()

o

D

*

A SURVEY
OF MATHEMATICAL OPTIMIZATION MODELS
AND ALGORITHMS FOR DESIGNING AND
EXTENDING IRRIGATION AND
WASTEWATER NETWORKS

Christoph E. Mand1¥

Forschungsbericht/
Research Memorandum No. 157

July 1980

This paper was prepared during a research year at the
Operations Research Center, Massachusetts Institute of
Technology, Cambridge, MA 02139



Die in diesem Forschungsbericht getroffenen Aussagen
liegen im Verantwortungsbereich des Autors und sollen
daher nicht als Aussagen des Instituts flr H&here

Studien wiedergegeben werden.



Contents
page
o 1. Models with linear cost fungtions 2
2., Models with concave'cost functions 9
% 3. Summarv and conclusions 19
References 21
.






o
fo

7

[

Abstract

This paper presents a state-of-the-art survey of network
models and algorithms that can be used as a planning tool in
irrigation and wastewater systems. It is shown that the problem
of designing or extending such systems basically leads to the
same type of mathematical optimization model. The difficulty
in solving this model lies mainly in the properties of the
objective function. Trying to minimize construction and/or
operating costs of a gystem typically results in a concave
cost (objective) function, due to economies of scale. A number
of ways to attack such mcdels are discussed and compared, in-
cluding linear programming, integer programming and specialiy
designed exact and heuristic algorithms. The usefulness of
each approach is evaluated in terms of the validity of the
model, the computational complexity of the algorithm, the
properties of the solution, the availability of software and

the capability for sensitivity analysis.,
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Model builders usually are confronted with a rather annoying
decision. When trying to model a complex real system, the
question'always comes up as to how much complexity should be
transferred to the model. If the model is too simple, the
solutions of the model might not give reasonable answers to
the problem; if the model reflects well the real system,
there may be no algorithms at hand to find solutions to the
model. Throughout this paper, we shall be dealing with this
kind of model building problem in the context of planning
water»networks,l -

Planning water networks is a short term for

the following set of problems: Consider a region where either
an irrigation or a wastewater system should be built or - in
case one exists already - should be expanded. Such a system
can be described in terms of possible pipes to transport the
water, which would be modeled as arcs in a network model.
Those pipes would transport water from wells or other water
supply facilities to the demand points - like agricultural
plants - in the case of an irrigation system. In the case

of a wastewater system, the pipes would transport the waste-
water from the pointé where it is produced - towns or

houses - to possible sites of wastewater treatment plants.
The possible location of wastewater treatment plants, wells
and the location of towns and agricultural plants would then

. be modeled as nodes in a network model. Knowing the demands

for water (in the case of an irrigation system) or the pro-

duction of wastewater, the question remains which pipes and

which wastewater treatment plants or wells to build and with
what capacity.

Although the decision problem is clear, the formulation of
an objective is much less so. Certainly the construction of
an irrigation or wastewater network has not only one objec~
tive to meet, but a number of them; reliability, rural deve-
lopment as well as political and social considerations being
among them. But if the demand for irrigation water or the
production of wastewater is part of the constraints of the
problem that have to be satisfied, then one major factor in



designing a network are certainly the construction and/or
operating costs. Although we are fully aware that cost consi-
derations are only one part (although usually a major part)

of the decision process it has been proven useful to have
models available who can find network designs such that the
costs are minimized. The final decision has to be one that
takes such a result into account but not necessarily goes along
these lines completely, because of other important objectives.
Also uncertainties of future developments (e.g. weather, waste-
water production, costs) have to be considered and complicate

the analysis.

At our present knowledge no multiobjective, stochastic net-
work optimization model is available. But using one of the
models presented in this paper one can at least answer parti-
cular questions. By making extensive use of sensitivity
analysis one can also take some of the inherent uncertainties
into account.

In the last 10 years some attempts have been made to use net-
work models for the design of water networks. On the other
hand, also some theoretical improvements for solving network
optimization problems have been made. In this paper we want

to survey the applications, critically discuss the usefulness
of some of the models and try to combine applied and methodolo-
gical aspects of the problem, which appear to be somehow sepa-

rated in the literature.

Given the above mentioned restrictions for the use of optimi-
zation models in water network design, the existing models

have different shortcomings and advantages to serve our need.
There appear to be five criterions which we find crucial in
defining the usefulness of each model: the validity of the mo-

del in terms of the real problem; the computational difficulty

to sclve the model; the properties of the solution of the

model; the availability of software to solve the model and

the capability for sensitivity analysis with the model in order

to consider uncertainties. Therefore in this survey we concentrate

on these five criterions.
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Although the real world problems to be considered will al-
ways remain the same throughout the paper, namely designing
and/or extending irrigation and wastewater systems such

that construction and/or operating costs are minimized, the
presented models are of increasing complexity with decreasing
efficiency of the algorithms.

This paper is divided into two parts. The first part deals
with models where the cost function of constructing and/er
operating the system is linear. In the second part, models with
concave cost functions, reflecting the economies of scale
in building or operating such systems will be discussed.

1. Models with linear cost functions

Consider the following problem: A regional wastewater system
has to be designed. A preparational study has decided which
towns to include into this system and where wastewater treat-
ment plants might be located. It is known which wastewater
treatment plant locations and which towns can be directly
connected with each other by a pipe for transporting the
wastewater. Modelling the towns and wastewater treatment
plants as nodes and the connecting pipes as arcs, we define

a network as N=(X,A), where X is the set of all nodes jeX

and A is the set of all arcs (i,j)eA with i.jeX. (i,j) thus
denotes an arc through which water can flow from node i to
node j. Assuming now that the total costs (construction and/or
operating costs) of the wastewater treatment plants and of
the pipes depend linearly on their capacity, we can formulate
the problem of minimizing the costs as

minimize X C,. Xsa *+ L cC._ X. (1)
(i,9)eA 1 11 gex 3% 3@

subject to



where
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for all jeX (2)
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amount of wastewater produced at node j;

costs to construct and/or operate the pipe from node
i to node j with a flow capacity of X3 = 1. Because
of the linearityv of the costs, the increase of the
capacity by xij = 1 will increase the costs by s
Depending on the problems, the costs can either re-
flect the construction costs alone or the maintenance
costs alone or some sum of both (if a certain planning

horizon is given);

costs to construct and/or operate the wastewater treat-
ment plant at node j with a capacity of one unit of
water flowing into the plant, namely xja = 1
percentage of water that is not lost on its wav through
pipe (i,3), e.g. si-=0‘9 means *that 20 % of the water

]
flowing through pipe (i,J) is not lost;

flow through pipe (i,j) and equivalently also the

capacityv of pipe (i,3);

amount of water purified in the wastewater treatment
plant at node j and equivalently also the capacity of

this plant;
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uij maximum allowed size of pipe (i,3);
uja maximum allowed size of the wastewater *+reatment
plant at node j.

Model (1) = (3) is called the transshipment problem when all
Bij=1 and generalized network flow problem in case some

Bij<1. The constraints (2) are called conservation of flow
equations and simply state that all the incoming flow of waste-
water plus the produced wastewater (=5j) at a particular node
must equal the amount of water purified at node 3 (=x-a) plus

]
the outgoing flow.

Nearly the same model applies in case of the design of an
irrigation system. Equations (1) and (3) remain unchanged,

‘but instead of (2) we have to write

i Bij xij+xja :V i sz + éj for all je X
(i,3)eA - C(3,2)eA (2%
where
dj: 0 amount of water needed at node j for irrigation;
xja amount of water produced at node j by wells, rivers

or other sources,.

Model (1), (ZX), (3) is again a transshipment or a generalized
network flow problem.

With the notable exception of the objective function, which is
verv simple in our case, these models capture all the complexity
of the models of AHRENS (1974), RAMOS (1979), JARVIS et al. (1278),
JOERES et al. (1974), McCONAGHFA and CONVERSE (1973), WANIELISTA
and BAUEP (1972), and BRILL and NAKAMURA (1978).

However, the advantage of the simple models (1) - (3) and (1,
(ZX), (3) are great. Special algorithms exist for the transship-
ment and for the generalized network flow problem.



G.H. BRADLEY et al. (1977) reported that their FORTRAN-code
for transshipment problems solved models with 40.000 arcs and
5.000 nodes in 290 seconds and models with 21.000 arcs and
10.000 nodes in 441 seconds on an IBM360/67. MAURRAS (13872)re-
ported that his FORTRAN-code for the generalized network
flow problem solved a model with 3.000 nodes and 8.000 arcs
in 500 seconds on a CDC6600 and claimed that his code can
handle models with up to 12,000 nodes and 50.000 arcs. Both
codes are specializations of the simplex-algorithm simplified
by using thebspecial structure of the constraints. In general
one can expect that a transshipment problem can be solved in
less time than a generalized network flow problem, because of

its simpler structure.

Although a general linear programming code can also solve these
models, it is much less efficient than the network flow algo-
rithms; experience has shown that the simplex algorithm will
take about S50 - 200 times longer to solve the problem. Recent
papers, for example ELAM et al. (1977), might lead to even .
faster codes for the generalized network flow problem. How-
ever, the existence.of a computer code based on that paper

is not yet reported.

A general linear programming code has the advantage that it

is readily available as standard software including a very

easy handling of sensitivity analvsis. Special network flow
algorithms are usuallv available too, although not the algo-
rithms of BRADLEY et al. (1977) or MAURRAS (1872), which can only
be obtained from them. Standard network flow codes generally
use the out-of-kilter algorithm, which may be less efficient

than the later developments,

Therefore, most software that solves network flow

problems is superior in all of our criterions, which we
mentioned before, except that the validity of a linear cost
function as an objective is questionable. It is thus not sur-
prising than no application is reported in the literature

using this model. However because the model is so good in terms
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of the other criterions it is worth mentioning it and -
in case the nonlinearities of the cost function can be
approximated by a linear cost function - also. worth using
it.

The above models do not apply to the expansion of a waste-
water or an irrigation system. This is so, because we must

now differentiate between the capacity of a unit (e.g.

pPipe, wastewater treatment plant, well) and the flow through

the unit. While in the above described models the size of a unit
would never be greéter than the flow, this will not necessarily
be true if some units already exist. The model with linear

costs for expanding a water network is formulated as:

minimize z Cis Y33 v T Ci Vs (w)
(i,5)ea 13

subject to (2) for a wastewater problem or (2*) for an

irrigation problem and

Ogyij and ngi.gqij+y. for all (i,j)eA

J ij
(5)

Ogyja and Oixjaqua+yja for all jeX

where

qij existing size of pipe (i,3);

qja existing size of a wastewater treatment plant or a
well at node j;

yij expansion of pipe (i,j), for example by building an
additional pipe from node i to J;

yja' expansion of a wastewater treatment plant or a well

' at node j; '

Xij flow from node i to j;

Xj4 amount of purified wastewater (or of produced irriga-

tion water) at node 3.



All other coefficients remain the same as in (1), (2) or (2%
respectively. The way the cost function (4) is defined, it is
assumed, that additional costs arise only from the additional
capacities that have to be built and operated, and that the
costs of the original network for maintenance and operating
remain the same, no matter in what way the network is expanded.
It is easy to see that at the optimal solution of (4), (5) to-
gether with (2) or (2X) it must hold that

y.: = max (0,x;

i3 - qij) and Vg = max (Oyxs_. = Q:s_).

J ja “ja

Therefore, if q.. = 0 we can set Yi4 = and thus reduce

Ko
the size of thel;roblem. In general one ;is to use a standard
linear programming code to solve this problem. Fowever, if
Bij = 1 for all (i,j)eA a special algorithm can be used.

This algorithm is described in MANDL (1878a). In the worst
case this algorithm requires the solution of Id. different

JeX order

shortest path problems, each requiring of the
O(n2) operations, where n is the number of nodes in the set X.
The only available computer code reported is by MANDL (1978b),
but experience of the performance of this code for large net-

works is lacking.

All the models discussed so far have in common that the
algorithmns find the globally optimal solution. On the other
hand the assumption that costs are linearly depending on the
size is certainly a great simplification of reality. However,
if, in fact, it turns out that all decision variables are much
greater than zero in the optimal solution (a not too likely
event) the linear cost model is still reasonable. This is so,
because many real world cost functions with economies of scale
become near to linear for larger quantities like the function

given in Fig. 1.
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Fig. 1: Concave Function and Linear Approximation

In cases where some decision variables are close to zero
(less than X in Fig. 1), the decision to construct a unit,
based on the linear cost model, may be incorrect.

2. Models with Concave Cost Functions

A more realistic formulation is obtained by using costs that

are concave with size. This results in the model

minimize z f.o.(x,.)Y + T f., (x.) (6)
(i,9)eA 1] 1] jeX ja Jja

3
] ) .. . . .
subject to (2) or (2 and (3), where _l](xl]) and f]a(xja)
are concave functions (not necessarilv continuous or diffe-

rentiable) like the example shown in Fig. 1.

While the general model (6) subject to (2) or (2% and (3)
seems to be a very realistic model, its use is limited because
either only locally optimal solutions can be found or, when

a globally optimal solution is available, rapidly increasing
computation time prohibits the use of this model for large

networks. We shall therefore first discuss simplified versions
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of this general model for which special algorithms have been
developed recently.

Consider a model which consists of the
minimization of (5) subject to xing for all (i,3)e¢A and xjazo
for all jeX and (2) or (2%) with Bij=1 for all (i,jd)eA and
where the network N=(X,A) is a tree, e.g. a network with a
structure shown in Fig. 2.

Ak

Fig, 2: Trees

Compared to the general model (6) subject to (2) or (2%)

and (3), we assume here that no losses of flow occur, that
there are no capacity constraints of tvpe (3) in the systenm
and that the possible network N=(X,A) is of a special struc-
ture. In this case POLYMERIS (1978) developed an algorithm
which finds the global optimum to this problem. Furthermore,
the computational complexity depends on the structure of the
tree, If the tree is of the type shown in Fig. 3, then the al-
gorithm needs O(nz) operations where n is the number of nodes
in the network. If the tree is of the type shown in Fig. 4, then
the algorithm needs 0(2") operations.

OO 00

Figure 3: Computationally Simple Tree
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- Fig., 4: Computationally Difficult Tree

In case the network is a simple tree (as given in Fig. 3)
CONVERSE (1972) and also WHITLACH and ReVELLE (1976) dealt
with this problem, which typically arises if a wastewater
network is designed along a river. The solution procedure

of CONVERSE (1972) is the same as the one by POLYMERIS
(1978) applied to this special case - a type of dynamic
programming algorithm. WHITLACH and ReVELLE (1276) present

a heuristic algorithm for an extended problem in which al-
ready existing wastewater treatment plants can be considered
and also certain requirements for the water quality can be
taken into account. Both additional problems cannot be solved
by POLYMERIS (1978) or CONVERSE (1972). Computationally , the two
different approaches are comrarable, but sensitivity analysis
can be performed more easilv using the method of WHITLACH

and ReVELLE (1976). Computer codes for the above mentioned
algorithms are only available from the authors. The algorithm
of POLYMERIS (1878) was also implemented by MANDL (1979b).

When the underlying network N=(X,A) is arbitrary but still
no losses are allowed (ﬁij = 1) and no canacity constraints
are imposed, a number of authors have suggested solution
methods.McCONHAGA and CONVERSE (1973) propose a heuristic
algorithm, which is fast but does not necessarily find the
optimal solution.

Two algorithms were published by GALLO et al. (1979 and 1980).
The algorithm of GALLO et al. (1979) uses the fact that an
optimal solution will be a basic feasible solution of (2) or



(2%*) (together with the non-negativitv constraint). In GALLO's
algorithm, all adjacent basic feasible solutions of a given
basic feasible solution are examined and if no better solution
is among those, the algorithm stops. Otherwise the search

is repeated from the better basic feasible solution. Each
iteration of the algorithm requires O(n3) operations (n being
the number of nodes), while for the number of necessary itera-
tions no good upper bound exists (it is the same ubper bound
as for the simplex-algorithm, namely é%%%%%TT , where m is

the number of arcs in the network). The solution found by

this algorithm is locally optimal, because it is at least

as good as any adjacent basic feasible solution. Other
algorithms which find solutionsto this problem (e.g. separable
programming, nonlinear programming) will also find a locally
optimal solution, but one which is only locally optimal in

an e-neighbourhood, ¢>0, of the solution. The latter concept
of optimality is certainly weaker than the one obtained by
GALLO et al. (1979).

The only available computer code for this algorithm is from the
authors. They reported on having solved problems up to 48 nodes
and 174 arcs within 58 seconds on an IBM370/168 computer.

Another algorithm with similar properties of the solution than
the ones menticned above was published by WALKER (19768). This
algorithm can be applied if the functions of the objective
function (6) are of the type

where S.. = 0 if x,. = 0O
13 1]
and Sij © 1 if X;5 2 0.

This so=called fixed charge problem assumes a linear cost function
‘but with fixed costs if a wastewater treatment plant, well or
pipe is to be built. WALKER's algorithm consists of two parts.
In a first step, a locallv ootimal solution is found with the

same pronerties as the solution obtained bv GALLO's algorithm
I . 24
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(e.g. all adjacent basic solutions are worse in terms of

the objective). A heuristic search procedure then tries to
obtain better local optima. This means that WALKER's al-
gorithm for the fixed charge model will produce a solution
which is at least as good as that found by GALLO's algorithm
applied to the same model. For about the same size of problem
(14 nodes and 30-50 arcs) WALKER has reported a solution time
of 7.6 seconds on an IBM360/65, and GALLO has reported a so-
lution time (with a general concave cost function) of one second
on an IBM370/168. Although there is no clear indication for
it, one would expect the WALKER algorithm, because it is
especially designed for this type of problems, to perform
better for the fixed charge problem than GALLO's algorithm,

An algorithm which finds the global optimum was given by GALLO
et al. (1980). It is a specially designed branch-and-bound
algorithm. The largest test problem with 34 nodes and 122 arcs
required 3 minutes CPU time on an IBM370/168.

Comparing the four different approaches by McCONHAGA and CON-
VERSE (1973), WALKER (1976) and GALLO et al. (1973 and 1980)
one can state that there is little difference as far as the
validity of the model is concerned, because they solve the same
model except for WALKER (1976). Compufervcodes are only avail-
able from the authors. While GALLO et al. (1980) finds the
global optimum, WALKER (1976) and GALLO et al. (1979) find

at least a local optimum, only a feasible solution can be
guaranteed by McCONHAGA and CONVERSE (1973). However, in

terms of computational efficiency the order is reversed.
McCONHAGA's and CONVERSE's algorithm is fast while the algo-
rithm of GALLO et al. (1980) can , but not necessarily must

be fast. Therefore, the heuristic algorithm is also very suit-

able for sensitivity analvsis.

For the general model of (6) subject to (2) or (2*) and (3)
different approaches have been used. For the design of an
irrigation network RAMOS (1978) used separable programming,
the idea of which is to approximate a function of one variable

by a sequence of linear segments as given in Fig. 5.



Fig. 5: Linear Approximations for Different Concave
Functions
The resulting model can be stated as
minimize z z cﬁj zﬁj + = I c?a °§a (7)
(i,j)eA ksKij jeKksKja
subject to (2) or (2*), (3) and
x.. = §  a%. zK, for all (i,3)eA
1] keK.., =+J3 I
1]
X._ = z ag »zg for all jeX
ja 7 ek, ja “ja
ja
25 =1 for all (ij3)eA (8)
ij ?
kekK, .
1]
ko :
I z, =1 for all jeX
ke, J2
ja
zszo for all (ijj)eA and keKij
zg >0 for all jeX and keK.
ja= Jja
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The new parameters a. and cij can be computed from the con-

cave objective function fiﬁ(xij)’ which was introduced in (8).

It must hold that fij(a§j)=c§j, where a§j is a point where the
linear approximation is equal to the concave function (the
graphic interpretation can be seen in Fig. 5). Choosing values
a?j, sgch that a good linear approximation is achiived, is
part of the modelling process. The new variables Zij are
artificial variables which represent the variable X4 defined

]
in model (1) - (3).

Solving this model with the separablé programming mode of a
linear programming code bares no great difficulties as these
codes are usually available. It has been shown by MANDL (1977)
that the maximum number of operations per simplex-step is of
the order O(n2 + n * m), where n is the number of constraints
and m the number of variables. Because the size of model (7)
differs from (1) in the number of variables and not in the
number of constraints, the computation time per simplex?step
only increases linearly in the number of variables. However,
the number of simplex-steps required for finding an optimal
solution will in general be higher for (7) than for (1).

This does not really restrict the application of separable
programming, because commercial simplex codes can solve very
large problems. Also, sensitivity analysis is a well developed
feature of these codes. The major shortcoming of (7) is, how-
ever, the fact that only a locally optimal solution can be
guaranteed. The separable programming algorithm will +‘erminate
at a basic feasible solution if all adjacent basic feasible

solutions have a greater value of the cbjective function.

It is worth noting in this context that the set of basic fea- '
sible solutions of (6) subject to (2) or (2*) and (3) is a
subset of the set of basic feasible solutions of (7) subject
to (2) or (2*), (3) and (8). Therefore any locallv optimal
solution (compared to adjacent basic feasible solutions) of
(6) subject to (2) or (2%) and (3) will also be a local opti-
mum of the separable programming problem (7) subject to (2)
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or (23), (3) and (8), but the reverse need not be true.

If the globally optimal solution is more important than

computational efficiency, the approximation of (6) subject

to (2) or (2*) and (3) as an integer optimization problem

will be appropriate. This model, again a so-called fixed charge

network model (but more general than the one already discussed),

can be formulated as follows:

(bk. y‘

inimiz z z
minimize i

(i,3)eA ksKij

+ I T
ieX kEKja

subject to (2) or (2%¥), (3) and

k
Xes = z Vs for
1] ke XK,., 1
13
xja = z y?a for
kEKja
y$.<Mz$. for
1]- 1]
y.‘<Mz¥ for
ja- Ja
z 'z?.f for
KeK, . 3
1]
z zk < for
keK._ 3%
ja
Z % e{0,1} for

all

all 3

all

all

all

all

k
Zij) +
X -
ja) (9)
(i,3)eA
Je X (10)

(i,3)eA and keKij
jeX and keKja (11)
(i,3)eA

(12)

JeX

(i,3)eA and ksKij
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z}jfa e (0,1} for all jeX and keX,, (13)

Where M is an arbitrary number, M >> 1,

In Fig. 6 it can be seen how this approximation is derived
for one variable.

Fig. 6: Fixed-Charge Approximation to Concave Cost Function

The equations (11) and (12) insure that only one of the
linear approximations may be used at a time. This model has
attracted considerable attention. JARVIS et al. (1978) have
used this model in the design of a regional wastewater svstemn.
The same model was also studied by BRILL and NAKAMURA (1978)
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and by JOERES et al. (1974), JOERES et al. (12%74), who were
the first to discuss this model, used a standard integer
programming code on a Univac 1108. The model they solved had
81 constraints, 49 continuous and 47 integer variables. An
optimal solution was found after 14.4% minutes CPU time.

JARVIS et al. (1978) who used a special branch-and-kound algorithm
by RARDIN¥ and UNGER (1976) reported on solving the model with
‘up to 100 integer variables within 6 minutes CPU time on a
Univac 1108. As the objective of BRILL's and NAKAMURA's (19378)
approach is to produce a variety of good (close to ovotimalitv)
solutions for further inspection, the latter method is not
comparable to thetwo other ones in terms of computational

efficiency.

Let us now sum up the different aspects of the four presented

approaches to solve the general model (6) subject to (2)

or (2¥) and (3). |

- The validity of the model is the same for all approaches,
because they all approximate the concave objective function
(6) by a piecewise linear function.

- In terms of computational efficiency the use of separable
programming - the approach taken by RAMOS (1878) - is the
only possibility for large networks. At present it is un-
likely that an integer programming approach will give re-
sults for networks with more than 200 nodes. The examples
discussed by JARVIS et al. (1978) consisted of not more
than 50 nodes.

- Sensitivity analvsis is also less expensive using separable
programming instead of branch-and-bound techniqgues.

- Computer codes for both separable as well as integer pro-
gramming are usuallv available on larger computers. The
special codes developed by JARVIS et al. (1878) and by BRILL
and NAKAMURA (1978) are only available from them.

- The main advantage of the use of integer programming is to
find the globally optimal solution. Although empirical evi-
dence is missing, the author would not be surprised if local
and global optimum differ substantiallv in practical problems.
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Let us finally discuss some extensions of the models presented
in this paper. One direction, similar to the work by WHITLACH
and ReVELLE (1976), is to explicitely consider water quality
constraints in the design of a wastewater system as was done
by PINGRY and SHAFTEL (1979). They'try to minimize the construc-
tion and operating costs of +he system. The chosen solution
Procedure is a heuristic search algorithm.

Much more attention has been givenyto an extension of the
irrigation network design problem. In water distribution net-
works not only the demand for water at a particular node is

of importance but also the pressure (head) of the water must

be above a certain lower limit at each demand point. ALPEROVITS

and SHAMIR (1977), BHAVE (1978), CENEDESE and MELE (1978),

DEB (1976) and JACOBY (1968) have all dealt with this problem.
Because of the complexity of the problem, it is divided into two
parts. First the structure of the network is decided. This means
that it i1s decided which pipes to build, but no decision is

made concerning the diame*ers(capacities) of the pipes. Most

of the mentioned works already assume that this first part

of the problem is solved. The second part consists in deciding
on the diameters of each pipe to meet the pressure requirements

with minimum costs.

3. Summarv  and Conclusions

A number of models useful in the design or expansion of waste-
water or irrigation systems have been discussed. It turns out
that the user has to make a tradeoff between computational
efficiency (and thus the size of network he can analvze),
quality of the solution (global versus local optimum) and
validity of the model. No model presently satisfies all of
these criteria equally well., In case of a large network we
suggest that one should always first try the approach with

a linearized cost function together with extensive sensitivity

analysis to find out how sensitive the solution is to different
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approximations of the real (presumably concave) cost function.
If the solution remains fairly stable and all capacities are
greater than zero, then this suggests that the solution found
is quite robust (however, not necessarily the optimal solution
to the problem).If the network is of smaller size (e.g. not more
than 200 nodes) one should try an integer programming approach
as suggested by JOERES et al. (1974), JARVIS et al. (1978)

and BRILL and NAKAMURA (1978). If the network, however, is of

a special structure - namelv a tree - then the algorithms

of POLYMERIS (1978) or CONVERSE (1972) will certainly be more
efficient than a general integer programming code. All these
models do not consider water quality constraints explicitely
and optimize the network design in terms of construction and/or
operating costs only. Even so, these mcdels can contribute
substantially to the decision problem of designing water net-

work systems.
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