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Zusammenfassung

In den Sozialwissenschaften liegen hdufig Daten liber die
zeitliche Abfolge von Positionswechseln (event histories)
vor, die durch einén zugrunde liegenden stochastischen ProzeB
erklirbar sind. Beispiele sind abweichendes Verhalten, die
Anderung der Berufsposition, geographische Mobilit#t, Ehe-.
scheidungen usf. In der Regel erweist sich die Annahme als
realistisch, daB die Neigung zum Wechsel einer Position ab-
hdangig ist von der Verweildauer in der jeweiligen Position.
Speziell bei den obigen Beispielen kann dariiber hinaus ver-
mutet werden, daB die (infinitesimale) Wahrscheinlichkeit
eines Zustandswechsels mit zunehmender Verweildauer ansteigt,
ein Maximum erreicht und dann wieder absinkt. Diese "Sichel~-

hypothese" fiir den Zeitverlauf der Ubergangsrate bildet den

Kern unseres erweiterten Poisson~Modells. Da das Modell die

Ableitung der Dichteverteilung der Ankunftszeiten gestattet,
kOnnen die Parameter mittels der Maximum-Likelihood~-Methode .
geschdtzt werden, wenn die Héufigkeitsverteiluﬂg der Zeiten,

zu denen ein Positionswechsel erfolgt, gegeben ist.

Das Modell wird auf Daten lber abweichendes Verhalten und
berufliche Mobilitidt angewandt, wobei die Sichelhypothese
mit alternativen Erweiterungen des Poisson-Prozesses konfron-
tiert wird. AbschlieBend werden eine Reihe weiterer Modell-

implikationen und Verallgemeinerungen prédsentiert.
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Abstract

Social scientists are frequently confronted with event history
data which might be explained by a stochastic process. Examp-
les are deviant behaviour, occupational or geographic mobility,
marriage dissolution etc. Sometimes the assumption that the
propensity to leave a position depends on the duration in

that position seems to be realistic. In these examples one
might expect that the rate of leaving a position initially
increases, eventually reaches a maximum, and finally decreases
again. The extended Poisson model studied in this papers ex-
hibits such a pattern. If arrival time data is available,

the parameters of the model can be estimated by maximum
likelihood techniques. This model is applied to study deviant
behaviour and occupational mobility. The results are compared
with those from alternative extensions of the Poisson process.
Finally further implications and extensions of this model

are discussed.
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Introduction:

Stochastic processes are very promising in modelling social
behavior because they take in account two essential aspects:
The dynamic aspect of social behavior and the fact that

social processes are governed by probabilistic laws.

A well known model is the simple Poisson process and its
counterpart, the exponential distribution of "arrival times".
Many applications to social science data of the Poisson model
and its extensions are reported in the literature (see for
example COLEMAN 1964, chapt. 10 and 11). The simple Poisson
process assumes a constant intensity, i.e. a constant proba-

bility that a new event will happen. But this model is not

- adequate if the probability of an event changes over time.

More realistic are time dependent processes where intensity
is a function of time.

An example of a time dependent Poisson procéss is the "Weibull-
process" (MANN,SCHAEFER, SINGPURWALLA 1974, 127-129, see
PETERSEN 1979 for an application). The model assumes the pro-

bability of an event to be a monotone function of time.

However, the Weibull-model cannot describe a process where
the probability first increases and then - after reaching

a maximum value - decreases asymptotically to zero. This type
of a model where the transition rate as a function of time.
has the shape of an inverted U would be very useful in ex-

plaining a variety of social processes.

*Let us take for example deviant behavior. There are good

reasons to assume that the probability a person will move

from the state of conformity to the state of deviance (i.e.
the first deviant act) does depend on his age. For many delin-
quent acts the probability is low in early childhood, then
increases till adolescence, and decreases thereafter.



C

o

i

This time path might apply to occupational mobility as well.
There is a low likelihood of job shifts for people who have
been in their positions for a short while and also for people
who have been in their positions for a very long time. The
maximal job shift probability is somewhere between these
extremes.

Since the intensity rate as a function of time looks a

sickle (inverted U) we call this process the "sickle-hypo-

thesis". In this article we first construct an appropriate
model for processes of that kind and then discuss the appli-
cation of this model to data from criminology and occupational
mobility.
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I. The Model

We consider a model with two states. For the case of deviant
behavior state O can be interpreted as the state of conformi-
ty and state 1 as the state of deviance. A change from O to

1 takes place if an individual commits the first delinquent
act. State 1 is an absorbing state (there is no possibility
to move back from state 1 to state 0).

Probability of change

We assume that for small time intervals the probability of
change is asymptotically proportional to the length of the

time interval:
(1) Prob (change occurs in [t,t+At]) = a(t).At+o(AL)

where [t,t+at] denotes the time interval of length At starting

at time t, and o(At) is a function such that lim o(At)/At = O.
At-0

Notice that the process is not stationary (the intensity or
hazard rate a(t) is a function of time). Thus the tendency
to change the state varies with the age of the individuals

under consideration.

Assumption (1) enables to compute the probability po(t) of
no change within time t:

(2)  p_(t+at) = p_(t).[1-a(t).at - o(at)] .

In the limit At+0O this becomes

- dp, (%)
(3) —qr " -a(t)Po(t) .
This equation (3) states that the change in the probability

of being in state O (the "outflow") is the negative of the
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product of the probability of being in state O times the
tendency to move out of the state. The differential equation
(3) can easily be solved for po(t)

t
(4) p (t) = exp[-/a(t)dr]
o

Depending on a(t) the integral on the right hand side of (4)
may or may not converge as time tends to infinity. In the

ordinary Poisson process a(t) is a constant, so lim po(t)=0.
tro

By contrast, in our model pI=lim p.(t) can be positive. In

tre O
this case P clearly denotes the probability that an indivi-
dual will never change to state 1. This seems to be a very
appealing feature of the model, but one should avoid inter-
preting p; as a percentage of immune individuals. Indeed,
since the fraction of the population which is affected by

the deviance generating process is determined by the process
itself, one cannot interpret the group of individuals who

do not deviate as being unaffected by the process. In fact all
individuals are exposed to the forces in favour of change,

but it may happen that no change occurs. Py is the correspon-
ding probability.

Arrival times

The distribution function F(t) of the duration in the state
of conformity (i.e. the arrival time T of a change) is simply
the probability of a change within time t

e
(5) F(t) = 1—po(t) = 1—exp[—fa(T)dT].
o

The density of the arrival time T is therefore

t
(6) f£(t) = a(t)exp[-sa(r)dr] .
@]
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Using (5) and (6) one obtains a nice expression for a(t)

_ f(t)
If the probability of no change at all P is positive, then T
is an improper (or defective) random variable. Although this
may cause some problems such as non-existence of a mean arri-

val time it does not affect the results in this paper.

Intensity

We assume that the intensity - thus the probability of change
in an infinitesimal time interval - is determined by two
competing factors

(i) a progressive factor which raises the probability of
change with increasing age

(ii) a conservative, ultimately dominating factor which
diminishes fhe probability of an occurence with increas-
ing age.

The former corresponds to phenomena like imitation or in-
creasing dissatisfaction (it is assumed to be proportional
to duration t), the latter to increasing immunity because of
risk aversion, expedicency or maturity (we assume this fac-
tor to decline exponentially). So we obtain the following
form of the intensity function

—£/X

(8) a(t) = c.t.e c,A>0 t>0

Function (8) has some desired properties. At the first place

.it,conforms properly with the sickle-~-hypothesis. It has one

maximum point and one point of inflection and approaches zero
in the limit. Secondly the function is an economic parametri-

zation with two parameters which can be empirically meaning-
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ful interpreted. As can be séen from figure 1, A is the time
elapsed till the maximum point, the maximal intensity is
c.A/e. The point of inflection is located at t=2% . If a(t)
is multiplied by a suitable normalization factor it becomes
a special case of the r-distribution. However, note that a(t)
is not a density distribution but a hazardvfunction.

Figure 1: The intensity function c.t.e—t/K

‘a(t)
l

—

A 23

Distribution of arrival times

The probability of no change within time t is the solution
of (4) with intensity (8)

(9) po(t) = exp{-kc[A—(t+A)exp(-t/A)I} ,

and has a positive limit exp (—Az/c), thus the random variab-
le T (arrival time) is defective. Using (5), (6) and (9) the
corresponding distribution and density function can be evalu-

ated

(10) F(t)

1 = exp{=Ac[A-(t+1)exp(-t/1)]}

(11) £(t)

ct exp(-t/1) exp{-rc[A-(t+r)exp(-t/A)]}

The maximal density is located at the point tm<A which is
the scolution of



)

3

(12 1=t -
) nl1/0c £ exp(-t /0] .
Approximately,

A

(13) th ® TP (ch/e)



™

o

L[]

II. Estimation of Parameters

Frequently data on arrival times are used to estimate the
parameters of lifetime or failure models. This also seems

to be appropriate in the present situation, but two problems
arise.

The first problem concerns the measurement of the arrival
time. In the case of criminal behavior the data might be

the age of first offence. This age does not correspond to

the concept of arrival time, because then the model would
imply a high probability to behave illegally even for babies.
Obviously it seems to be necessary to define a time origin
with respect to age. This origin should reflect a stage of
development of physical and mental ability to commit the
offence under consideration. It may enter the model as a
third parameter - say tO - such that the intensity a(t) equals
0 fbr'tftoand a(t)=c(t-t0) exp(-(t—to)/k) for tztO . Another
way to deal with this problem would be to define this origin
a priori due to additional considerations and then to calcu-
late arrival time data before entering the estimation process.
This is the way that threshold parameters are usually in-
corporated in lifetime models (see e.g. KALBFLEISCH and
PRENTICE 1980 who argue that it would be rare that tO would
be known to exist without its value being known). We chose

the smallest observed age at first offence as an a priori

measure of to’.1)

The second problem concerns the defecti%eness of the arrival
time variable. The maximum likelihood method which is used
to estimate the process parameters is not defined for deféc-
tive variables. To overcome this difficulty the model is
modified in the following way: choose a priori a value TX
sufficiently high (higher than an individual's lifetime e.g.)
and assume a{t) to be constant for all t_>_Tx . Then the re-

sulting arrival time variable is no longer defective, and
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expressions (10) and (11) hold for thx . As all observa-
tions will be within the range [O,TXJ ;, it is not necessary

to know the numerical value of TX . Although the process
parameters are estimated for this modified model, their inter-

pretation in terms of the original one is justified.

The maximum likelihood method (MML) chooses that pair é and

; among all possible pairs which make the observations most
plausible, provided that the model is true. Technically it
reduces to the problem of finding the maximizing arguments

of the likelihtood function L(c,A). This may be done by solving
the first order conditions 3L/3c=0, 3L/3A=0 or by an
appropriate optimization technique. The likelihood function
and the first order conditions are determined in the appendix.
MML also yields estimates of the standard errors of the coef-
ficients. These are usually needed to test whether individual
coefficients are zero. This is not of importance in the pre-
sent context, because ¢=0 or X=0 implies that there are no
cases of deviant behavior at all - a hypothesis obviously
inconsistent with the observations.
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ITI. Empirical Applications: Deviant Behavior and Occupatio-
nal Mobility

We used DIEKMANN's (1980) survey on shopliftingz) and an
Austrian survey on occupational mobilityB) to test the
sickle-hypothesis empirically. As can be seen from figures

2 and 3, the lifetable estimates4) of the intensity functions'
are increasing at the beginning and decreasing in the later
life . Four parametric models were estimated from the original

arrival datas):

- Poisson process: a(t) = constant, exponential distribution
‘ of arrival times
- Weibull process: ao(t) = Ap()\t)p—1
- log-logistic process: d(t) = Xp(xt)p-1/(1+(kt)p), logistic
distribution of logarithmic arrival
times
- sickle curve: a(t) = c.t eXp(—t/A)

The estimated parameters are given in table 1, and the re-
sulting arrival time distributions in tables 2 and 3. In both
tables the last age group is considerably large, it contains
censored times. The existence of a high percentage of censored
observations with large values .leads to unsatisfactory Poisson
and Weibull estimates of arrival times for the part of the
time scale covered in the tables. We thus~consider the log-
logistic and the sickle fit only in what follows. In both
examples the log-logistic estimates fit slightly better than
the sickle ones,but it is worth doing to study the differendes
in detail.

In the shoplifting study neither model yields satisfactory
estimates of the intensity curve. The intensity is overesti-
mated in the beginning and at later age and it is underesti-
mated for the age when individuals are especially exposed

to shoplifting for the first time. This age of maximal risk

is overestimated, too. In contrast to the observations the
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Table 1
ML-estimates of model parametersG)

shoplift study mobility study
Model A o) c X P Cc
Poisson .05174 .0924
Weibull 0112 1.56 .0659 1.14
log-logistic .0762 2.12 .142 1.63

Sickle 13.2 .0149 6.00 .0593

Table 2

Observed and fitted age at first shoplift

Age Actual exponen- Weibull 1log- sickle
number tial fit fit logistic curve
of indi=- - fit
viduals '

4 1 12.0 .2 1.0 1.7
5 2 11.4 .4 3,3 4.7
6 6 10.8 .6 5.7 7.0
7 7 10.2 .7 7.8 8.9
8 8 9.8 .8 9.6 10.0
9 6 8.3 .9 10.8 10.8

10 14 8.8 1.0 1.7 11.2

11 8 8.4 1.0 12.1 11.3

12 26 7.9 1.1 12.1 11.1

13 19 7.5 1.2 11.9 10.8

14 15 7.1 1.2 11.4 10.3

15 9 6.8 1.3 10.8 9.8

16 Orﬁ 118 129.0 228.9 130.7 131.3

more

total 239 239.0 239.0 239.0 239.0

*¥ including individuals with no shoplift prior to interview (85)
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expected maximal risk is fairly constant for the considerably
broad age group from about 12 to 23 years. Figure 2 suggests
that an adequate intensity curve should possess a second
point of inflection prior to the age of maximal intensity.
While this happens to be in the log-logistic model, it

cannot be modelled by functions of type (8). So it seems that
a more adequate parametrization of this process should have

at least three parameters.

Corresponding to the flatness of the estimated.sickle curve,
the expected probability that a person will not deviate
pI=O.O74 is.quite small. 35,6 % of the individuals in the
sample had not shoplifted prior to the interview, two-thirds
of them were at least 20 years old. From these figures it
seems that an estimate of roughly 0.2 for Pr is realistic.
It should be noted that the exptected value of Pr in the
log-logistic model is zero.

The fit of both models is much better in the mobility study.

It seems that the sickle intensity declines too fast, but

the corresponding probability of no change at all pI=.118
sounds plausible (16 % of the individuals in the sample

had no occupational shift prior to the interview, and all

of them had been in their first position for at least 17
yvears). The overestimated intensity between the 5th and 12th

year of carreer is longing for improvement nevertheless.
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Table 3

Observed and fitted year of first shift in occupational position

year Actual - exponential Weibull log- sickle
number fit fit logistic curve
of indivi- fit
duals
0 53 233.3 117.9 106.1 69.2
1 252 212.7 134.2 196.1 170.9
2 237 ‘ 193.9 136.1 225.8 222.8
3 277 176.8 134.1 225.2 237.8
4 196 161.2 130.4 209.5 229.6
5 170 147.0 ’ 125.6 187.6 209.2
6 158 134.0 120.3 164.6 183.8
7 119 122.2. 114.7 143.0 157.9
8 89 111.4 108.9 123.6 133.7
9 97 , 101.6 103.1 106 .8 112.3
10 94 92.6 97.4 92.3 94.0
11 77 84 .4 91.8 80.1 78.5
12 69 77.0 86.3 69.7 65.6
13 60 ' 70.2 81.1 60.9 54.9
14 56 . 64.0 76.0 . 53.5 46 .0
15 52 58.3 71.2 47.2 38.7
16 47 - 53.2 66.6 41.8 32.7
17 ox 540 549 .4 847.3 598.1 505.5
more * ' '
total 2643 ' 2643.0 2643.0 2643.0 2643.0

%# Iincluding individuals with no shift prior to interview (422)
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IV. Extensions of the model

In this section we briefly mention possible lines of genera-
lizations, further deductions from the model, and the relation
to other stochastic processes.

Generalization of the "sickle": a bell shaped function

A time dependent intensity function with suitable properties
can be obtained by adding a third parameter & to the sickle
function:

(14) a(e) = ¢ . toe /A

a(t) takes it's maximum value at tmax=ex with inflection

t +xe1/2

points located symmetrically at tinf1,2= nax—

Therefore, for 0>1 the function is bell shaped with a second

inflection point in the interval e<tinf2<tmax

with actual data analysis leads to the conclusion that the

. Our experience

presence of a second inflection point to the left side of
the maximum is a particularly desirable property in view of
the life table estimates (see figure 1 and 2). However, inte-

~gration of a(t) yields an explicit solution only if o is an

integer value,

Event counts

So far interest has focused on the distribution of arrival
times. If the assumption holds that intensity a(t) is inde-
pendent of prior state shifts (i.e. the intensity to move
from state k. to k+1 is independent of k) the distribution

of events happening in the interval [0,t] follows the Poisson
law (CHIANG 1968 : 49):

: t t
. : exp{—éa(r) dr <écc.(’r) dt].
(15)  py(®) = Kl '

k
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Of course, the assumption of no infection is debatable for
the deviance data but it might be more appropriate for
occupational shifts,

Random variable "number of events"” X(t)=k takes the expec-
tation:

. |
(16) E(X(t)] = sa(1) dt = Ac[A-(t+1) exp (-t/1)]
)

As can be seen from (16) the expected number of state shifts
tends to the upper limit ckz for time approaching infinity.
If assumptions of the model are met (16) can be used to pre-
dict the average number of events for any chosen time inter-
val [0,t] . The predicted behavior in time for occupational
mobility and dewviant behavior data is depicted in figure 4
(see table 4).

Figure 4: Expected number of events for deviant behavior and

occupational mobility data
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Table 4: Mean number of events in time span [o,t] for combi-
nation of sickle and Poisson model

t Occupational mobility Deviant behavior

E[x(t)] E[x(t)]
o) o) o)
1 .03 o)
2 .10 o)
3 .19 0
4 .31 .002
5 .43 S .02
8 .82 ' .12
10 1.06 .23
15 1,52 .56
20 1.80 .92
30 2,05 1.55
40 2.11 1.98
50 | 2.13 2.25
w: 2,13 2.60
Infection

In case of deviant behavior independence of intensity from
prior deviant acts is not very plausible. In contrast posi-
tive contagion effects (criminal career hypothesis) or ne-
gative infection effects (deterrence hypothesis) might be
expected. Although contagion is no problem if the model
deals with the first delinquent act (shift from state O to
state 1) as in sections I to III, this assumption is crucial

for the distribution of event counts.7)
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Using results of CHIANG (1980) a general contagion model

was recently proposed by HAMILTON and HAMILTON (1981). Their
basic idea is to model the intensity as a product of two
functions: The first function expresses contagion, i.e. de-
pendence of state k, while the second function represents

the time dependency If we assume sickle-type time dependency
the intensity oy (t) takes the following form:

(17) uk(t) = ap - alt),

with o(t) = ¢ t exp (-t/A) and G, a function of k. The resul-

ting distribution of event counts is a Chiang distribution
as shown by HAMILTON and HAMILTON (1981).

For example, in the special case of linear contagion

(ak = A + Bk) a modified version &% CHIANG 's (1964, chap.10)
negative binomial distribution is obtained. The only diffe-
rence to Coleman's dlstrlbutlon is the substitution of t by
—= fa(T)dT. This follows simply from the Chiang theorem pre-
sented in HAMILTON and HAMILTON (1981).

Heterogeneity

Allowing for heterogeneity is an extension in another direc-
tion. Assume the parameter ¢ in the intensity function o (t)
varies in the population according to a P—distribution.s)
Then, Poisson distribution (15) of event counts is conditional
on c. The unconditional distribution is the following com-
pound distribution (for details see CHIANG 1968: 49-50) :

(18) pk(t) = f p(k/c)(t) « £(c) - dc
o
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with p(k/c)(t) identical to (15) and £(c) a TI'-distribution
with parameters y (argument of T-function) and 8. The solu-

tion of integral (18) is a negative binomial distribution
(CHIANG 1968):

- (k+y-=1 g(t) B
t
with g(t) E‘fTe—I/AdT .
o) .

From event count distribution (19) the arrival time distribu-
tion for the first occurrence can be easily derived:

g

o Y
(20) F(t) E;gTET)

1 - po(t) =1 - (

- Y
=1-{ B}
s+[k2fk(t+k) exp (-t/1)]

In the special case y=1 this is the arrival time counterpart
of a geometric distribution.

Finally we arrive at the density by differentiating (20) 9):

(21) £(t) g .....YBY t'exp'-t/x]'
’{Azex(t+x) exp [—t/A]+8}(Y+1)

(21) is the p.d.f. of arrival times if heterogeneity is intro-
duced in the suggested manner. That means if ¢ is TI-distributed
in the population the sickle intensity function leads to (21)
instead of (11).

Cohort arrival counts

Besides arrival times and event counts in time span [O,t]
a third kind of distribution - connected with the same

stochastic law ~ can be derived. Let qn(t)=probEZ(t)=n] ,
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the probability that in time interval{ O,t] n units out of
a cohort of N members will change state. The distribution
follows from the differential equations of a "death process"

(see LAND 1971 for an application) with intensity:
(22) ?n(t) = a(t) * (N=-n)

However, there is a very simple alternative way to find the
distribution of Z(t). Remember that arrival time probability
is 1—po(t) and survival probability is po(t); Because occur-
rence of events are stochastically independent and because
there are (g) combinations of "arrivers" and "survivers"
Z(t) follows a binomial distribution:

(23) g0 = Q) O-p, o, 1P [p, (0]

with expected value:

26)  Elze)] =wli-p_(e)]

The mean number of shifts to state 1 is exactly the expected
frequency distribution contained in tables 2 and 3 for the

mobility and delinquency data.

Further applications

We suppose that the sickle model can be applied not only
to criminal or occupational careers but to a variety of other
processes. Let us illustrate this by a few examples.

For marriage and divorce patterns it seems to be very unlikely
that people divorce immediately after wedding day or on the
other hand after a golden wedding. However, there is a greater
likelihood for divorce somewhere in between thése events.

This is at least true for Austrian and US-data on marriage
cohorts (see FERRISS 1976 LAND 1971). Different parameters
of the sickle model for Austria and the US would reflect

cultural dlfferences1o)
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Two other examples are traffic accidents and problem solving
in psychology of learning. The hazard rate for traffic
accidents increases after people achieve their drivers'
licenses. The reason is supposed to be overestimation of
their driving abilities. Later on the subjective - obijective

ability gap is reduced either by more practice or by more

realistic estimation of abilities. In contrast to a monotonous

hazard model the sickle is expected to be a more adequate
model for these data,

In psychology of learning, problem solving is often depen-
dent on two time dependent factors, namely practice and

motivation. If practice increases with time and the motiva-

tional factor decreases with time a sickle model with solution

time as the random variable could be appropriate.

In general there are two arguments for the fruitfulness of
a sickle type intensity function. From an empirical point
of view life table estimates are not monotonic in many
circumstances. Secondly from a more theoretical perspective
substantial processes are very often governed by driving
and inhibiting mechanisms, whereby ultimately the inhibiting
force dominates. Therefore, the sickle model should be re-
garded as an alternative to monotonic increasing or decreas-
ing probability laws. We think that it would be a useful
avenue of research in the future to arrange tests of the
sickle versus rival hypothéses with empirical data from

different fields of application.
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Appendix: Maximum Likelihood estimation of parameters

Given a set S of mutually independent observations, define
SO to be the subset of cases where no deviance has been ob-
served, and S1 to be the complementary subset where deviance
1 let ti be the
observed arrival time of the change to deviance, for SO let
t; be the time elasped between the start of the process and
the censoring event (e,g. the interview). Then the likeli-
hood function is given by

has been observed. For the observations in S

(25)  F¥(c,)) = 1 £(t, )1 (1-F(£,))
S1 S
7 o]
ty
= 1 exp[-/ a(r)dr] T a(ty) =
S o

54

il exp{—ck[x—(ti+x) exp(—ti/x)]}n c tiexp(—ti/x)
S S
1

The log likelihood function is

(26) F(c,A) = z—cx[x-(ti+x) exp (-t,/x)] + [31[10g c +
s ,
!
+ & 1log ti - -
S 5, A

1 1

where ]S ] is the number of cases where dev1ant behav1or was
observed. The maximum likelihood estimates c A are those

values which make F(c,A) - or, equivalently, Fx (c,A) - as large
as possible.Differentiation with respect to ¢ and X yields the
first order conditions
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se == Eale T e 0]+ disy) =0
-t £,k 42) ot
E oz -e .l/l[t.+2A+l = +3I i3 =0
A ' i A2
S S,

The first condition implies

. Is,|
(27) c

-t '
 Alr-e l/A(ti+A)]
s

After substitution of this expression into F(c,2) the problem

is reduced to-:evaluating the maximizing value A of

t

i/
F(c,)) = const -[81[log(ZA[x—e l-x(t.+lﬂ) - % )X
g 1 s, 1

(notice that F is a function of only one variable X).
Subsequently, A is used to calculate c by means of (27).
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Notes

1) As can be seen from the frequency distribution contained

2)

3)

4)

5)

6)

7)

8)

in table 2 one respondent reported age 4 for the first
event. Therefore the exact time point must be somewhat

in between the interval from 3.5 to 4.5 . We chose the
lower bound of the interval as the starting time, i.e.

to = 3.5 .

Survey data were collected by retrospective questionnaires
administered to 241 German apprentices and college stu-
dents in 1979. '

Subsample (N=2643 men) from a retrospective survey on
occupational carreers, conducted by the Austrian Bureau
of Census in 1972.

For. the life-table estimator formulae, see e.g. Kalbfleisch
and Prentice 1980, p. 16.

The Poisson, Weibull and log-logistic estimates were
accomplished by Gilg Seeber, using GLIM.

The parameters A and p have a distinct meaning in diffe-

rent models, so they are not comparable.

In principle there are two types of contagion: "intra-.
career contagion" and contagion between persons. Only the
first type of infection is no problem if shifts from

state zero to state one are considered. If there is con-
tagion of the second type the basic assumption of indepen-
dence of events does not longer hold.

There are two reasons that heterogeneity is often intro-
duced by a I-distribution. At the first place the r-distri-
bution is very general containing other distributions like
exponential or Chi-Square as special cases. Secondly‘the



O

[

i

- 29 =

model is mathematically tractable by analytic tools.

9) Alternatively the compound distribution (21) can be derived
directly from distribution (11) with ¢ following the T

-distribution. Note that random variable T is defective.

10) At present the authors are conducting a project focusing

the analysis of divorce data by means of stochastic models.
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