimensional VAR(2) processes, i.e. pi = p = 1 in

the error correction representation (22), with cointegrating ranks k = 0, 1, 2. For k = 1

the common cointegrating space is given by β =
[

1 −1 −1
]′ and for k = 2 we use

β =
[

1 0 1
0 1 2

]′
. The data series Yit are generated by static linear transformations of

processes Ỹit as

MiYit = Ỹit = C̃1i + C̃2it+

⎡
⎣ ãi

11 0 0
0 ãi

12 0
0 0 ãi

13

⎤
⎦ Ỹit−1 +

⎡
⎣ ãi

21 0 0
0 ãi

22 0
0 0 ãi

23

⎤
⎦ Ỹit−2 + w̃it, (35)

with Mi = [β,Ri]′ and where Ri ∈ R
3×(3−k) are individual specific (parts of) positive definite

matrices that are generated as the product of matrices with uniformly distributed entries

with their transpose. The diagonal processes Ỹit have their coordinates de-coupled and thus

the stochastic properties (like stationarity or integratedness) of these processes are separated

across coordinates. The first k coordinates of Ỹit are generated as stationary VAR(2) pro-

cesses and the remaining coordinates as I(1) VAR(2) processes. Note that this also implies

that in case of cointegration the cointegrated linear combinations of the processes Yit, i.e.

β′Yit, are stationary (de-coupled) AR(2) process(es). Note that in general the cointegrated

linear combinations, when starting from cointegrated VAR processes, are stationary ARMA

processes (see Zellner and Palm, 1974) and the AR structure is an implication of our con-
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struction via diagonal processes. This implies that the processes uit in (1) when considering

the estimation problem, for k = 1, with single equation methods are AR processes.

Cointegrating rank k Coordinate j qi
1j qi

2j

0 1 1 U[1.8,3.0]
2 1 U[1.8,3.0]
3 1 U[1.8,3.0]

1 1 {1.1,1.3,1.5} U[1.5,2.5]
2 1 U[1.8,3.0]
3 1 U[1.8,3.0]

2 1 U[1.5,2.5] U[1.5,2.5]
2 U[1.5,2.5] U[1.5,2.5]
3 1 U[1.8,3.0]

Table 1: Specification of autoregressive roots for the diagonal processes Ỹit.

Given that the coefficients in the diagonal autoregressive matrices are functions of the

roots (of polynomials of degree 2) the integration properties are most easily controlled by

appropriately choosing the roots, qi
1j , q

i
2j say, for j = 1, 2, 3, see Table 1.13 For k = 0 all

three coordinates of Ỹit are I(1) processes where the stable roots are generated (cross-section

specifically) uniformly in the interval [1.8, 3.0]. For k = 1 we generate the smaller stable root

qi
11 = q11 ∈ {1.1, 1.3, 1.5} to assess the the sensitivity of the cointegration tests and estimators

when stable roots tends to 1. For the single equation cointegration tests this allows us to study

the power and for the system methods we use this to study the sensitivity of the hit rates of

the correct cointegrating rank. The larger stable root of the first coordinate is generated unit

specifically U [1.5, 2.5]. The stable roots of the I(1) coordinates are generated U [1.8, 3.0]. For

the case k = 2 all four stable roots of the two stationary coordinates of Ỹit are generated as

U [1.5, 2.5] and the stable root of the I(1) coordinate is generated as U [1.8, 3.0]. All roots are

drawn separately for each unit.

The companion paper Hlouskova and Wagner (2006) studies in detail the impact of moving

average roots (approaching 1) on the performance of panel unit root tests. Because the single

equation tests are panel unit root tests on the residuals of the panel spurious regression we

do not repeat this analysis here and only note that the results along this dimension can

only be worse than in the panel unit root case, because the unobserved errors are replaced

in the cointegration analysis with e.g. the OLS residuals, which introduces additional finite
13To be precise we have ãi

1j = 1
qi
1j

+ 1
qi
2j

and ãi
2j = − 1

qi
1jqi

2j
.
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Case 1 Case 2 Case 3 Case 4
C1i −− αiC1, C1 ∈ R

k U[0.01,0.05] U[0.01,0.05]
U [0.01, 0.05]

C2i −− −− −− αiC2, C2 ∈ R
k

U [0.002, 0.0125]

Table 2: Specification of deterministic components.

sample biases. Also for VAR systems cointegration methods the impact of moving average

roots is quite well documented in the time series literature (see e.g. Bauer and Wagner, 2006).

Therefore we do not focus in this study again on the impact of moving average roots and refer

to reader to the cited papers to get an impression of the effects that have to be expected.

The coefficients corresponding to the deterministic components in (35) are chosen as fol-

lows. Define C̃1i = MiC1i and C̃2i = MiC2i. Then the coefficients C1i and C2i corresponding

to the processes Yit are described in Table 2. The magnitude of the individual specific inter-

cept and trend coefficients is chosen to generate data that ‘resemble’ macro-economic time

series in their trend behavior. Note that in cases 2 and 4 with restrictions upon the de-

terministic components, where C1 respectively C2 assume identical values for i = 1, . . . , N

the individual specific adjustment matrices αi nevertheless lead to individual specific means

and trends despite the cross-sectionally common underlying means and trend components

in the cointegrating relationships.14 We use this set-up to achieve in all four cases concern-

ing the deterministic components identical cointegrating spaces (including the deterministic

components in the cointegrating space) for all cross-section units.

The white noise processes w̃it = Miwit are generated normally distributed with covariance

matrices Σ̃i = MiΣM ′
i , with Σ = 1

25

⎡
⎣ 0.47 0.20 0.18

0.20 0.32 0.27
0.18 0.27 0.30

⎤
⎦, which is up to the factor 1/25 as

in Saikkonen and Luukkonen (1997). In the baseline simulations the noise processes are as-

sumed to be cross-sectionally independent.

On top of the above baseline specifications we also try to quantify the impact of the pres-

ence of one I(2) component in each cross-sectional unit, short-run cross-sectional correlation,

and cross-unit cointegration.

14The matrices αi are given by αi = −M−1
i ãi(1)[Ik 0k×(3−k)]

′, with ãi(z) denoting the autoregressive

polynomial for Ỹit.
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I(2) component. For the cases k = 0 and k = 1 we also assess the robustness with

respect to the presence of one I(2) trend in Yit for i = 1, . . . , N . For k = 0 this is achieved by

setting qi
21 = 1 and for k = 1 we set qi

22 = 1 for i = 1, . . . , N , in which case we take qi
11 indi-

vidual specifically distributed as U [1.5, 2.5]. For both cases of k we investigate the robustness

of the tests and for k = 1 we investigate in addition the robustness of the estimators.

Short-run cross-sectional correlation. As the description of the methods in the

previous section has made clear, the cross-sectional independence assumption allows to use

sequential limit theory and simple central limit theorems to establish the results. Depend-

ing upon the extent of violation of this assumption asymptotic normality may still pre-

vail or fail. Consider the following simple example to illustrate the issue: Let τi, i ∈ N

be a sequence of N(0, 1) distributions with for simplicity stationary covariance function

cov(τi, τj) = ρij = ρ|i−j|. Then, if the covariance function is absolutely summable we obtain

limN→∞N−1/2
∑N

i=1 τi = N(0,
∑∞

i=−∞ ρi). However, if the correlation (or more generally the

dependence) between the elements of the sequence is too large, asymptotic normality when

scaled with N−1/2 may fail. The extreme case is of course a sequence with τi = τ for all

i ∈ N, with N−1/2
∑N

i=1 τi = N1/2τ diverging and N−1
∑N

i=1 τi = τ .

From the above example we may heuristically conclude that ‘moderate’ short-run cross-

sectional dependence leads to asymptotic normality of test statistics, but generally with the

variance of the limiting distribution influenced by the form and extent of cross-sectional

dependence. ‘Large’ cross-sectional dependencies will in general imply a more dramatic change

of the first generation methods’ asymptotic behavior. Short-run cross-sectional correlation

can in principle be mitigated (if T is large enough compared to N) by using some GLS

type correction to the methods employed and to re-establish standard normal asymptotic

distributions thereby. Theoretically this is more intricate than it is often presented, as it

requires to study joint limits in both T and N .

In our simulations we assess the sensitivity of the methods with respect to cross-sectional

correlation in the innovations with three different cases: constant correlation, Toeplitz corre-

lation and a factor structure in the errors. The first two cases are the multivariate analogues of

cross-sectional correlation studied for panel unit root tests in Hlouskova and Wagner (2006).

The constant correlation covariance matrix ΣCC ∈ R
Nm×Nm and the Toeplitz covariance

20



matrix ΣTP ∈ R
Nm×Nm are given by

ΣCC =

⎡
⎢⎢⎢⎢⎣

1 κ . . . κ

κ 1
. . .

...
...

. . . . . . κ
κ . . . κ 1

⎤
⎥⎥⎥⎥⎦⊗ Σ, ΣTP =

⎡
⎢⎢⎢⎢⎣

1 κ . . . κN−1

κ 1
. . .

...
...

. . . . . . κ
κN−1 . . . κ 1

⎤
⎥⎥⎥⎥⎦⊗ Σ, (36)

where we choose κ ∈ {0.3, 0.6, 0.9}. Because the innovation covariance matrix Σ is identical

for all cross-section units, the constant correlation case implies that the correlations between

any pair of series from different units is κ times as large as the correlation between the same

pair of series from the same cross-sectional unit. The cross-sectional correlation function

is therefore not summable. The Toeplitz case corresponds to a spatial autoregression of

order 1 (interpreting the cross-section dimension spatially), with the correlations decreasing

geometrically with ‘distance’ and hence in this case the cross-sectional correlation function is

summable.

The third formulation of cross-sectional correlation considered is a factor structure with

two common stationary factors, i.e. wit = λiFt + w∗
it, with w∗

it cross-sectionally independent

white noise processes with covariance matrix Σ, λi ∈ R
3×2, where the entries are uniformly

distributed U [−0.4, 0.4] and Ft ∼ N(0, I2). For simulated, given factor loadings λi, the stacked

vector wt = [(w1t)′, . . . , (wNt)′]
′ is normally distributed with covariance matrix

ΣF =

⎡
⎢⎢⎢⎣

Σ + λ1λ
′
1 λ1λ

′
2 . . . λ1λ

′
N

λ2λ
′
1 Σ + λ2λ

′
2 . . . λ2λ

′
N

...
. . . . . .

...
λNλ

′
1 . . . λNλ

′
N−1 Σ + λNλ

′
N

⎤
⎥⎥⎥⎦ . (37)

Given that detΣCC, detΣTP and detΣF > 0 (verified in each simulation for the latter which

depends upon random λi) no additional cointegrating relationships over and above the coin-

tegrating relationships comprising only variables from one cross-section member (i.e. of the

form β′Yit) are introduced in the joint I(1) process Yt = [Y ′
1t, . . . , Y

′
Nt]

′.15 Thus, with this

set-up we generate simulation data that exhibit short-run cross-sectional correlation to assess
15Note here that it is not generally true that a process composed of stacking I(1) (or stationary) processes

is again an I(1) (or stationary) process. The probably simplest example for this observation is given by εt

being an (i.i.d normally distributed) white noise process and the stacked process
[
ε′t, ε

′
qt

]′
, where the second

block-component is given by the (also white noise) sub-sampled process εqt with e.g. q ∈ N, q ≥ 2. It is
straightforward to verify by computing the autocovariance function that the stacked process is not stationary.
The example also shows that it is not generally true that the sum of stationary processes is again a stationary
process. We do not run into the problem of non I(1)-ness of the stacked panel process Yt in our study, because
we construct Yt based on either cross-sectionally independent and hence also jointly stationary processes wit

or a jointly stationary process wt = [w′
1t, . . . , w

′
Nt]

′ in case of cross-sectional correlation.
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the relative sensitivity of the different tests and estimators.

Cross-unit cointegration. Under any set of assumptions that ensures that the stacked

process Yt is also jointly an I(1) process, the issue of cross-unit cointegration can be mean-

ingfully discussed. Let us start with a definition of the cross-unit cointegrating space and

the cross-unit cointegrating rank. Denote with B ∈ R
Nm×K (a basis of) the K-dimensional

cointegrating space of the stacked process Yt and with βi ∈ R
m×ki bases of the cointegrat-

ing spaces of the processes Yit, considering here for generality of the definition cross-section

specific cointegrating spaces sp{βi}. Furthermore define

�β =

⎡
⎢⎢⎢⎢⎣
β1 0 . . . 0

0 β2
. . .

...
...

. . . . . . 0
0 . . . 0 βN

⎤
⎥⎥⎥⎥⎦ ∈ R

Nm×∑ ki . (38)

Note that it always holds that sp{B} ⊇ sp{�β}.

Definition 1 Under the assumption that the stacked process Yt = [Y ′
1t, . . . , Y

′
Nt]

′ is an I(1)

process the cross-unit cointegrating space is defined as the span of BCU = (INm−�β(�β′�β)−1�β′)B,

i.e. by the projection of the cointegrating space B of Yt on the ortho-complement of �β defined

in (38). The cross-unit cointegrating rank is defined as the dimension of sp{BCU}.

This is to the best of our knowledge the first formal definition of the cross-unit cointegrating

space. It formalizes the notion that relationships like in the simplest example [β′1, β′2, 0, . . . , 0]′

that involve variables from different cross-sections but lead to a stationary transformed pro-

cess β′1Y1t + β′2Y2t via combinations of already stationary transformations of variables from

different cross-section units (β′iYit, i = 1, 2), should not be considered as genuine cross-unit

cointegrating relationships. The above definition of the space BCU as the projection of B on

the ortho-complement of �β delivers all cointegrating relationships that are not given by linear

combinations of individual specific cointegrating relationships, i.e. B = �β ⊕ BCU , with ⊕
denoting the direct sum. The second important component of the definition is the restriction

to situations where the joint process is also an I(1) process.

In our simulation study we introduce cross-unit cointegration of dimension one in the

generation of the stacked process Ỹt (and hence also in Yt) via MYt = Ỹt =
[
Ỹ ′

1t, . . . , Ỹ
′
Nt

]′
,
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with

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β′ 0 . . . 0
ψ′ ψ′ . . . ψ′

Ṙ′
1 0 . . . 0

0
[
β′

R′
2

]
. . .

...

...
. . . . . . 0

0 . . . 0
[
β′

R′
N

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (39)

We take ψ = [1, 1, 0]′, which is not contained in the cointegrating spaces β as defined above. In

this case both stable roots in the coordinate of the diagonal process Ỹ1t corresponding to this

cointegrating relationship are generated as U [1.5, 2.5]. The matrix Ṙ1 ∈ R
3×(3−k−1) is up to

the different dimensions generated as the matrices Ri ∈ R
3×(3−k) for i = 2, . . . , N , as described

in the baseline case. We refer to this case below as the cross-unit cointegration case, which

by construction (because M−1 from (39) is not block-diagonal) also implies cross-sectional

correlation between the processes Yit despite the cross-sectionally independent innovations

wit. Note also that the set-up in (39) implies that the marginal DGPs for Yit are VARMA

processes and not VAR processes. Thus, VAR estimation for Yit is only an approximation

in the cross-unit cointegration case. Asymptotic validity of the Johansen approach in this

context is established in Saikkonen (1992) when the VAR lag lengths increase at a suitable

rate with the sample size.

Introducing cross-unit cointegration in addition to the individual cointegrating relation-

ships is a benevolent form of misspecification, as in this case the estimation problem for the

individual and identical cointegrating relationships is still well defined and thus the corre-

sponding impacts on the performance constitute a ‘lower bound’ for the effects of cross-unit

cointegration. In situations where there are no (or not only) cross-sectionally identical unit

specific cointegrating relationships the asymptotic behavior of the discussed estimators is po-

tentially much more fundamentally adversely affected.

We only report results for the deterministic specifications 2 to 4, because case 1 has limited

empirical relevance for economic time series. The discussion of the methods in the previous

section has made clear that in the single equation methods only the deterministic components

in the (single) cointegrating relationship are estimated. Consequently, the ‘correspondence’ of

the deterministic specifications between the VAR and single equation methods is as follows.
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If the data are generated according to VAR case 2 we include only fixed effects in the single

equation methods, in cases 3 and 4 we include both fixed effects and linear time trends.

3.1 The Performance of the Tests

In this subsection we report the results concerning the performance of the tests. We use the

word size to denote the type I error rate at the actual DGP. This is not the size as defined by

the maximal type I error rate over all feasible DGPs under the null hypothesis, see Horowitz

and Savin (2000) for an excellent discussion of this issue. Also based on insights in that paper

we do not base the analysis of the power of the tests on so-called size-corrected critical values,

because size correction based on arbitrary points in the set of feasible DGPs under the null

hypothesis in general leads to empirically irrelevant critical values. This occurs unless the

test statistic is pivotal, which is not the case in finite sample for any of the tests discussed in

this paper.

When applying the system tests one performs a sequence of tests (with each test performed

at a certain nominal critical level, 5% in our case) until the first rejection of the null hypothesis

occurs. The percentage of correct decisions that results from these test sequences is called hit

rate. By definition, for the single equation tests the hit rate is given by one minus the actual

size. In cases where we compare single equation tests and system test sequences we use hit

rates as a commonly applicable performance measure.

The relative performance of the tests is practically unchanged across the different de-

terministic specifications, therefore we abstain from a separate discussion of the different

deterministic cases. It has to be noted, however, that the absolute performance of the two

system tests varies across the different deterministic specifications. On average the best per-

formance is obtained for case 4, followed by case 2 and often the worst performance occurs

for case 3.

In Figure 1 we start with displaying the impact of the three considered forms of short-run

cross-sectional correlation on the size of the single equation tests. For the cases of constant

and Toeplitz correlation the findings are remarkably similar to those obtained in Hlouskova

and Wagner (2006) for panel unit root and stationarity tests. As in that paper, strong effects

only occur if the coefficient κ is set to the largest considered value of 0.9, see the lower row of

Figure 1. For smaller values of κ the effects are quite modest and for κ = 0.6 comparable for

those obtained when using a factor structure for the errors to model cross-sectional correlation.

24



Baseline

0

0.1

0.2

0.3

0.4

0.5

0.6

5 10 25 50 100

N

Factors

0

0.1

0.2

0.3

0.4

0.5

0.6

5 10 25 50 100

N
Constant Correlation

0

0.1

0.2

0.3

0.4

0.5

0.6

5 10 25 50 100

N

Toeplitz

0

0.1

0.2

0.3

0.4

0.5

0.6

5 10 25 50 100

N

Figure 1: Size of the single equation tests for case 3 for T = 100. For the constant correlation
and Toeplitz covariance matrices κ = 0.9.
The solid line corresponds to PPdf , the dashed line to PGdf , the solid line with bullets to
PPt, the dashed line with bullets to PGt, the solid line with squares to WP and the dashed
line with squares to WG.

Similar findings prevail also for the system tests. Thus, for the remainder of the section we

throughout refer to the factor model case when talking about cross-sectional correlation.16

Amongst the single equation tests the generally best performing tests are the two ADF

type tests of Pedroni, PPdf and PGdf , and from Westerlund’s tests it is the WG test. The

good performance of the ADF type tests is potentially partly due to the fact that the true

but unobserved processes uit in equation (1) on which the tests are performed are due to our

diagonal VAR set-up AR processes and the observable quantities ûit are ARMA processes,

which appear to be well approximated by AR processes. The second general remark with

respect to Pedroni’s tests is that the test type, i.e. whether based on ρ, on its t-value or

using the ADF approach, has a larger impact on the performance than whether the test is

computed in a pooled or group-mean fashion.
16Note also that under certain assumptions Bai and Kao (2005) derive consistency of FM-OLS estimation

for the case of short-run cross-sectional correlation introduced via stationary factors in the errors, with the
limiting distribution depending upon the factors and their loadings.
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Baseline I(2) Component
N T PPdf PGdf WG LLL B PPdf PGdf WG LLL B
5 10 0.63 1.00 1.00 0.00 1.00 0.63 1.00 1.00 0.00 1.00

25 0.85 0.78 1.00 0.04 0.86 0.87 0.79 1.00 0.01 0.56
50 0.91 0.88 1.00 0.41 0.84 0.88 0.84 0.96 0.06 0.37
100 0.92 0.92 0.99 0.71 0.88 0.90 0.89 0.89 0.19 0.36

10 10 0.71 1.00 1.00 0.00 1.00 0.71 1.00 1.00 0.00 1.00
25 0.87 0.75 1.00 0.00 0.76 0.93 0.80 1.00 0.00 0.26
50 0.92 0.86 1.00 0.18 0.75 0.94 0.87 0.98 0.00 0.12
100 0.93 0.91 0.99 0.58 0.84 0.92 0.89 0.86 0.03 0.13

25 25 0.80 0.55 1.00 0.00 0.47 0.94 0.68 1.00 0.00 0.01
50 0.91 0.81 1.00 0.01 0.56 0.94 0.81 0.98 0.00 0.00
100 0.94 0.89 0.99 0.32 0.74 0.91 0.83 0.58 0.00 0.00

50 50 0.91 0.73 1.00 0.00 0.31 0.93 0.72 0.95 0.00 0.00
100 0.93 0.86 1.00 0.10 0.56 0.88 0.77 0.31 0.00 0.00

100 100 0.92 0.79 1.00 0.01 0.31 0.89 0.70 0.11 0.00 0.00
Cross-sectional correlation Cross-unit cointegration

N T PPdf PGdf WG LLL B PPdf PGdf WG LLL B
5 10 0.62 1.00 1.00 0.00 1.00 0.61 1.00 1.00 0.00 1.00

25 0.87 0.79 1.00 0.04 0.81 0.85 0.78 1.00 0.04 0.83
50 0.91 0.88 0.99 0.35 0.76 0.91 0.87 0.99 0.38 0.81
100 0.92 0.91 0.99 0.61 0.78 0.92 0.91 0.99 0.69 0.86

10 10 0.69 1.00 1.00 0.00 1.00 0.72 1.00 1.00 0.00 1.00
25 0.82 0.69 1.00 0.00 0.65 0.80 0.66 1.00 0.00 0.74
50 0.91 0.85 1.00 0.13 0.62 0.92 0.85 0.99 0.17 0.75
100 0.92 0.91 0.99 0.41 0.67 0.93 0.91 0.99 0.58 0.84

25 25 0.78 0.54 1.00 0.00 0.32 0.78 0.52 1.00 0.00 0.44
50 0.90 0.79 1.00 0.01 0.34 0.91 0.77 1.00 0.01 0.55
100 0.93 0.89 0.99 0.15 0.46 0.92 0.86 0.99 0.32 0.75

50 50 0.88 0.71 1.00 0.00 0.14 0.90 0.70 1.00 0.00 0.29
100 0.91 0.84 0.99 0.04 0.27 0.92 0.83 1.00 0.10 0.57

100 100 0.87 0.75 0.98 0.01 0.12 0.90 0.73 1.00 0.01 0.32

Table 3: Hit rates for k = 0 and case 3 for Pedroni’s ADF type tests (PPdf , PGdf ), for
Westerlund’s group-mean test (WG), the Larsson et al. test (LLL) and Breitung’s test (B).
The upper left panel displays the results for the baseline case, the upper right panel displays
the results when an I(2) component is present, the lower left panel displays the results for
the case with cross-sectional correlation (ΣF) and the lower right panel displays the results
for the case with cross-unit cointegration.
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Some illustrative results concerning the hit rates for k = 0 are displayed in Table 3 for

case 3. This table shows in its four blocks ordered clockwise the results for the baseline

case, the case of an I(2) component present in the data, short-run cross-sectional correlation

and cross-unit cointegration. One of the strongest findings is that Westerlund’s tests are

undersized, an observation that also holds for some of Pedroni’s tests that are not displayed

in the table (in particular PPt, PGt and PGρ). The ADF type tests are generally a bit

oversized, with the exception of the PGdf test for T = 10. The PPdf test has hit rates

between 0.9 and 0.95 for many of the experiments with the exceptions occurring mainly,

as expected, for small T . The PGdf test is generally a bit more oversized than its pooled

counterpart. The PPdf test is least affected by the non-baseline experiments considered.

Westerlund’s test WG remains undersized in the presence of cross-sectional correlation and

cross-unit cointegration but has its size going up and correspondingly its hit rates going down

in the presence of an I(2) component to 0.11 for T = N = 100.

The system tests are strongly affected by the presence of an I(2) component, with the

hit rates going down to zero in many instances. In the I(2) experiment Breitung’s test leads

mostly to the conclusion of a one-dimensional cointegrating space for T ≥ 25 and for the LLL

test a three-dimensional cointegrating space is the most likely outcome. However, the LLL

test performs very poorly already in the baseline case and consequently also in all additional

robustness experiments. Generally also Breitung’s test performs rather poorly for N ≥ 25

for all values of T , albeit not as bad as the LLL test. Compared to the performance in

the baseline case, cross-sectional correlation and cross-unit cointegration do not contribute

strongly to a further deterioration of the system tests’ overall performance. The system

tests have a general tendency, except for T very small, to lead to an over-estimation of the

dimension of the cointegrating space (see also Tables 4 and 5). Consequently, k = 0 is the

situation where this tendency has the largest impact on the performance.

Figure 2 (see also Figure 5 in the appendix) displays the power of the single equation

tests as a function of the stable root qi
11, see the description in Table 1. Pedroni’s tests PPdf

and PGdf have the highest power throughout, which is substantially larger than the power

of the other tests in many cases. For qi
11 = 1.1 and case 3 (see Figure 5 in the appendix) the

two favorite Pedroni tests PPdf and PGdf are the only ones that have substantial power for

T = 100 and N large. For the smaller values of T ≤ 25 not displayed, power is essentially

zero for all values of qi
11, with the exception of the PGdf test whose power is positive in many
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Figure 2: Power of single equation cointegration tests for case 2. The first column corresponds
to qi

11 = 1.5, the second to qi
11 = 1.3 and the third to qi

11 = 1.1. The first row displays the
results for T = 50 and the second displays the results for T = 100.
The solid line corresponds to PPdf , the dashed line to PGdf , the solid line with bullets to
PPt, the dashed line with bullets to PGt, the solid line with squares to WP and the dashed
line with squares to WG.

circumstances from T = 25 onwards.

We now turn to a more detailed discussion of the two system tests. Table 4 displays the

hit rates for case 2 and k = 2 and Table 5 in the appendix displays the results for case 3

and k = 1. Comparing the two tables already displays that there are sizeable differences in

the performance between the different deterministic specifications. The baseline, the cross-

sectional correlation and the cross-unit cointegration case are shown and Table 5 in the

appendix displays in addition the results obtained in the presence of an I(2) component. As

for k = 0 discussed above, the two tests exhibit quite different performance. Both tests

often lead to an over-estimation of the dimension of the cointegrating space, a tendency that

becomes more pronounced with increasing N and even dominant for the Larsson, Lyhagen,

and Löthgren (2001) test. For T = 10 the LLL test sequence leads to the conclusion of

a three-dimensional cointegrating space throughout all experiments, whereas Breitung’s test

leads to the conclusion of no cointegration. On the other hand, for T = 100 and N = 5 the
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LLL
Baseline Cross-sectional correlation Cross-unit cointegration

N T 0 1 2 3 0 1 2 3 0 1 2 3
5 10 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00

25 0.00 0.26 0.60 0.14 0.00 0.18 0.65 0.18 0.00 0.18 0.64 0.18
50 0.00 0.10 0.76 0.14 0.00 0.05 0.78 0.17 0.00 0.05 0.74 0.21
100 0.00 0.00 0.80 0.20 0.00 0.00 0.78 0.22 0.00 0.00 0.74 0.26

10 10 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00
25 0.00 0.04 0.70 0.26 0.00 0.02 0.67 0.31 0.00 0.02 0.65 0.33
50 0.00 0.00 0.75 0.25 0.00 0.00 0.71 0.29 0.00 0.00 0.70 0.30
100 0.00 0.00 0.68 0.32 0.00 0.00 0.66 0.34 0.00 0.00 0.63 0.37

25 25 0.00 0.00 0.33 0.67 0.00 0.00 0.37 0.63 0.00 0.00 0.26 0.75
50 0.00 0.00 0.43 0.57 0.00 0.00 0.46 0.54 0.00 0.00 0.37 0.63
100 0.00 0.00 0.35 0.65 0.00 0.00 0.39 0.61 0.00 0.00 0.32 0.68

50 50 0.00 0.00 0.13 0.87 0.00 0.00 0.22 0.78 0.00 0.00 0.11 0.89
100 0.00 0.00 0.09 0.92 0.00 0.00 0.18 0.82 0.00 0.00 0.08 0.92

100 100 0.00 0.00 0.00 1.00 0.00 0.00 0.06 0.94 0.00 0.00 0.00 1.00
B

Baseline Cross-sectional correlation Cross-unit cointegration
N T 0 1 2 3 0 1 2 3 0 1 2 3
5 10 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00

25 0.51 0.39 0.09 0.01 0.36 0.40 0.18 0.07 0.37 0.59 0.04 0.00
50 0.00 0.35 0.60 0.05 0.00 0.28 0.45 0.27 0.00 0.71 0.26 0.03
100 0.00 0.01 0.89 0.10 0.00 0.07 0.61 0.33 0.00 0.32 0.59 0.09

10 10 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00
25 0.14 0.72 0.13 0.01 0.09 0.46 0.33 0.13 0.09 0.84 0.07 0.00
50 0.00 0.22 0.72 0.07 0.00 0.08 0.53 0.39 0.00 0.47 0.50 0.03
100 0.00 0.00 0.88 0.12 0.00 0.00 0.54 0.46 0.00 0.02 0.87 0.11

25 25 0.00 0.77 0.21 0.02 0.00 0.14 0.48 0.38 0.00 0.83 0.16 0.01
50 0.00 0.03 0.86 0.12 0.00 0.00 0.30 0.70 0.00 0.07 0.86 0.07
100 0.00 0.00 0.84 0.16 0.00 0.00 0.27 0.73 0.00 0.00 0.89 0.11

50 50 0.00 0.00 0.83 0.17 0.00 0.00 0.19 0.81 0.00 0.00 0.87 0.13
100 0.00 0.00 0.77 0.23 0.00 0.00 0.17 0.83 0.00 0.00 0.85 0.15

100 100 0.00 0.00 0.72 0.28 0.00 0.00 0.04 0.96 0.00 0.00 0.74 0.26

Table 4: Hit rates for k = 2 and case 2 for the Larsson et al. test (LLL) in the upper
panel and Breitung’s test (B) in the lower panel. The first column (from the left) displays
the results for the baseline case, the second column displays the results for the case with
cross-sectional correlation (ΣF) and the third column displays the results for the case with
cross-unit cointegration.
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behavior of both tests is, as expected, in the vicinity of the Johansen test when performed

on the same DGP with N = 1 (which leads to a hit rate of about 0.8). The performance

of both system tests is generally deteriorating (at least slightly) with increasing N . Note

for completeness that the system tests are less sensitive than the single equation tests with

respect to stable roots approaching the unit circle.

Cross-sectional correlation has a stronger detrimental impact on the performance of the

system tests than the presence of one additional cross-unit cointegrating vector, whose effect

tends to become less pronounced for increasing N . The effect of cross-sectional correlation

tends to become stronger for increasing N and leads for both test sequences generally to

the conclusion that the dimension of the cointegrating space is equal to 3. These findings

hold for all considered values of k = 0, 1, 2 and also across the deterministic specifications.

The presence of an I(2) component has a rather strong negative impact on the system test

performance, as discussed for k = 0 above and as can be seen in Table 5 for k = 1 in the

appendix.

The over-estimation of the cointegrating space (increasing in N) is most likely due to

the use of asymptotic correction factors for both tests. Therefore, using either finite sample

critical values in the spirit of Im, Pesaran, and Shin (2003) or resorting to bootstrap inference

as laid out for the time series case in Park (2002) and in Swensen (2006) for VAR systems may

lead to improved performance. For the single equation tests of Pedroni the use of asymptotic

correction factors seems to be much less influential, which partly is also due to the fact that

in that case only one test decision is made and not a test sequence.

The finding that both cross-sectional correlation and the additional cross-unit cointegrat-

ing relationship do not exert a devastatingly negative impact on the performance of the tests

compared to the baseline shows that obtaining detailed understanding of their properties in

case of DGPs that exhibit these features is very important.

3.2 The Performance of the Estimators

We now turn to an assessment of the approximation quality of the estimated cointegrating

spaces to the true cointegrating spaces. The measure of quality employed is the gap between

the true and the estimated cointegrating space. The gap is defined as follows: Let M and N
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denote two linear subspaces of R
s, then the gap d(M,N) is given by

d(M,N) = max

(
sup

x∈M,‖x‖=1
‖ (I −Q)x ‖, sup

x∈N,‖x‖=1
‖ (I − P )x ‖

)
, (40)

where Q denotes the orthogonal projection onto N , P the orthogonal projection onto M and

‖ x ‖ denotes the Euclidean norm on R
s. The gap is between zero and one and it is e.g.

equal to one for spaces of different dimensions. As an illustration, in R
2 the gap between two

vectors with a five degree angle between them is about 0.087 (and the logarithm – because

we display the logarithms of the gaps in the figures – is about -3.44).

We present results concerning four different estimators: two single equation estimators

(only for k = 1) and two system estimators. The two reported single equation estimators are

the FM-OLS estimator in the formulation of Phillips and Moon (1999), see equation (14) and

the definition of the averaged correction factors below, and the D-OLS estimator as described

in (18) and (19). The window lengths for FM-OLS estimation are chosen according to Newey

and West (1987) and the lead and lag length selection for D-OLS is performed individual

specifically using AIC in (18). The two systems estimators are the one-step estimator (as in

the discussion above equation (29)) and Breitung’s two-step estimator. We include the one-

step VAR estimator to gauge the effect of using a panel estimator for βi = β for i = 1, . . . , N

as opposed to simply taking the average over the cross-sectional units (which corresponds to

the group-mean versions of the FM-OLS and D-OLS estimators discussed above). The VAR

lag lengths are chosen individual specifically according to AIC in (22).

We have also implemented the other described variants of both the FM-OLS and the D-

OLS estimators, normalized to have (up to the scaling factor) standard normal asymptotic

distribution and the group-mean estimators. These estimators all perform worse than the

versions for which the results are displayed below. For most of the experiments it turns

out that the effect of the construction principle of the estimators, i.e. normalized or group-

mean, is larger than the effect of using fully modified or dynamic OLS estimation. Especially

the two group-mean estimators behave often similarly and perform very poorly for small

T . The group-mean estimators are also the most sensitive ones with respect to stable roots

approaching the unit circle, i.e. qi
11 tending to 1, a feature that is shared by the group-mean

VAR estimator (see below). Also the normalized estimators are more sensitive in this respect

than the versions discussed in this section.

We report the results in the form of density estimates of the logarithms of the gaps between
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the estimated and the true cointegrating spaces. The density estimates are based on normal

kernels and bandwidths chosen according to Silverman’s rule of thumb. Logarithms are taken

to increase the variability because consistency of the estimators implies that for increasing

sample sizes the gaps tend to zero. In all figures displaying density plots the dashed line

corresponds to the FM-OLS estimator, the dotted line to the D-OLS estimator (both only for

k = 1), the grey solid line to the one-step or group-mean VAR estimator and the black solid

line to the two-step VAR estimator of Breitung.

We start our discussion with the case of cointegrating spaces of dimension one. Figure 3

displays the performance of the four estimators for the baseline case of cross-sectionally in-

dependent processes (with qi
11 = 1.5). This figure already shows some of the main findings

concerning the properties of the estimators (also for experiments and panel sizes not dis-

played). First, the D-OLS estimator performs best across a large variety of experiments, with

its relative performance even improving with increasing sample size in many cases. Second,

going from one-step (i.e. mere averaging of the cross-section specific Johansen estimates) to

Breitung’s two-step estimator generally leads to a large improvement. The cross-sectional

average of Johansen estimates (the group-mean VAR estimator) performs – as expected –

especially poor for small values of T . The performance of this estimator is improving with a

larger cross-sectional dimension. As mentioned, the feature of extremely bad performance for

small T is shared by the group-mean FM-OLS (17) and D-OLS (21) estimators. Third, for a

variety of our experiments FM-OLS and Breitung’s two-step estimator show comparable per-

formance. However, there is also a considerable amount of experiments in which Breitung’s

estimator outperforms FM-OLS. Fourth, for small values of T (up to about 25) and N (up to

10) the system estimators often perform worse than the single equation estimators. Fifth, as

illustrated by Figure 6 in the appendix, the two single equation estimators are less affected

by the stable root qi
11 tending to one than the system estimators. Amongst all estimators

the one-step estimator is affected most strongly by stable roots approaching the unit circle,

which essentially reflects the sensitivity of the Johansen estimator with respect to stable roots

approaching the unit circle in the time series case.
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The good performance of D-OLS in our simulations is potentially due to the fact that for

our DGPs the true unobserved errors of the single equation cointegrating regression (1) are AR

processes and the regressors in (1) are ARMA processes (see again Zellner and Palm, 1974).

Therefore, the improving relative performance of D-OLS over FM-OLS for increasing T shows

that the serial correlation and endogeneity correction by augmenting the cointegrating re-

gressions with leads and lags improves faster than the corrections based on non-parametric

spectral estimates.
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Figure 4: Density plots of the logarithms of the gaps between estimated and true cointe-
grating spaces for k = 1, qi

11 = 1.5, case 4 and T = 100. The columns correspond to
N = 10, 25, 50, 100. The first row displays the results for cross-sectionally independent pro-
cesses, the second row displays the results for cross-sectionally correlated (ΣF) processes and
the third row displays the results for the case with cross-unit cointegration.

It is quite well known from many simulation studies that VAR cointegration analysis

leads to inaccurate estimation of the cointegrating spaces despite super-consistency even for

time series of lengths usually available in macroeconomic applications, see Bauer and Wag-

ner (2006) and Wagner (2004). What is interesting to note in this respect is that D-OLS

outperforms or has at least comparable performance as Breitung’s estimator even for the

34



largest panels in which also VAR estimation (given that the data are generated according to

VAR(2) processes) should not suffer from degrees of freedom problems too strongly. FM-OLS

estimation on the other hand seems to suffer even for the larger panels from the ‘imprecision’

in the estimated correction factors. This better performance of parametric methods is not

necessarily confined to a situation where the true DGP follows an ARMA process, as even in

case of a non-rational transfer function it may well be the case that the spectrum is better

approximated by a rational function (i.e. an AR or ARMA model) in small (or finite) samples

than by a non-parametric estimate (see Chapter 7.4 in Hannan and Deistler, 1988).

In Figure 4 we illustrate the impact of cross-sectional correlation (via the factor model

for the error processes) and cross-unit cointegration on the performance of the estimators.

The performance of all estimators deteriorates. The one-step VAR estimator is affected most,

with large deterioration for T up to 50. For the other estimators the impact of short-run

cross-sectional correlation is not too large, which holds true also for other experiments. The

detrimental impact of cross-unit cointegration on the estimators is slightly larger, but the im-

pact is generally quite limited. However, as discussed, the effects may well be much stronger

for other specifications of cross-unit cointegration, with more cross-unit cointegrating relation-

ships that are not so clearly separated from the individual specific cointegrating relationships.

Further understanding of the impacts of cross-unit cointegration is a key open issue for future

research in this area.

For our specifications of cross-sectional correlation Breitung’s two-step estimator as well as

the D-OLS estimator theoretically suffer at least from efficiency losses, because feasible GLS

(implementable for T large enough compared to N) is an estimation technique to incorporate

the cross-sectional correlation structure, under appropriate assumptions under which consis-

tency can be established. The fact that FM-OLS estimation performs worse, must be driven

by the finite sample properties of the non-parametric estimation of the correction factors, as

the limiting distributions are identical e.g. for the normalized versions of the estimators.

Again the effect of cross-unit cointegration is relatively small, which is as discussed related

to the set-up chosen to study the effects of cross-unit cointegration in a situation, where we

simply add one additional cointegrating relationship and keep (cross-sectionally identical)

within-unit cointegrating relationships. With some few exceptions, as illustrated in Figure 4

for case 4, where Breitung’s two-step procedure performs a bit better, D-OLS remains the

best performing method overall.
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The results for two dimensional cointegrating spaces are very similar to the ones obtained

for k = 1, see Figure 7 in the appendix for some illustrative results. The group-mean or one-

step VAR estimator performs very poor for small values of T . Using the two-step procedure

again leads to performance gains. Similarly to the time series case, the precision of the

estimation of the cointegrating space decreases with increasing dimension of the cointegrating

space. As for k = 1 the impact of short-run cross-sectional correlation and of one cross-

unit cointegrating relationship is very small. The somewhat surprising result is that the

cointegrating spaces are estimated with slightly higher precision in these two cases than in

the baseline case.

The simulation results obtained for the studied cases of cross-sectional correlation and

cross-unit cointegration imply that it may indeed be a fruitful task to study the asymptotic

behavior (i.e. consistency and asymptotic distribution) of the considered simple estimators

also for cross-sectionally dependent panels to gain an understanding about situations under

which consistency prevails. Positive results in this respect would greatly improve the appli-

cability and usefulness of the discussed estimators or appropriate extensions (see e.g. Bai and

Kao, 2005).

4 Conclusions

Under the premise that the results from simulation studies have to be interpreted carefully and

that one should be cautious with generalizations, some relatively clear observations emerge

from our results.

Amongst the single equation tests for the null hypothesis of no cointegration the two

tests of Pedroni applying the ADF principle perform best, whereas all other tests are partly

severely undersized and have very low power in many circumstances (and virtually none for

T ≤ 25). Pedroni’s PPdf and PGdf tests are also the ones least affected by the presence

of an I(2) component, short-run cross-sectional correlation or cross-unit cointegration of the

form considered. Both of Westerlund’s tests are severely undersized. These findings highlight

that the use of finite sample correction factors (in the spirit of Im, Pesaran, and Shin, 2003)

or bootstrap inference may have strong beneficial effects on the performance of the tests.

Taking additionally into account that for the case of no cointegration the mentioned tests

of Pedroni outperform the system tests (which exhibit a tendency to conclude a too high-

dimensional cointegrating space), we conclude that in a situation where the null hypothesis
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of no cointegration is of particular relevance or importance, these two tests of Pedroni are the

first choice.

The system tests perform – as expected – very poor for small values of T , but also suffer

partly from problems when N is too large. Even more than for the single equation tests,

because a whole test sequence and hence several comparisons with critical values have to be

performed, the use of finite sample correction factors or bootstrap inference may be fruitful.

Especially the Larsson, Lyhagen, and Löthgren (2001) test often leads to the conclusion of a

three-dimensional (i.e. maximal dimensional) cointegrating space, but also the test sequence

of Breitung (2005) has a tendency to result in a too high-dimensional cointegrating space.

Both system tests are sensitive with respect to the presence of an I(2) component (a feature

less prominent for the single equation tests) and are not very sensitive with respect to stable

autoregressive roots approaching the unit circle (which affects the single equation tests more

strongly). The studied forms of cross-sectional correlation and cross-unit cointegration do

not lead to a sizeable deterioration of the tests’ performance compared to the baseline case.

These findings imply that obtaining a detailed understanding of the methods’ performance

for cross-sectionally dependent panels is an important question for further research.

In the case of one-dimensional cointegrating spaces, the D-OLS estimator in the version

of equation (19) outperforms all other estimators, both single equation and system estima-

tors, even for large samples. The D-OLS estimator is also the least sensitive estimator with

respect to the discussed additional experiments (stable root approaching the unit circle, I(2)

component, cross-sectional correlation, cross-unit cointegration). The version of the FM-OLS

estimator as given by (14) and cross-sectionally averaged correction factors appears to suffer

from imprecise estimation of the required correction factors, which however could be related

to the fact that all the individual series in our simulations are ARMA processes (given that

they jointly form a VAR process). For small values of T ≤ 25 and small N ≤ 10 the system

estimators are in many cases outperformed by the single equation estimators. For larger sam-

ples the FM-OLS estimator performs in many occasions comparable to the Breitung (2005)

estimator. The (normalized) D-OLS and FM-OLS estimators based on individual specific

correction factors and even more the group-mean versions of D-OLS and FM-OLS perform

worse than their counterparts based on averaged correction factors. Especially the group-

mean versions are very sensitive with respect to short time series dimension or stable roots

approaching the unit circle. The latter is a feature shared by the one-step or group-mean
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VAR estimator. Throughout the experiments applying Breitung’s two-step estimator leads

to large improvements over the one-step estimator, with the advantages being generally more

pronounced in case of two-dimensional cointegrating spaces.
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Appendix: Additional Figures and Tables
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Figure 5: Power of single equation cointegration tests for case 3. The first column corresponds
to qi

11 = 1.5, the second to qi
11 = 1.3 and the third to qi

11 = 1.1. The first row displays the
results for T = 50 and the second displays the results for T = 100.
The solid line corresponds to PPdf , the dashed line to PGdf , the solid line with bullets to
PPt, the dashed line with bullets to PGt, the solid line with squares to WP and the dashed
line with squares to WG.
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Figure 6: Density plots of the logarithms of the gaps between estimated and true cointegrating
spaces for k = 1, qi

12 = 1.5, case 3 and N = 10. The time series dimension is T = 25, 50, 100
from top to bottom. The columns correspond to qi

11 = 1.5, 1.3, 1.1 from left to right.
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Figure 7: Density plots of the logarithms of the gaps between estimated and true cointegrating
spaces for k = 2, case 4 and N = 10. The time series dimension is T = 10, 25, 50, 100 from
left to right. The first row displays the results for cross-sectionally independent processes, the
second row displays the results for cross-sectionally correlated (ΣF) processes and the third
row displays the results for the case with cross-unit cointegration.
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